For the most recent entries see the Petri Nets Newsletter.

On the Computational Power of Timed Differentiable Petri Nets.

Haddad, Serge; Recalde, Laura; Silva, Manuel

In: Lecture Notes in Computer Science : Formal Modeling and Analysis of Timed Systems, Volume 4202, 2006, pages 230-244. 2006. URL: http://dx.doi.org/10.1007/1186734017.

Abstract: Well-known hierarchies discriminate between the computational power of discrete time and space dynamical systems. A contrario the situation is more confused for dynamical systems when time and space are continuous. A possible way to discriminate between these models is to state whether they can simulate Turing machine. For instance, it is known that continuous systems described by an ordinary differential equation (ODE) have this power. However, since the involved ODE is defined by overlapping local ODEs inside an infinite number of regions, this result has no significant application for differentiable models whose ODE is defined by an explicit representation. In this work, we considerably strengthen this result by showing that Time Differentiable Petri Nets (TDPN) can simulate Turing machines. Indeed the ODE ruling this model is expressed by an explicit linear expression enlarged with the minimum operator. More precisely, we present two simulations of a two counter machine by a TDPN in order to fulfill opposite requirements: robustness and boundedness. These simulations are performed by nets whose dimension of associated ODEs is constant. At last, we prove that marking coverability, submarking reachability and the existence of a steady-state are undecidable for TDPNs.


Do you need a refined search? Try our search engine which allows complex field-based queries.

Back to the Petri Nets Bibliography