Pre-School
Linear Algebra
Cornelius Weber
Matrix Product

The elements of a matrix $C = AB$ are obtained as:

$$c_{mn} = \sum_q a_{mq}b_{qn}$$

which is written in matrix notation as (small capital letters denote number of columns and rows):

$$
\begin{pmatrix}
A_{Q \times M} \\
B_{M \times N}
\end{pmatrix}
=
\begin{pmatrix}
C_{Q \times N}
\end{pmatrix}
$$

Note that the number of columns of A must equal the number of rows of B.

Special Cases

- **Dot product:** $M = 1, N = 1$. Then $A = \vec{a}^T$, $B = \vec{b}$ are vectors in \mathbb{R}^Q:

 $$AB = \vec{a}^T\vec{b} = (a_1, \ldots, a_Q) \begin{pmatrix}
b_1 \\
\vdots \\
b_Q
\end{pmatrix} = c, \text{ (scalar)}$$

- **Tensor product:** $Q = 1$. Then $A = \vec{a}$ is a vector in \mathbb{R}^M and $B = \vec{b}^T$ is a vector in \mathbb{R}^N:

 $$AB = \vec{a}\vec{b}^T = \begin{pmatrix}
a_1 \\
\vdots \\
a_M
\end{pmatrix} (b_1, \ldots, b_N) = \begin{pmatrix}
C_{N \times M}
\end{pmatrix}$$

- Regarding the scalar a as a 1×1-matrix, the following order is correct:

 $$\vec{c} = \vec{b}a \quad \text{or} \quad \vec{c}^T = a\vec{b}^T$$

- The product

 $$A\vec{x} = \begin{pmatrix}
\vec{a}_1 \\
\vdots \\
\vec{a}_M
\end{pmatrix} \begin{pmatrix}
x_1 \\
\vdots \\
x_M
\end{pmatrix} = \begin{pmatrix}
\vec{a}_1 x_1 + \cdots + \vec{a}_M x_M
\end{pmatrix}$$

 is a linear combination of the column-vectors \vec{a}_m of A.

 Important is the equation $A\vec{x} = 0$.

 If $\vec{x} \neq 0$, then the column vectors of A must be linearly dependent ($\det(A) = 0$).

Simple Matrix Rules

- $A + B = B + A$

- $AB \neq BA$, in general

- $(AB)^T = B^T A^T$ (mind the order!)
Determinant
The idea is to characterize a square matrix by a real number. So one defines a function $\det: M(n \times n) \to \mathbb{R}$ from an $n \times n$-matrix to a real number. The following three axioms lead to a unique definition of such a function:

D1
$\det(\mathbf{I}) = 1$
(\det is normalized.)

D2
if A has two similar rows, then $\det(A) = 0$
(\det is alternating.)

D3

a) if for three row vectors a, b, c holds $a + b = c$, then:

$$\det \begin{pmatrix} \vdots & \vdots & c \end{pmatrix} = \det \begin{pmatrix} \vdots & \vdots & a \end{pmatrix} + \det \begin{pmatrix} \vdots & \vdots & b \end{pmatrix}$$

b) if for two row vectors a, b holds $a = \lambda b$, then:

$$\det \begin{pmatrix} \vdots & \vdots & a \end{pmatrix} = \lambda \det \begin{pmatrix} \vdots & \vdots & b \end{pmatrix}$$

(\det is linear in every row.)

The following follows from these axioms:

- if the matrix has a row a where $a = (0, \ldots, 0)$, then $\det(A) = 0$.
 This follows from axiom 3.

- if we can construct B from A by adding the jth row to the ith row, $j \neq i$, then $\det(B) = \det(A)$.
 To see this, partition B according to axiom 3 into two matrices, then one will have two similar rows and hence $\det = 0$ according to axiom 2.

- if A is diagonal, then $\det A = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$.
 To see this, start with the identity matrix (axiom 1) and apply operations of axiom 3.

- $\det(A) = 0 \iff$ the row vectors (also column vectors) are linearly dependent.
 (Has to do with axiom 2: via elementary row operations, bring the matrix into block diagonal form. Then $\det(A)$ is the product over the pivot elements. It holds: vectors linearly independent \iff pivot elements $\neq 0$.)

Furthermore:

- $\det \begin{pmatrix} a \\ \vdots \\ b \end{pmatrix} = -\det \begin{pmatrix} b \\ \vdots \\ a \end{pmatrix}$
 (\det is anti-symmetric)

- $\det(AB) = \det(A) \cdot \det(B)$

- but: $\det(A + B) \neq \det(A) + \det(B)$, in general.

- A invertible $\iff \det(A) \neq 0$
Application to a homogeneous system of equations

\[A\vec{x} = 0 \]

has a non-trivial solution (\(\vec{x} \neq 0 \)) only if \(det(A) = 0 \).

Reason: consider \(det(A) \neq 0 \) ⇔ (column) vectors are linearly independent. Hence, there is no linear combination of column vectors (that’s what is done by multiplying \(A \) from the right with a vector \(\vec{x} \)), which fulfills \(A\vec{x} = 0 \) (except the trivial solution \(\vec{x} = 0 \)).

So in order to allow for a non-trivial solution of \(\vec{x} \), it has to be \(det(A) = 0 \). The solution \(\vec{x} \) will not be unique, because \(c\vec{x} \) will also be a solution.

Application to an inhomogeneous system of equations

\[A\vec{x} = \vec{b} \]

has a unique solution iff \(det(A) \neq 0 \).

Reason: \(det(A) \neq 0 \) ⇔ vectors are linearly independent, and form basis vectors of the vector space. Each point \(\vec{b} \) can be reached by unique coefficients \(\vec{x} \) of these basis vectors.

Geometrical interpretation

The determinant of a matrix is the area of the parallelogram spanned by its row (column-) vectors (neglecting the determinant’s sign).

To see this, one transforms the parallelogram via two kinds of operations into a cube. The first kind makes a rectangular box out of the parallelogram while keeping the volume constant. This is done by adding \(\lambda \) times the \(j \)th row vector \(\vec{v}_j \) to the \(i \)th row vector \(\vec{v}_i \), \(j \neq i \). That does not change the determinant (see above), and also not the volume (see Figure).

![Figure 1: Varying \(\vec{v}_i \) by a portion of \(\vec{v}_j \) shifts the shaded volume of the parallelogram.](image)

Now our parallelogram has right angles. The second kind of operations scales each vector to unity length. The determinant – just as the volume – scales linear with the scaling of each of these vectors. These scaling factors tell us about the original volume.

Resulting is a cube with volume 1. We might have to rotate it to align with the axis, which neither changes the volume, nor the determinant since a rotation matrix has determinant 1.

Another interpretation: if one applies the matrix to the points of a cube, then the determinant gives the distortion of the volume. A determinant which is smaller than 0 means that the volume has changed its orientation (the order of the axes permutes by an odd number).

Source: www.mathreference.com/la-det,volume.html © Karl Dahlke
Calculation of the determinant (Leibnitz’ rule)

\[
\begin{align*}
\det \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} &= D_3 \sum_{i_1=1}^{n} a_{1i_1} \cdot \det \begin{pmatrix} e_{i_1} \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \\
&= D_1 \sum_{i_1=1}^{n} \sum_{i_2=1}^{n} \ldots \sum_{i_n=1}^{n} a_{1i_1} \cdot a_{2i_2} \cdot \ldots \cdot a_{ni_n} \cdot \det \begin{pmatrix} e_{i_1} \\ \vdots \\ e_{i_n} \end{pmatrix}
\end{align*}
\]

The first step uses \(D_3 \)a) by constructing a row from unity vectors, as well as \(D_3 \)b) by multiplying with the corresponding value.

Example of Leibnitz’ rule

\[
\begin{align*}
\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} &= a \det \begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix} + b \det \begin{pmatrix} 0 & 1 \\ c & d \end{pmatrix} \\
&= ac \det \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + ad \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + bc \det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + bd \det \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \\
&= ad - bc
\end{align*}
\]

Source: Gerd Fischer Lineare Algebra P. 142 (in german language)
The Eigenvalue Equation

Let V be a M-dimensional vector space \mathbb{R}. Let $A: V \to V$ be a linear function (A can be expressed as a $M \times M$-matrix). A real number λ is an eigenvalue of A, if there exists a vector $\vec{v}_m \in V$ with $\vec{v}_m \neq 0$, so the eigenvalue equation holds:

$$A\vec{v}_m = \lambda \vec{v}_m \quad (1)$$

Hence, the \vec{v}_m are those vectors, which are extended/compressed, but **not** rotated, by the function A. If \vec{v}_m is an eigenvector, then $c \vec{v}_m$ is also an eigenvector. The eigenvalue equation for M eigenvalues and eigenvectors in matrix notation is:

$$AU = U\Lambda \quad (2)$$

or

$$
\begin{pmatrix}
A \\
\end{pmatrix}
\begin{pmatrix}
\vec{v}_1 \\
\vec{v}_2 \\
\vdots \\
\vec{v}_M \\
\end{pmatrix} =
\begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_M \\
\end{pmatrix}
\begin{pmatrix}
\vec{v}_1 \\
\vec{v}_2 \\
\vdots \\
\vec{v}_M \\
\end{pmatrix}
$$

Λ is a diagonal matrix, with the eigenvalues on the diagonal. U is a matrix, with the eigenvectors as its columns. Mind the order on both sides of the equation!

In Eq. 2 we assume that there are M eigenvectors. This sounds reasonable, because in an M-dimensional vector space there are maximally M linear independent vectors.

In the following, we will address the following questions:

- How to compute eigenvalues & eigenvectors?
- What is an inverse matrix?
- How to invert a matrix?

Let $U^{-1}U = \mathbb{1}_M$ (here U^{-1} is the inverse matrix of U) then we can write:

$$U^{-1}AU = \Lambda \quad \iff \quad AU = U\Lambda \quad \iff \quad A = U\Lambda U^{-1}.$$

Left: Eq. 2 left-multiplied by U^{-1} Right: Eq. 2 right-multiplied by U^{-1}.

Relevance

We have: \(\vec{y} = A\vec{x} \) \hspace{1cm} \leftarrow \text{the elements of } \vec{x} \text{ are combined in a complicated matter;}

\hspace{2cm} \text{an element of } \vec{y} \text{ is made from many elements of } \vec{x}

We want: \(\vec{y} = \Lambda \vec{x} \) \hspace{1cm} \leftarrow \text{each element of } \vec{x} \text{ is multiplied by an eigenvalue;}

\hspace{2cm} \text{an element of } \vec{y} \text{ is made from only one element of } \vec{x}

How to get there: \(\vec{y} = U\Lambda U^{-1} \vec{x} \)

Left-multiply by U^{-1}: \(U^{-1}\vec{y} = \Lambda U^{-1} \vec{x} \)

Define: \(\vec{\hat{y}} := U^{-1}\vec{y} \) \hspace{1cm} \text{and} \hspace{1cm} \vec{\hat{x}} := U^{-1} \vec{x} \)

Back-transform: \(\vec{y} = U\vec{\hat{y}} \) \hspace{1cm} \text{and} \hspace{1cm} \vec{x} = U \vec{\hat{x}} \)
Orthonormal: M vectors $\in \mathbb{R}^M$ are orthonormal if

$$\vec{v}_i \cdot \vec{v}_j = \delta_{ij}$$

In matrix notation:

$$
\begin{pmatrix}
(\ldots \vec{v}_1 \ldots) \\
(\ldots \vec{v}_M \ldots)
\end{pmatrix}
\begin{pmatrix}
(\vec{v}_1) \\
(\vec{v}_2) \\
\vdots
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
$$

or

$$SS^T = 1_M$$

which is equivalent to (by left-multiplying with S^{-1})

$$S^T = S^{-1}$$

The column vectors of S^T form an orthonormal base of \mathbb{R}^M. Hence, the eigenvectors would span an orthonormal base, if U (on the previous page) is orthonormal. Note that orthogonal eigenvectors may always be scaled to be orthonormal.

Source: Gerd Fischer Lineare Algebra P. 200 (in german language)
When are the eigenvectors orthogonal? We will show that of any symmetric matrix, eigenvectors belonging to different eigenvalues are orthogonal. Let $\mathbf{A}\vec{v}_j = \lambda_j \vec{v}_j$ and $\mathbf{A}\vec{v}_i = \lambda_i \vec{v}_i$ (i.e. \vec{v}_j is eigenvector belonging to eigenvalue λ_j and \vec{v}_i is eigenvector belonging to eigenvalue λ_i). Then:

$$\lambda_j \vec{v}_i^T \vec{v}_j = \vec{v}_i^T \lambda_j \vec{v}_j = \vec{v}_i^T (\mathbf{A}^T \vec{v}_i) \overset{\text{symm}}{=} (\mathbf{A}\vec{v}_i)^T \vec{v}_j = \lambda_i \vec{v}_i^T \vec{v}_j$$

If $\lambda_j \neq \lambda_i$ then it has to be $\vec{v}_i^T \vec{v}_j = 0$.

Source: Gerd Fischer Lineare Algebra P. 208 (in german language)

How find eigenvalues & eigenvectors? The eigenvalue equation (1) is equivalent to:

$$(\mathbf{A} - \lambda_m \mathbb{1}) \vec{v}_m = 0 \quad (4)$$

This system of equations for \vec{v}_m has non-trivial solutions if

$$\det(\mathbf{A} - \lambda_m \mathbb{1}) = 0 \quad (5)$$

Computing this determinant results in a polynomial in λ_m, the characteristic polynomial of \mathbf{A}. Its solutions are the eigenvalues $\{\lambda_m\}$ of \mathbf{A}.

The eigenvectors \vec{v}_m are then found by inserting the found λ_m into equation (4). Since the rows of this matrix are linearly dependent ($\det = 0$), the solutions are not unique. One obtains only a relation which fixes the direction but not the length of the eigenvectors.

When are the eigenvalues real? As an example, let us look only at the characteristic polynomial of a 2×2-matrix.

$$\det \begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix}$$

$$= \lambda^2 - a_{11}\lambda - a_{22}\lambda + a_{11}a_{22} - a_{21}a_{12} = \lambda^2 + (-a_{11} - a_{22})\lambda + a_{11}a_{22} - a_{21}a_{12}$$

which we set to zero to obtain the eigenvalues. We apply the quadratic formula

$$x_{1/2} = -\frac{b}{2} \pm \sqrt{\frac{b^2}{4} - c}$$

where we identify $b = (-a_{11} - a_{22})$ and $c = a_{11}a_{22} - a_{21}a_{12}$. The eigenvalues are both real if: $c \leq \frac{b^2}{4}$, i.e.

$$a_{11}a_{22} - a_{21}a_{12} \leq \frac{(-a_{11} - a_{22})^2}{4} = \frac{a_{11}^2 + a_{22}^2 + 2a_{11}a_{22}}{4}$$

$$0 \leq \frac{a_{11}^2 + a_{22}^2 + 2a_{11}a_{22} - 4a_{11}a_{22} + 4a_{21}a_{12}}{4}$$

$$0 \leq a_{11}^2 + a_{22}^2 - 2a_{11}a_{22} + 4a_{21}a_{12}$$

$$0 \leq (a_{11} - a_{22})^2 + 4a_{21}a_{12}$$

This is in particular true if the off-diagonal elements have the same sign.

In general on can show: A symmetric matrix has real eigenvalues.

When are all eigenvalues positive? If the matrix is positive definite – later.
A matrix that has no eigenvectors A rotation matrix in \(\mathbb{R}^2 \) is given by
\[
A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}
\]
The characteristic polynomial \(P_A \) is
\[
\lambda^2 - 2 \cos \alpha \cdot \lambda + \cos^2 \alpha + \sin^2 \alpha = \lambda^2 - 2 \cos \alpha \cdot \lambda + 1
\]
We set this to zero and apply the quadratic formula to get the eigenvalues:
\[
x_{1/2} = -\frac{b}{2} \pm \sqrt{\frac{b^2}{4} - c} \quad \rightarrow \quad \lambda_{1/2} = \cos \alpha \pm \sqrt{\cos^2 \alpha - 1} = \cos \alpha \pm \sqrt{-\sin^2 \alpha} = \cos \alpha \pm i \sin \alpha
\]
The term under the square root is non-negative only for \(\alpha = 0, \pi, \) etc. Then the matrix is similar to the identity matrix.
(Defining the complex number \(i = \sqrt{-1} \) we have \(\lambda_{1/2} = \cos \alpha \pm i \sin \alpha \).)

Source: Gerd Fischer Lineare Algebra P. 169 (in german language)

Derivation of the quadratic formula
\[
x^2 + bx + c = 0
\]
\[
x^2 + bx = -c
\]
\[
x^2 + bx + \frac{b^2}{4} = -c + \frac{b^2}{4}
\]
this step is motivated by the following
\[
(x + \frac{b}{2})^2 = \frac{b^2}{4} - c
\]
\[
x_{1,2} + \frac{b}{2} = \pm \sqrt{\frac{b^2}{4} - c}
\]
\[
x_{1,2} = -\frac{b}{2} \pm \sqrt{\frac{b^2}{4} - c}
\]
What is an inverse matrix?
An $M \times M$ matrix A is invertible, if there exists an inverse matrix A^{-1} with

$$AA^{-1} = \mathbb{1}_M$$

Since $A^{-1} = A^{-1}\mathbb{1}_M = A^{-1}(AA^{-1}) = (A^{-1}A)A^{-1}$ it will also be

$$A^{-1}A = \mathbb{1}_M$$

How to invert a matrix?
1. **Method:** For a given matrix S search the inverse unknown matrix $X = S^{-1}$. Ansatz:

$$SX = \mathbb{1}$$

For each of the M column vectors of X this is a system of equations with M unknowns (the components of the column vector) and M equations (the rows of S). The solution of each of these systems of equations results in a column of X.

Source: Bronstein Taschenbuch der Mathematik P. 206 (in german language)

2. **Method:** With elementary matrices B one can transform every invertible matrix S into the identity matrix $\mathbb{1}$. In the following, apply these to S (left side) so that it becomes $\mathbb{1}$, and apply the same operations to $\mathbb{1}$ (right side) so that it becomes the inverse S^{-1} of S:

$$B_n \cdot \ldots \cdot B_1 \cdot S = \mathbb{1} \iff B_n \cdot \ldots \cdot B_1 \cdot \mathbb{1} = S^{-1}$$

Source: Gerd Fischer Lineare Algebra P. 94 (in german language)

What are elementary matrices? Every invertible matrix S can be expressed as a product of elementary matrices. These are square matrices which differ from $\mathbb{1}$-matrix in only few entries. They perform – from left multiplied – elementary row operations:

(i) multiplying a row by λ,
(ii) adding λ times the j-th row to the i-th row and
(iii) interchanging two rows.

A^{-1} is symmetric if A is symmetric, written also as $A^{-1} = (A^{-1})^T$. Reason:

$$\mathbb{1}_M = A^{-1}A = (A^{-1}A)^T = A^T(A^{-1})^T = A(A^{-1})^T$$

must be A^{-1}

Source: Christopher M. Bishop Neural Networks for Pattern Recognition Appendix A

A and A^{-1} have the same eigenvectors; the eigenvalues are reciprocal. Reason:

$$A\vec{v} = \lambda \vec{v} \quad \text{left-multiply with } A^{-1}$$
$$\vec{v} = \lambda A^{-1}\vec{v} \quad \text{divide by } \lambda$$
$$\lambda^{-1}\vec{v} = A^{-1}\vec{v} \quad \leftarrow \text{eigenvalue equation for the inverse matrix}$$

Source: Christopher M. Bishop Neural Networks for Pattern Recognition Appendix A
Taylor Series

Assume one can write a function \(f : \mathbb{R} \to \mathbb{R} \) as a polynomial:
\[
f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n
\]
The Taylor formula states, if this polynomial series is valid in an interval, the following: The function value at any point \(x \) within this interval can be computed if one knows all derivatives of a function at (another) point \(x_0 \) which is also in this interval.
\[
f(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \ldots + a_n (x - x_0)^n
\]
(For \(x_0 = 0 \) this yields the topmost equation.)

Now we need the coefficients \(\{a_k\} \). We can obtain these be comparing the coefficients above to the values obtained from deriving the function at \(x_0 \). The derivatives at \(x_0 \) are:
\[
\begin{align*}
f(x) &= a_0 \quad \iff \quad a_0 = f(x_0) \\
f'(x_0) &= a_1 \quad \iff \quad a_1 = f'(x_0) \\
f''(x_0) &= 2a_2 \quad \iff \quad a_2 = \frac{f''(x_0)}{2} \\
f'''(x_0) &= 6a_3 \quad \iff \quad a_3 = \frac{f'''(x_0)}{3!} \\
f^{(n)}(x_0) &= n! a_n \quad \iff \quad a_n = \frac{f^{(n)}(x_0)}{n!}
\end{align*}
\]

With these coefficients \(a_k \) the Taylor series can be written as:
\[
f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k
\]

Examples (for the last one we need \(i^2 = -1 \)):
\[
\begin{align*}
e^x &= 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \frac{1}{5!} x^5 + \ldots = \sum_{k=0}^{\infty} \frac{x^k}{k!} \\
cos x &= 1 - \frac{1}{2!} x^2 + \frac{1}{3!} x^3 - \frac{1}{4!} x^4 + \ldots = \sum_{k=0}^{\infty} \frac{x^k}{(2k)!} (-1)^k \\
sin x &= x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \ldots = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} (-1)^k \\
e^{ix} &= 1 + ix - \frac{1}{2!} x^2 - i\frac{1}{3!} x^3 + \frac{1}{4!} x^4 + i\frac{1}{5!} x^5 - \ldots = \sum_{k=0}^{\infty} \frac{x^k i^k}{k!} \\
&= \cos x + i \sin x
\end{align*}
\]
The latter is the Euler Formula.

From the Euler Formula follows:
(i) \(e^{ix} + e^{-ix} = \cos x + i \sin x + \cos x - i \sin x = 2 \cos x \)
(ii) \(e^{ix} - e^{-ix} = \cos x + i \sin x - (\cos x - i \sin x) = 2i \sin x \)
(iii) \(\cos^2 x + \sin^2 x = \frac{e^{2ix} + e^{-2ix} + 2 - e^{2ix} - e^{-2ix}}{4} = 1 \)
(iv) \(\cos(\varphi + \psi) + i \sin(\varphi + \psi) = e^{i(\varphi + \psi)} = e^{i\varphi} e^{i\psi} = (\cos \varphi + i \sin \varphi)(\cos \psi + i \sin \psi) = \cos \varphi \cos \psi - \sin \varphi \sin \psi + i(\sin \varphi \cos \psi + \cos \varphi \sin \psi) \)

From these series one can furthermore see:
\[
\begin{align*}
cosh x &= \frac{e^x + e^{-x}}{2} = \sum_{k=0}^{\infty} \frac{x^{2k}}{2k!} = \cos ix \quad \text{or} \quad \cos x = \cosh ix \\
\sinh x &= \frac{e^x - e^{-x}}{2} = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = -i \sin ix \quad \text{or} \quad \sin x = -i \sinh ix \\
cosh^2 x - \sinh^2 x &= \frac{e^{2x} + e^{-2x} + 2}{4} - \frac{e^{2x} + e^{-2x} - 2}{4} = 1
\end{align*}
\]
Complex Numbers

Problem: we cannot find a solution to a negative square root. The solution is to define:

\[i := \sqrt{-1} \]

Squaring \(i \) means doubling its angle. So multiplications are somehow defined by rotations. Then e.g. \((-i)^2 = -1\), but \(-i \cdot i = 1\).

Real numbers are a subset of complex numbers, where the angle is a multiple of \(\pi \).

Complex numbers are isomorphic to \(\mathbb{R}^2 \).

\[
z = x + iy = r \cos \varphi + ir \sin \varphi = re^{i\varphi}
\]

The latter is the Euler formula (verified by comparing Taylor series of \(\cos \varphi \), \(\sin \varphi \) and \(e^{i\varphi} \)).

Addition of complex numbers ...

\[
z_1 + z_2 = \sqrt{x_1 + x_2 + i(y_1 + y_2)} = r_1e^{i\varphi_1} + r_2e^{i\varphi_2}
\]

... is vector addition (which we can better see with the Cartesian coordinates).

Multiplication of complex numbers ...

\[
z_1 \cdot z_2 = x_1x_2 + i(x_1y_2 + y_1x_2) - 1 \cdot y_1y_2 = x_1x_2 - y_1y_2 + 2ix_1y_2 = r_1r_2 e^{i(\varphi_1 + \varphi_2)}
\]

... multiplies the absolute values and adds the angles (better seen in the polar coordinates).
Revisiting a matrix without (real) eigenvectors

\[A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \]

The characteristic polynomial \(P_A \) is

\[
\det \begin{pmatrix} a - \lambda & b \\ -b & a - \lambda \end{pmatrix} = \lambda^2 - 2a\lambda + a^2 + b^2 = 0
\]

Applying the quadratic formula

\[\lambda_{1/2} = a \pm \sqrt{-b^2} = a \pm ib = r (\cos \varphi + i \sin \varphi) = re^{\pm i\varphi} \]

Indeed, in the original matrix we could have already expressed \((a, b)\) as \((r \cos \varphi, r \sin \varphi)\) for some suitable \((r, \varphi)\). Hence, we have a “rotation matrix” that also scales the vector by \(r\).

We insert the given eigenvalues (in the notation of the under-braced term) into the eigenvalue equation to yield the eigenvectors. For \(\lambda_1 = a + ib\):

\[
\begin{align*}
av_1 - av_1 - ibv_1 + bv_2 &= 0 \\
-bv_1 + av_2 - av_2 - ibv_2 &= 0
\end{align*}
\]

\[\implies v_2 = iv_1 \]

For \(\lambda_2 = a - ib\):

\[
\begin{align*}
av_1 - av_1 + ibv_1 + bv_2 &= 0 \\
-bv_1 + av_2 - av_2 + ibv_2 &= 0
\end{align*}
\]

\[\implies v_2 = -iv_1 \]

The two found eigenvectors are

\[
\begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ -i \end{pmatrix}
\]

Note that each of these vectors has 4 entries (2 of which are zero here), so vectors are in a 4-dimensional space. Any complex multiples of these vectors are also eigenvectors.

Interpretation of the eigenvalue equation in complex space:

- each component of the eigenvector is scaled by the absolute value of the eigenvalue
- the direction of each component is turned by the angle argument of the eigenvalue

Hence, the direction of the eigenvectors does not remain constant in complex space.
Potentiation Method

Finding eigenvalues (and eigenvectors) can be difficult since there is no formula for solving a (characteristic) polynomial of higher than 3rd order. A simple way to find the eigenvector belonging to the largest eigenvalue of a symmetric matrix A is the following iterative procedure.

First, choose an initial vector \vec{v}. Then repeat:

1. apply $A\vec{v}$
2. normalize \vec{v} (e.g. l^2 or l^∞ norm)

until converged. The eigenvalue is then trivially obtained.

Correlation Based Learning

Let us consider a linear neuron which computes its activation y from an input \vec{x} as

$$y = \sum_j w_j x_j$$

The Hebbian Rule for the change Δw_{ki} of a weight (synaptic efficacy) between a neuron i with activity x_i of an input layer and a neuron k with activity y_k of the output layer is

$$\Delta w_{ki} = \epsilon \cdot x_i \cdot y_k = \epsilon \cdot x_i \cdot \sum_j w_{kj} x_j$$

where ϵ is a small learning step size. Let us express the input activations $\{x_i\}$ as a vector \vec{x}:

$$\Delta \vec{w}_k = \epsilon \vec{x} y_k = \epsilon \vec{x} (\vec{w}_k^T \cdot \vec{x}) = \epsilon \vec{x} \vec{x}_k^T \vec{w} \overset{\text{averaged}}{=} \epsilon (\vec{x} \vec{x}_k^T) \vec{w} =: \epsilon C \vec{w}$$

C is the correlation matrix of the input patterns (stimuli) in the input layer.
First order derivatives in higher dimensions

\(f: \mathbb{R} \rightarrow \mathbb{R} \)

The derivative of a function \(f: \mathbb{R} \rightarrow \mathbb{R} \) is the slope of the tangent. This tangent is expressed in the Taylor series

\[
 f(x_0 + \xi) = f(x_0) + a\xi + \ldots
\]

by the first term (after the constant), namely the linear function \(a : \xi \). There, \(a = \frac{df(x)}{dx} \) is the first order derivative of \(f \).

\(f: \mathbb{R}^N \rightarrow \mathbb{R} \)

Let \(f: \mathbb{R}^N \rightarrow \mathbb{R} \), then the derivative is given by a tangent (hyper-) plane: along each of the \(N \) coordinate axes of the input space there may be a different slope. We can write these values into a vector, the gradient \(\vec{a} \) of \(f \). The variation of the function value around the point of expansion \(\vec{x}_0 \) depends on the direction of the vector of variation \(\vec{\xi} \). This is expressed by the dot product \(\vec{a} \cdot \vec{\xi} = \vec{a}^T \vec{\xi} = \sum_{i=1}^{N} a_i \xi_i \):

\[
 f(\vec{x}_0 + \vec{\xi}) = f(\vec{x}_0) + \vec{a}^T \vec{\xi} + \ldots \quad (i = 1, \ldots, N)
\]

\(f: \mathbb{R}^N \rightarrow \mathbb{R}^M \)

Let \(f: \mathbb{R}^N \rightarrow \mathbb{R}^M \), so for each of the \(M \) components of the function value (a vector) we have such an equation:

\[
 f_j(\vec{x}_0 + \vec{\xi}) = f_j(\vec{x}_0) + \vec{a}_j^T \vec{\xi} + \ldots \quad (j = 1, \ldots, M)
\]

We write these \(M \) equations below each other to form one matrix equation

\[
 \vec{f}(\vec{x}_0 + \vec{\xi}) = \vec{f}(\vec{x}_0) + A\vec{\xi} + \ldots
\]

So the first order term of a Taylor series in a higher dimensional vector space is represented by a matrix, since a matrix represents a linear operator.

The \(M \times N \)-matrix \(A \) is called Differential or Jacobi-Matrix. An entry \(a_{ji} \) is the partial derivative of the \(j \)-th component of the function value w.r.t. the \(i \)-th component of the input vector:

\[
 a_{ji} = \frac{\partial f_j}{\partial x_i}(\vec{x}_0) = \lim_{(\vec{\xi}) \rightarrow 0} \frac{f_j(\vec{x}_0 + (\vec{\xi})_i) - f_j(\vec{x}_0)}{(\vec{\xi})_i}
\]
2nd order derivative

\(f: \mathbb{R}^N \rightarrow \mathbb{R}^1 \)

Let \(f: \mathbb{R}^N \rightarrow \mathbb{R}^1 \), then we can express the Taylor series up to 2nd order easily:

\[
\begin{align*}
 f(\vec{x}_0 + \vec{\xi}) &= f(\vec{x}_0) + \sum_{i=1}^{N} \frac{\partial f}{\partial x_i} \xi_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2 f}{\partial x_i \partial x_j} \xi_i \xi_j + \ldots \\
 &= f(\vec{x}_0) + \nabla f \cdot \vec{\xi} + \frac{1}{2} \xi^T H \xi + \ldots
\end{align*}
\]

The first order derivative yields the gradient vector \(\nabla f \). The second order derivative is represented by the Hesse matrix. The Hesse Matrix is symmetric, because \(\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \).

Explanation for \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^1 \)

Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^1 \), then the change of a function value along the direction of a vector \(\vec{\xi} \) is composed of its change along each of the vector’s components, \(\xi_1 \) and \(\xi_2 \):

\[
\begin{align*}
 f(x_1^0 + \xi_1, x_2^0 + \xi_2) &= f(x_1^0, x_2^0) + \left. \frac{\partial f}{\partial x_1} \right|_{(x_1^0, x_2^0)} \xi_1 + \left. \frac{\partial f}{\partial x_2} \right|_{(x_1^0, x_2^0)} \xi_2 \\
 &= f(x_1^0, x_2^0) + \nabla f \cdot \vec{\xi} + \frac{1}{2} \xi^T H \xi + \ldots
\end{align*}
\]

To get 2nd-order precision we must consider that the derivatives (here defined as \(g \) and \(h \)) themselves change along \(\vec{\xi} \):

\[
\begin{align*}
 \Delta g &= g(\vec{x}^0 + \vec{\xi}) - g(\vec{x}^0) = \frac{\partial g}{\partial x_1} \xi_1 + \frac{\partial g}{\partial x_2} \xi_2 \\
 \Delta h &= h(\vec{x}^0 + \vec{\xi}) - h(\vec{x}^0) = \frac{\partial h}{\partial x_1} \xi_1 + \frac{\partial h}{\partial x_2} \xi_2
\end{align*}
\]

This expresses how much the derivatives have changed along the whole extent of \(\vec{\xi} \). The contributions to the change of the function value \(f \) are only the mean of these changes: \(g + \frac{1}{2} \Delta g \) and \(h + \frac{1}{2} \Delta h \).

So in Eq. 1 we have to replace \(g \rightarrow g + \frac{1}{2} \Delta g \) and \(h \rightarrow h + \frac{1}{2} \Delta h \). We obtain the additional terms:

\[
\begin{align*}
 \frac{1}{2} \Delta g \xi_1 + \frac{1}{2} \Delta h \xi_2 &= \frac{1}{2} \left(\left(\frac{\partial^2 f}{\partial x_1^2} \xi_1 + \frac{\partial^2 f}{\partial x_2 \partial x_1} \xi_1 \right) \xi_1 + \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} \xi_1 + \frac{\partial^2 f}{\partial x_2^2} \xi_2 \right) \xi_2 \right)
\end{align*}
\]

which is in matrix notation (using \(\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \)):

\[
\begin{align*}
 \frac{1}{2} \begin{pmatrix} \xi_1 & \xi_2 \end{pmatrix} \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} &= \frac{1}{2} \xi^T H \xi
\end{align*}
\]

with the Hesse matrix \(H \).
Positive definite

Definition: A symmetric matrix A is positive definite if $\vec{x}^T A \vec{x} > 0 \ \forall \vec{x}$ with $\vec{x} \neq 0$.

Theorem: A positive definite \iff all eigenvalues > 0.

Proof:

"\Rightarrow" for the eigenvectors we have:

$$\vec{v}^T A \vec{v} = \lambda \vec{v}^T \vec{v} > 0 \ \Rightarrow \lambda > 0$$

"\Leftarrow" express the vector \vec{x} as a linear combination of eigenvectors: $\vec{x} = S^{-1} \vec{\alpha}$. $(S^{-1}$ is the matrix, where the column vectors are the eigenvectors of A. These are orthogonal – orthonormal if we wish – in case of a symmetric matrix, if the eigenvalues are different; hence such a linear combination can always be made.) So we can write

$$\vec{x}^T A \vec{x} = (S^{-1} \vec{\alpha})^T A S^{-1} \vec{\alpha} = \vec{\alpha}^T S^{-1} \vec{\alpha} = \vec{\alpha}^T S^{-1} S^{-1} \Lambda \vec{\alpha} = \sum_i \lambda_i \alpha_i^2 > 0$$

The under-braced term assumes orthonormal eigenvectors. Λ is the diagonal matrix of the eigenvalues.

When are matrices positive definite?

- If $\vec{y} = A \vec{x}$ then $\vec{x}^T A \vec{x} = \vec{x}^T \vec{y}$ is a dot product of \vec{x} with \vec{y}. This being positive means that the angle between both vectors is less than 90°. Thus, a positive definite matrix does not turn a vector by more than 90°.

- A, B positive definite \Rightarrow the matrix $A + B$ also. Reason:

$$\vec{x}^T (A + B) \vec{x} = \vec{x}^T A \vec{x} + \vec{x}^T B \vec{x} > 0 + 0$$

- A positive definite \Rightarrow A^r positive definite, where $r \in \mathbb{R}$.

 Reason: eigenvalues λ_i are positive $\Rightarrow \lambda_i^r$ positive.

- Let R be any matrix with linearly independent columns (not necessarily square matrix).

 Then $R^T R$ is positive definite.

 Reason: $\vec{x}^T R^T R \vec{x} = \| R \vec{x} \|^2$

 This is always positive. The term $R \vec{x}$ which is a linear combination of the columns of R cannot become zero for $\vec{x} \neq 0$, because the columns are linearly independent.

- R as above, further let A be positive definite. $\iff R^T A R$ is positive definite.

Source: Gilbert Strang Introduction to Applied Mathematics P. 63, 34/35
Relevance
Let A be a symmetric 2×2-matrix.

\[f(\vec{x}) := \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = a_{11}x_1^2 + a_{22}x_2^2 + 2a_{12}x_1x_2 \]

This might be the 2nd order term of a Taylor series. We have

- $f(0) = 0$
- $\frac{\partial f}{\partial x_1} = 2a_{11}x_1 + 2a_{12}x_2$
- $\frac{\partial f}{\partial x_2} = 2a_{22}x_2 + 2a_{12}x_1$

So the first derivative at the origin is zero: $\left. \frac{\partial f}{\partial x_1,2} \right|_{\vec{x}=0} = 0$

- $\frac{\partial^2 f}{\partial x_1^2} = 2a_{11}$, $\frac{\partial^2 f}{\partial x_2^2} = 2a_{22}$, $\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{\partial^2 f}{\partial x_2 \partial x_1} = 2a_{12}$

If A is positive definite, then $f(\vec{x}) > 0$ for all $\vec{x} \neq 0$. So $f(\vec{x})$ looks like a parabola centred at the origin.

Def: $(\text{Hesse } f)(\vec{x})_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$, Hesse matrix, symmetric ("2nd derivative matrix").

Theorem: Let $f : V \rightarrow \mathbb{R}$ be 2x continuously differentiable and $\nabla f(x_0) = 0$. Then:
If $(\text{Hesse } f)(\vec{x})$ positive (negative) definite, then f has in x_0 an isolated minimum (maximum).

Source: Gilbert Strang Introduction to Applied Mathematics P. 17-19

Source: Otto Forster Analysis 2 P. 61/62
The figure shows N samples of an M-dimensional ($M = 2$) random vector \vec{x}_n (n labels each sample).

Interesting observables of this distribution are the moments such as the center of mass which in the following we assume to be in the origin (we may have to shift our data first).

The second moment, the variance, is for each coordinate axis j:

$$\sigma_j = \frac{1}{N} \sum_{n=1}^{N} x_{jn}^2 =: \langle x_{jn}^2 \rangle_n$$

or

$$\sigma_j = \int x_j^2 p(\vec{x}) \, d\vec{x}$$

The covariance between coordinate axes i and j is:

$$cov_{ij} = \frac{1}{N} \sum_{n=1}^{N} x_{in}x_{jn} =: \langle x_{in}x_{jn} \rangle_n$$

or

$$cov_{ij} = \int x_i x_j p(\vec{x}) \, d\vec{x}$$

All variances and covariances make up the symmetric covariance matrix R:

$$R := \frac{1}{N} \sum_{n=1}^{N} \vec{x}_n \vec{x}_n^T =: \langle \vec{x}_n \vec{x}_n^T \rangle_n$$

or (R)_{ij} := cov_{ij} = cov_{ji}

For example in the above figure, the product $x_{1n}x_{2n}$ is positive for most n, so the covariance cov_{12} between the x_1- and x_2-components of the data will be positive.

Is there a coordinate system in which the covariances (cov_{ij} with $i \neq j$) are zero? This will be the case if the covariance matrix is diagonal!

Linear Algebra tells us that a symmetric matrix R has orthogonal eigenvectors. Let us normalize them (length 1) and write them as column vectors into the orthonormal matrix U.

The eigenvalue equation for R is (which we now assume as having solved):

$$RU = \Lambda$$

So, the diagonal matrix Λ has the eigenvalues of R along the diagonal. The column vectors of U are the orthonormal eigenvectors of R.

The normalized eigenvectors $\{\hat{v}_m\}$ set up an orthonormal base. Each data vector \vec{x}_n can be expressed by a coordinate f_{mn} on every coordinate axis along \hat{v}_m. The coordinate is obtained by a projection (dot product) of the data point onto this axis:

$$f_{mn} = \hat{v}_m^T \vec{x}_n$$

and for all coordinates:

$$\vec{f}_n = U^T \vec{x}_n$$

The variance of the data along this axis is:

$$\sigma_{\hat{v}_m} = \langle f_{mn}^2 \rangle_n = \langle (\hat{v}_m^T \vec{x}_n)(\hat{v}_m^T \vec{x}_n) \rangle_n = \langle \hat{v}_m^T \vec{x}_n \hat{v}_m^T \hat{v}_m \rangle_n = \hat{v}_m^T \langle \vec{x}_n \vec{x}_n^T \rangle_n \hat{v}_m = \hat{v}_m^T R \hat{v}_m$$

With \hat{v}_m being an eigenvector of R, hence $R\hat{v}_m = \lambda_m \hat{v}_m$:

$$\sigma_{\hat{v}_m} = \hat{v}_m^T \lambda_m \hat{v}_m = \lambda_m \hat{v}_m^T \hat{v}_m = \lambda_m$$

Hence, the m-th eigenvalue λ_m is the variance of the data along the m-th eigenvector of the covariance matrix. In the coordinate system of eigenvectors the covariances are zero. The variance of the data along each of its axes is given by the corresponding eigenvalue.
Axes of largest and smallest variance One eigenvector will point into the direction along which the data have the largest variance, and another along the smallest variance. Proof: Use the method of Lagrange multipliers. We search an extremum of the function

\[f(\hat{v}) = \sigma \hat{v} = \hat{v}^T R \hat{v} \]

with the constraint that \(\hat{v} \) is normalized:

\[g(\hat{v}) = \hat{v}^T \hat{v} - 1 = 0. \]

It must be (with a so far unknown Lagrange multiplier \(\lambda \)):

\[\nabla f(\hat{v}) - \lambda \nabla g(\hat{v}) = 0. \]

With \(\nabla_x (\hat{x}^T A \hat{x}) = (\hat{x}^T A)^T + A \hat{x} \quad A^T = A \) we have in the case of an extremum:

\[2 \hat{C} \hat{v} - \lambda 2 \hat{v} = 0 \]

\(\Rightarrow \quad \hat{C} \hat{v} = \lambda \hat{v}. \)

Reconstruction and dimensionality reduction

A data vector \(\vec{f}_n \) expressed in the eigenvector basis can be expressed in the canonical coordinate system as

\[\vec{x}_n = U \vec{f}_n = \sum_{m=0}^{M} \hat{v}_m f_{mn} \]

We can concatenate all data into a matrix \(X \) (canonical system) and a matrix \(F \) (system of eigenvectors). Then the expression for all data becomes \(X = UF \). This looks like:

\[
\begin{pmatrix}
\vec{x}_1 \\
\vdots \\
\vec{x}_N
\end{pmatrix} =
\begin{pmatrix}
\hat{v}_1 \\
\vdots \\
\hat{v}_M
\end{pmatrix}
\begin{pmatrix}
\vec{f}_1 \\
\vdots \\
\vec{f}_N
\end{pmatrix}
\]

Let us assume here that the columns of \(U \) are sorted so that eigenvectors belonging to large eigenvalues come first (left). Eigenvectors in the right part of \(U \) (green box) will belong to small eigenvalues; hence the data has small variance along these directions. That means the lower components of \(F \) (green box) are small.

We can compress our data simply by omitting all values in the green box in \(F \). The approximated data vector in the canonical coordinate system is:

\[\tilde{x}_n = \sum_{m=0}^{M'} \hat{v}_m f_{mn}, \quad M' < M \]

The difference vector which results from the approximation is

\[\vec{e}_n = \vec{x}_n - \tilde{x}_n = \sum_{m=M'+1}^{M} \hat{v}_m f_{mn} \]

It is orthogonal to the approximated data vector: \((\vec{e}_n)^T \tilde{x}_n = 0 \).

The remaining variance in the data that we cannot explain with our approximation is

\[\sum_{m=M'+1}^{M} \sigma_{\hat{v}_m} = \sum_{m=M'+1}^{M} \lambda_m \]

Source: Simon Haykin Neural Networks P. 363

Factor analysis: Here the data are first scaled so that the variance along each dimension is 1. This is useful if different components of the vector have a different (physical) meaning and natural scale. Note that this scaling is done only along the canonical coordinate axes; all other properties remain. In case of PCA the original variances of the data in each direction are meaningful and remain for analysis.