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Abstract— Infants actively explore the relationship between
actions and their associated effects (i.e., sensorimotor con-
tingencies) before full-blown agency emerges. While there is
experimental evidence for this development during the first
year of life, the interplay of the associated cognitive processes
is not yet well understood. This paper uses computational
modeling to examine how exploratory behavior develops, based
on one of the earliest experiments showing such behavior. In a
seminal study of Rochat & Striano (1999), 2-month-old infants,
contrary to newborns, showed differential behavioral patterns
towards mouth-contingent sounds versus random sounds. This
is interpreted as early evidence for action-effect exploration.
We consider seven potential developmental factors as possibly
explaining the emergence of active exploratory behavior in 2-
month-olds: i) outcome prediction, ii) novelty preference, iii)
fatigue, iv) strength, v) memory, vi) sensory noise, and vii) motor
noise. These factors were implemented in both a supervised-
learning model and a reinforcement learning model. Results
from both models indicate that increased memory capacity with
age is a key developmental factor underlying active exploration
and, possibly, agency.
Our code is published at: Computational models

I. INTRODUCTION

A sense of agency requires having a library of actions that
are mapped to their respective effects. According to ideomotor
theorizing [1], the ability to use such action-effect knowledge
for anticipating action effects is the basis of voluntary action.
Moreover, the sense of agency, or the feeling that one causes
desired outcomes by acting, is often hypothesized to be a
fundamental building block of the self [2]. Suffice it to say
that the developing ability to map actions to their effects is a
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central precursor to a meaningful understanding of the world
and (its relation to) the self (e.g. [3], [4], [5]).

In our study, we aim to investigate the developmental
factors of the exploratory behavior in infants by utilizing
computational modeling. We focus on the emergence of
active exploration shown in Rochat & Striano [6]. Their
study investigated early indicators of agency detection and
voluntary action by comparing newborns’ (0mo) and 2-month-
olds’ (2mo) oral activity on a pacifier that produced auditory
feedback. If infants pressed the pacifier with their mouth
above a certain threshold, a sound was played. In the analog
condition, the frequency of the sound was proportional to the
infant’s mouth pressure, while in non-analog condition, the
frequency of the sound was random. Rochat & Striano [6]
showed that by two months of age, infants reacted differently
to the analog condition, namely by pressing the pacifier more
often around the pressure threshold that triggered the sound.
This suggests that 2mo detect the difference between the
conditions and learn to modulate their behavior in the analog
condition whereas 0mo do not. One can argue if this truly
shows voluntary action, an emerging sense of agency, or
even causality detection [7], [8]. However, most would agree
that the study shows sensorimotor contingency detection and,
therefore, an important precursor to the sense of agency and
voluntary action. Although this is an important finding giving
insight into the developmental timeline of voluntary action, it
remains unclear from the current data which exact underlying
factors drive the measured developmental change.

Our computational modeling approach, by the imple-
mentation of theoretical sensorimotor mechanisms, attempts
to determine the underlying developmental factors. Our
model serves as a simulation to demonstrate whether the
developmental trajectory described by Rochat & Striano [6]
can be generated by parsimonious mechanisms (see [9] for a
similar approach). Furthermore, by merging developmental
and sensorimotor theory on the one hand and modeling
approaches on the other, we hope to generate new theoretical
insight into the development active exploration and agency.

Drawing from ideomotor theory, developmental and cog-
nitive psychology, we identified seven potential underlying
developmental factors, which are often used in modeling
behaviors: i) outcome prediction, ii) novelty preference, iii)
fatigue, iv) strength, v) memory, vi) sensory noise, and vii)
motor noise. We grant that this list is not all-encompassing and
that there is some overlap (e.g. no learning without memory),
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nevertheless, these concepts are suitable for mathematical
description and sufficiently distinguishable to model them.
We will attempt to determine which developmental factors
drive the developmental pattern found by Rochat & Striano
[6] by calculating the correlation between the factors and
the behavioral patterns found in [6]. All possible factor
combinations are tested and those with the highest correlation
with the behavioral patterns will be considered to model the
underlying developmental process best. We will now briefly
introduce all the developmental factors we considered.

Outcome prediction (i) in our model refers to the tendency
to minimize the distance between the predicted pitch and the
actual pitch. In action control terms, this refers to the process
of action-effect learning. Action-effect knowledge is thought
to develop during the first year of life, while full-blown
voluntary action is thought to develop during the second half
of the first year [7], [8]. Novelty preference (ii) refers to
how much emphasis our models place on the next sound
being different from the last. Its counterpart is familiarity
preference. Although both phenomena have been extensively
used to assess discrimination abilities in infancy [10], [11], it
is unknown under what circumstances one or the other occurs
[12]. Both are thought to accommodate learning. While we
have not implemented familiarity preference, stimuli that one
can predict can be considered familiar. Hence, action outcome
prediction, partially, overlaps with familiarity.

We also incorporate fatigue (iii) and strength (iv). Fatigue,
as captured by daily sleeping time, progressively decreases
with infants age [13]. Furthermore, muscles quickly build
strength during infancy [14]. Memory (v) is simulated in our
models as the number of past sounds that are memorized.
Evidence from the mobile paradigm suggests that memory
retaining duration increases with age and recognition cues can
decrease in specificity with age [15]. Sensory noise (vi) refers
to how fine-grained the ability of the model is to distinguish
between sounds. In order to detect contingencies between
actions and sound, it is crucial to be able to distinguish the
produced tones. There is evidence that 0mo can distinguish
their mother’s voice from others’ [16] and show a preference
for their native language [17], [18], suggesting sophisticated
auditory analysis even at birth. However, to the best of our
knowledge there are no studies that investigate the distinction
of sine wave tones. Regarding sucking and swallowing
behaviors, it has been suggested that this is the most advanced
adaptive behavior a newborn infant has [19]. We modeled the
development of this ability as a reduction of motor noise (vii)
with age. The actual applied force in sucking corresponds to
the intended force to which we add a motor noise.

The developmental factors were modeled in two neural
network architectures differing in learning mechanism: Self-
Supervised Learning (SSL), where the agent minimizes a
cost function, and Reinforcement Learning (RL), where the
agent maximizes the expected reward. While this sounds
similiar the underlying algorithms beneath these purposes
are quite different. Both architectures have been successfully
used to model sensorimotor behavior [20], [21], [22], [23].
Our modeling approach and comparing its results with the

(a) Reference [6]. (b) Replication.

Fig. 1: Comparison between pressure dynamics generated
by infants and model. (a) A picture of an infant and the
dynamics of the pressure applied to the pacifier by the infant,
as reported in Rochat & Striano [6]. (b) The biomechanical
model produces a smooth output pressure (shown in blue) in
response to a stepwise desired pressure (shown in orange),
closely replicating the dynamics of the pressure applied to
the pacifier by the infant—compare the black line in (a) with
the blue line in (b).

main findings of Rochat & Striano [6] will allow us to shed
light on the question: What developmental factors cause the
developmental change leading to 2mo adapting to specific
contingencies? Furthermore, comparing two architectures with
different assumptions provides us with a compelling way to
evaluate the plausibility of our findings. Convergent results
will be seen as evidence while divergence may reflect different
assumptions and uncertainty of the two approaches.

Main findings of Rochat & Striano

Rochat & Striano [6] tested 0mo and 2mo. Figure 1a
illustrates the experimental setup. Each infant was tested in an
experiment consisting of 6 phases (for details, see section II-
A). The testing started with an initial baseline condition
without any contingent auditory stimulation, followed by a
sequence of four experimental conditions, alternating analog
and non-analog stimulation (in a counterbalanced order). The
testing ended with a final baseline condition without any
contingent auditory stimulation.

Rochat & Striano [6] found differences in sucking activity
of 2-month-old infants compared to newborn infants. First,
only 2mo showed differences in sucking activity in the first
experimental session (be it analog or non-analog) as compared
to the initial baseline. Specifically, compared to 0mo, 2mo’
sucking activity had more high-amplitude pressures (more
than 0.3 psi) and marginally more just-at-threshold pressures
(from 0.1 to 0.125 psi). In the authors’ interpretation, only
the group of 2mo reacted to the introduction of contingent
auditory feedback, whether the sounds were analog or non-
analog with respect to the pressure applied on the pacifier.
0mo did not show such a reaction. Second, and most
important, only 2mo showed differences in sucking behavior
as a function of experimental conditions, analog and non-
analog. Specifically, in the analog condition the frequency
of sucking activity with pressure levels just at the threshold
(from 0.1 to 0.125 psi) was higher than in the non-analog;
also, the average pressure amplitude of sucking activity above



Fig. 2: Overview of the computational model used to study
the emergence of self-exploration in 2-month-old infants. The
red arrows represent the losses that modify the weights of
the neural networks.

threshold (more than 0.1 psi) was lower in the analog than
in the non-analog condition. Thus, compared to 0mo, 2mo
not only reacted to contingency but were able to modulate
their behavior to match the type of contingency, analog or
non-analog.

Upon cessation of contingency, some infant studies report a
so-called extinction burst – a sudden and transient increase of
activity during the final baseline [24], [25]. Rochat & Striano
[6] did not report such an extinction burst.

We will evaluate our simulation success by how well they
replicate Rochat & Striano [6] findings and other findings,
such as the extinction burst.

II. METHODS

In this section, we report the technical details of how
we modeled infant behavior observed in Rochat & Striano
[6]. First, we will describe the experimental setup for our
simulations. We then introduce the biomechanical model of
the mouth and the sucking behavior. Finally, we describe our
two modeling approaches.

A. Experimental setup

To match the number of infants in the original study we ran
20 simulations for both age groups. The original experiments
lasted for 540 seconds consisting of six phases of equal length
(90 s). We simulated this by having each of our simulations
last 5400 steps. With six phases, each lasting 900 steps. As in
the original experiment, we implemented two counterbalanced
six-phase sequences: 1) baseline B1, analog A1, non-analog
N1, analog A2, non-analog N2, baseline B2 and 2) baseline
B1, non-analog N1, analog A1, non-analog N2, analog A2,
baseline B2. During the baseline phases, no auditory feedback
was generated. From the seven dependent variables used in
the original study, we considered those appearing in the main

results of the original study: frequency of pressures just at
threshold (from 0.1 to 0.125 psi), frequency of high-amplitude
pressures (more than 0.3 psi), average of pressures above the
0.1 psi threshold.

B. Model components

Fig. 2 shows the main components of the model introduced
in this paper. The simulation starts with receiving an input
that represents a sound heard by the baby. Before any learning
takes place, the input is modified by the sensory noise, which
models a possible inability to accurately perceive sound from
the environment. The perceived stimulus is added into the
model’s memory of past sounds. Note that in our current
models, memory refers specifically to the memory of the past
sounds and excludes that of past actions and other information;
specifically, in our model, memory refers to a value that
decides how many past sounds the model uses as input. From
the memory of past sounds, the perceived stimulus functions
as the input of the motor signal network, a neural network
that produces a new motor signal. Motor noise is added to
the motor signal to represent potential inaccuracies in the
baby’s ability to accurately control its sucking motion. Apart
from this main path, which produces a new pressure given
a perceived sound, the model produces other attributes that
are essential for it to learn and act. The novelty preference
motivates the model to seek out novel sounds. In contrast,
the prediction error motivates accurate predictions which is
easier when the actions are known.

Novelty preference utilizes the memory of past sounds
and the currently perceived sound to determine the novelty
of the current sound. For the prediction error, the second
neural network of the model is the most important part. This
prediction network has the motor signal from the motor signal
network as its input and produces an outcome prediction for
the sound that the pacifier will produce based on this motor
signal. The prediction is compared with the sound received
during the next step to calculate the prediction error. We
implemented the preferential level of sucking as a habitual
baseline sucking level and computed the muscle effort as the
distance between the current sucking and the baseline level.
The baseline activity refers to the preferred rhythm of sucking
of each infant in the absence of any stimulation. To model
it, we used a sine wave and the average of this sine wave
is decided by the Strength parameter. Fatigue refers to the
negative consequence of going above baseline activity and
motivates the model to preserve its strength, thereby stopping
it from exerting high pressures constantly.

The sounds produced during the simulations mirror those
of the original study. In the baseline condition, no sound
is produced. In the analog condition, whenever the exerted
pressure exceeds a threshold, the pitch of the produced sound
is directly proportional to the pressure exerted on the pacifier.
In the non-analog condition, whenever the exerted pressure
exceeds a threshold, the pitch of the sound is randomly chosen
among a series of sounds.



Fig. 3: Overview of the biomechanical model producing a
pressure that is applied to the pacifier. The biomechanical
model generates a pressure x (measured in psi) by tracking the
desired pressure xdes generated by the two learning models.
This is achieved by simulating the pressure dynamics using a
mass-spring-damper system combined with an integral control
component. The pacifier produces a sound pitch fSound

analog or non-analog to the applied pressure x.

C. Biomechanical modeling

The dynamic change of pressure inside the mouth is
influenced by different factors such as fluid dynamics and
biomechanical structure. These dynamics determine how the
pressure can change over time, influencing sound generation
in the experiment of Rochat & Striano [6], where sounds are
generated based on the pressure applied to a pacifier.

To replicate the dynamic behavior from the original study
[6] (see Fig. 1a), we developed a simplified biomechanical
model based on a mass-spring-damper system combined with
an integral control component (see Fig. 3). Mass-spring-
damper systems have been used to model biomechanical
aspects [26], making them a suitable choice for capturing the
intraoral pressure dynamics. This model is used to generate
pressures x based on the desired pressures xdes output by
the learning architectures by simulating the dynamic pressure
change observed in [6]. Without a biomechanical model,
learning architectures may produce abrupt and stepwise
changes in desired pressure xdes. By using the biomechanical
model, the desired pressures become continuous, and their
dynamics resemble that of infants.

The mass-spring-damper system is modeled by the dynam-
ics,

a = −d · v + k · (xeq − x) + Fm, (1)

where x, v, and a are the position (representing the pressure),
velocity, and acceleration of the mass m. The mass m, damp-
ing coefficient d, and the spring constant k were empirically
selected to replicate the experimental data described in Rochat
& Striano [6]. The passive system (F = 0) captures the
gradual reduction in pressure change rates as the pressure
decreases towards the equilibrium pressure xeq . The integral
controller F = kI ·(xdes−x)dt is used to achieve the gradual
increase in pressure change rate during rising pressure. This
integral force simulates gradually increasing muscle activation
driving the current pressure towards the desired pressure. To
reduce oscillations when the pressure reaches the desired
pressure level, the integral gain is adapted based on the
pressure error kI = tanh(80·(|xdes−x|))·0.008. To integrate

sensory and actuator noise in the model, Gaussian noise is
added to the desired pressure, the equilibrium pressure, and
the forcing term. The resulting behavior of the model is
illustrated in Fig. 1b.

D. Learning architectures

We evaluated two different learning architectures for the
general model described in Fig. 2: SSL and RL. The key
difference between them is how they use external information
to adjust their behavior. The SSL model is very controlled
and directed towards specific actions while the RL model has
less clear supervision and needs to learn from its interaction
with the environment.

1) Self-Supervised neural network: We trained a neural
network using three motivational factors, novelty preference,
prediction error, and effort, mathematically formalized as
losses:

1) Novelty preference loss
= 1− MSE(noisy past sound, sound),

2) Effort loss = MSE(noisy force, instinct force),
3) Predictive loss

= MSE(predicted next sound, true next sound).
The novelty preference loss punishes repeated sounds and
encourages differences between sounds, the predictive loss
encourages correct prediction while the fatigue loss punishes
actions diverging from the baseline. The prediction loss is
back-propagated through both the prediction model and the
motor signal model while the other losses only go through
the motor signal model. The mean squared error is used for
the effort loss in which the distance between the produced
pressure and the pressure that would have been produced by
the habitual sucking is measured.

In both networks, the prediction and the motor signal net-
work, consist of fully connected linear layers. The prediction
model has one neuron for the input, then ten neurons in the
hidden layer and one output neuron. While the number of
neurons in each layer is constant in the prediction model, in
the motor signal model, the number of neurons depends on
memory. The input layer has one neuron per remembered
sound, the hidden layer has one more neuron than the input
layer and the output layer again has a single neuron. At
each step a forward pass is done through these networks
to produce a new prediction and action. For the backwards
pass the losses are calculated by comparing the output of
the model to an optimal output. These losses are propagated
backwards through the model allowing the model to improve
future outputs. The optimal output for the comparison also
stems from the model and evolves over time.

2) Reinforcement learning: In RL an agent interacts with
an environment and receives a reward for each action. Its
goal is to maximize the cumulative reward. The problem is
mathematically formalized as a Markov Decision Process
(MDP) which is defined by a tuple (S,A, P, r, ρ0, γ), where
S is the set of states, A is the set of actions. P (s′|s, a) is the
probability of transitioning from state s into state s′ given
the action a. r : S ×A → R is the reward function, ρ0 is the
initial state distribution and γ ∈ (0, 1) is the discount factor,



representing the difference in importance between future and
present rewards.

Furthermore, to capture the different phases of Rochat
& Striano’s [6] experiment (baseline, non-analog, analog)
we extend the MDP by a contextual formalism (Contextual
Markov Decision Process, CMDP [27]). A CMDP is defined
by a tuple (C,S,A,m), where C is the context space and
m is a function that maps a context c ∈ C to an MDP
m(c) = (S,A, P c, rc, ρc0, γ). A CMDP thus defines a family
of MDPs, that all share an action and state space, but the
transition probability P c, the reward function rc and the initial
state distribution ρc0 may differ depending on the context c.
In our case just P c differs w.r.t. the context which is the
experimental phase.

The RL agent can apply pressure (action) to the pacifier.
The actions follow the biomechanical model of a Mass-Spring-
Damper system (Fig. 3). The environment transforms the
pressure to the corresponding sound frequency and returns it
as a state to the agent. As the output action (pressure) of the
agent and the internal state (sound frequency) are continuous,
we used the off-policy algorithm Soft-Actor Critic (SAC)
[28] for our RL optimization.

The reward formulation is analogous to the three loss
terms of the SSL architecture with an opposite sign. Reward
components 1 and 2 are covered through the environment.
Reward 3 is intrinsic to the agent, and is considered separately
with a forward model s̃t+1 = f(st, at) which is trained in
parallel to the RL updates [29].

Since the RL model learns through interactions with the
environment and receives less direct supervision from rewards,
it is expected to have slower learning as compared to SSL.
We confirmed this in an ablation trial where both models
underwent the same number of learning steps. To account
for the slower learning, we conducted ten iterations of the
six experimental phases per infant simulation.

E. Parameter tuning

In both architectures, we have seven hyperparameters (or
developmental factors) that govern learning: i) prediction of
the outcomes, ii) novelty preference, iii) fatigue, iv) strength,
v) memory, vi) sensory noise, and vii) motor noise. Rather
than arbitrarily choosing values to represent the age groups,
we used a grid search to go through all combinations of
them, analyzing which parameters lead to a high frequency
of pressure around the threshold. Results show that memory
is the most important developmental factor to differentiate
the two age groups. To implement this, the memory of the
simulated 0mo was set to include only the last sound while
that of the 2mo included the last five sounds.

To determine which developmental factor is most important
in each model architecture, we computed the Pearson correla-
tion coefficients between the seven developmental factors and
the main outcome of [6], that is, the difference of pressure
threshold hits between the analog and non-analog phases. We
do not consider strength and fatigue for this computation
(by setting fatigue to zero) as both interact with the desired
pressure threshold value without contributing to learning. For

successful simulation, the pressure needs to approach the
threshold more frequently in the analog condition than in the
non-analog one. However, the strength parameter defines the
starting pressure level and hence it determines whether the
pressure needs to increase or decrease from the initial level in
order to reach the threshold. Therefore, strength impacts the
activity of the model but does not necessarily affect learning.
Fatigue determines how fast the simulation can approach the
threshold and it also mostly affects model activity but not
necessarily learning.

In the SSL model, the factors with the highest correlation
coefficients are motor noise (0.28) and memory (0.18). In the
RL model, the factors with the highest correlation coefficients
are novelty preference (-0.66), memory (0.28), and sensory
noise (0.17).

In both our models, noise mechanically hinders the models
from approaching the desired pressure threshold. Noise pre-
vents the simulated agent from control and activity modulation.
We therefore kept it constant for both age groups. Also, note
that in the RL model there is an inbuilt novelty preference
(see the entropy-based exploration term in SAC [28]).

In conclusion, memory appears to be the common develop-
mental factor that affects the learning in both models. Based
on this finding, we decided to differentiate the age groups
based on their memory, with 2mo remembering the last five
sounds while 0mo only remember the last sound. Additionally,
the 2mo have a novelty preference of 1 while 0mo have it at
0. Novelty preference in the SSL model increases the overall
amount of threshold hits, although it does not have a high
correlation to more analog than non-analog threshold hits. In
the RL model we observe a negative correlation between the
novelty preference and the amount of threshold hits; it may
be due to our novelty preference term interfering with the
inbuilt novelty term in the RL model.

III. RESULTS

Before any specific comparisons and choosing a specific
dependent variable (among the 7 suggested in the original
study) to characterize an aspect of activity, we will first
investigate whether the overall activity is modulated across
different experimental phases and differently so for each age
group. We will then describe how well our models replicate
the comparisons between conditions that Rochat & Striano
[6] reported as significant.

A. Modulation of activity – replication of general finding in
Rochat & Striano

Fig. 4 shows the average activity (across individual simu-
lation runs) of 0mo and 2mo, separately for conditions with
analog and non-analog start. We show both the results of
the SSL model and the RL model. Both models show clear
differences between the age groups regardless of the starting
phase. Not only do we observe a difference in age groups
but we also clear differences between the phases in the 2mo.
In the RL model, at the start of the 2nd baseline (B2), we
clearly observe an extinction burst for the 2mo, which is
not observed for the SSL model. We further find that the



(a) SSL model Analog start (b) SSL model Non-Analog start

(c) RL model Analog start (d) RL model Non-Analog start

Fig. 4: Activity per age group, separately for infants starting
with an analog or a non-analog phase after the 1st baseline,
separately for SSL and RL models. The activity was binned in
150-step bins, corresponding to 15-second bins as in Rochat
& Striano [6]. The lines show the means across individual
runs, green for 0mo and black or gray for 2mo (2 mo).
Experimental phases are highlighted with color backgrounds.
B1: 1st baseline; A1 and A2: 1st and 2nd analog experimental
phases; N1 and N2: 1st and 2nd non-analog experimental
phases; B2: 2nd baseline. Note that only the second half of
B1 is shown. Results of (a) SSL simulations starting with
A1. The activity of the 2mo reveals 3 clusters, shown with
separate black lines. (b) SSL simulations starting with N1.
The atypical activity of 1 simulation run is shown with a thin
dotted line. The thick gray line shows the average activity of
9 simulation runs. (c) RL simulations starting with A1. (d)
RL simulations starting with N1.

activity of the SSL simulated 2mo can be clustered into three
distinct groups shown in Fig. 4. These clusters mostly appear
in runs that start with the analog phase, we hypothesize that
the reason for this is that there is more to learn from the
analog phases leading to different local optima being found
by the model rather than finding a more general solution as
observed in non-analog starts.

Tab. I shows statistics of different comparisons reported
in this section. For the SSL model, 0mo show no difference
in activity between the first baseline (B1) and the first

experimental phase (E1: either analog A1 or non-analog
N1; comparison E1 ̸= B1) while the activity of 2mo is
clearly different in the two phases. For the RL model, both
0mo and 2mo show differences in activity between the first
baseline and the subsequent first experimental phase. Thus,
for 2mo, both models show a difference of activity between
the baseline and the first experimental phase. For 0mo, both
models show no or a smaller difference.

In the SSL model, as expected, 0mo don’t show any
difference in activity between the two analog phases (A1 and
A2) and the two non-analog ones (N1 and N2; comparison
A ̸= N ), while the 2mo show clear differences. The direction
of the modulation of activity in 2mo depends on the starting
experimental condition. For the RL model, both 0mo and
2mo show differences in activity between the two analog and
the two non-analog phases with the direction of modulation,
similar to the SSL model, depending on the starting condition.
Thus, as in the previous comparison (E1 ̸= B1), for 2mo
both types of models show a difference between the activity
during the two analog and the two non-analog phases but for
0mo only the RL model shows a difference.

For the SSL model, when we compare the Post-extinction
and Pre-extinction phases, only a small number of 0mo show
any difference. However, for the 2mo, we observe a difference
when the Pre-extinction phase is analog. For the RL model,
an extinction burst is clearly present in most 2mo; in 0mo
the amplitude of the extinction burst is lower by an order
of magnitude. Thus, for 2mo both models show extinction
bursts but for 0mo they both show no or greatly decreased
extinction bursts.

B. Replication of specific results in Rochat & Striano

The three main results in Rochat & Striano [6], focus
on 1) comparisons between the frequency of high-amplitude
pressures in the phase E1 and B1, 2) the frequency of just-
at-threshold pressures in the conditions A and N , and 3) the
average pressure amplitude above threshold in the conditions
A and N . We show the results of our model for these three
comparisons in Tab. II.

We will first verify whether the frequency of high-amplitude
pressures is higher in the first experimental session than in
the first baseline (E1 > B1). For the SSL model, the average
frequency is higher in E1 than in B1, and, as expected, to a
much larger extent for the 2-month-old infants. For the RL
model, the result is very similar. Thus, both models replicate
this finding of Rochat & Striano [6] well.

Next, we will look whether there are more just-at-threshold
pressures in the analog than in the non-analog phases. For
the SSL model, that is the case on average for both 0mo and
2mo but the difference is one order of magnitude larger for
2mo compared to 0mo and there are more 2mo for whom
this difference is statistically significant. For the RL model,
the conclusion is the same, though the differences between
the two age groups are smaller. Thus, the second finding of
Rochat & Striano [6] is also, on a descriptive level, replicated
by both models.



Comparison Model 0mo 2mo
1st experimental phase
vs 1st baseline
E1 ̸= B1

(E1−B1)

SSL .0002 ± .003
n = 20 (*2)

.139 ± .28
n = 20 (*18)

RL -.015 ± .015
n = 20 (*16)

.077 ± .07
n = 20 (*19)

E1 > B1
SSL .002 ± .001

n = 14 (*1)
.168 ± .295
n = 17 (*16)

RL .007 ± .005
n = 4 (*2)

.04 ± .03
n = 2 (*2)

E1 < B1
SSL -.003 ± .001

n = 6 (*1)
-.024 ± .019
n = 3 (*2)

RL -.02 ± .012
n = 16 (*14)

-.09 ± .06
n = 18 (*17)

Analog vs Non-Analog
A ̸= N

(N −A)

SSL .001 ± .002
n = 20 (*5)

-.07 ± .15
n = 20 (*20)

RL .015 ± .016
n = 20 (*18)

-.007 ± .036
n = 20 (*16)

A < N
SSL .002 ± .001

n = 14 (*3)
.024 ± .013
n = 10 (*10)

RL .02 ± .015
n = 16 (*15)

.023 ± .022
n = 9 (*6)

A > N
SSL -.001 ± .001

n = 6 (*2)
-.164 ± .166
n = 10 (*10)

RL -.004 ± .002
n = 4 (*3)

-.032 ± .026
n = 11 (*10)

Post-Extinction >
Pre-Extinction

SSL .004 ± .003
n = 13 (*5)

.015 ± .01
n = 12 (*10)

RL .021 ± .015
n = 16 (*15)

.236 ± .102
n = 17 (*17)

TABLE I: Modulation of activity across conditions and age
groups. Each cell includes the average ± standard deviation
of the individual differences of pressure (in psi units) between
conditions for each specific comparison; next, the number of
differences considered is given and the (*) shows how many
of those individual differences were statistically significant
(bootstrap with 105 resamples). For Pre- vs. Post-Extinction,
we included 20% of data before and after the extinction at
the start of the 2nd baseline B2.

Finally, we will look at whether the average pressure
amplitude above threshold is lower in the analog than in
the non-analog phases. For the SSL model, that is the case
on average for both 0mo and 2mo but the difference is larger
for 2mo compared to the 0mo. For the RL model, while the
results are in the expected direction, the difference is larger
for 0mo compared to 2mo. Thus, the third finding of Rochat
& Striano [6] is partially replicated by both models.

C. Comparison between the two learning architecture imple-
mentations

With some exceptions, the models “behave” similarly.
Except for the first comparison (E1 ̸= B1), in both models,
the activity increases or decreases across conditions in a
similar fashion. However, there are a few differences between
them. On the one hand, the SSL model differentiates the two
age groups better. On the other hand, the RL model generates
a larger and more reliable extinction burst. Infant learning
likely includes more than one learning mechanism. In future
work, combining the two models could allow for a closer
simulation of infant behavior.

Comparison Model 0mo 2mo
E1 > B1
Frequency of high-
amplitude pressures

SSL 4 ± 4
n = 6 (*2)

171 ± 315
n = 20 (*20)

RL 5 ± 2
n = 2 (*1)

76 ± 77
n = 6 (*6)

A > N
Frequency of
just-at-threshold
pressures

SSL 34 ± 49
n = 13 (*2)

306 ± 237
n = 13 (*12)

RL 32 ± 40
n = 9 (*4)

51 ± 39
n = 17 (*9)

A < N
Average pressure
amplitude above
threshold (psi)

SSL .002 ± .002
n = 15 (*8)

.023 ± .012
n = 12 (*11)

RL .037 ± .022
n = 20 (*18)

.022 ± .021
n = 9 (*7)

TABLE II: Target comparisons with Rochat & Striano [6].
Also see description of Tab. I.

IV. DISCUSSION

We successfully modeled the infants’ behavioral pattern
described by Rochat & Striano [6], using both SSL and RL
architectures. Both architectures are embodied with respect to
the mouth due to the biomechanical module that implements
real-world physical constraints of oral pressure dynamics. This
results in dynamic motor actions and consequently sensory
stimulation being more consistent over time. Results of both
architectures converged on increased memory capacity of
action effects as the critical developmental factor underlying
the active exploration behavior and thus agency. We analyzed
how the overall activity is modulated across phases and if
this modulation differs across age groups. We found that,
compared to 0mo, the 2mo show both larger modulations of
activity and the modulations are statistically significant for a
higher proportion of individuals. Additionally, the direction
of 2mo’ modulations varies depending on which of the two
sequences they were subjected to. Furthermore, when focusing
on the three specific and statistically significant differences
reported by Rochat & Striano [6], both learning architectures
replicated all of them. Finally, the difference between the two
age groups seems to be better replicated by the SSL than by
the RL one. Rochat & Striano [6] emphasized the difference
of activity between the analog and the non-analog phases and
our models replicated both the general activity modulation
and that of specific dependent variables selected by Rochat
& Striano [6]. Interestingly, we also observed spontaneously
emerging extinction bursts in both architectures.

Both architectures implemented the same higher-level
developmental factors of the overall model (see Fig. 2). They
include i) outcome prediction, ii) novelty preference, iii)
fatigue, iv) strength, v) memory, vi) sensory noise, and vii)
motor noise. Crucially, despite the models being based on
different algorithmic learning mechanisms, SSL or RL, both
models end up with the same general conclusion: increasing
memory of action effects is the developmental factor that best
explains the difference between the behavior of our simulated
0mo and 2mo. For 0mo we set the memory to remember only
the last sound while 2mo were able to remember five sounds.
Without such action-effect memory, identifying the nature of
longer sequences, necessary to distinguish analog from non-



analog sequences, would be impossible. Distinguishing the
phases allows the model to adapt to them, therefore memory
is the key developmental factor in both models. Another
developmental factor of interest was novelty preference. We
observed that it was only needed in the SSL model. Compared
to the SSL model, in the RL model the novelty preference
had an opposite effect. One potential explanation for this
is that in RL architectures an exploration term is already
embedded and our own novelty preference may interfere with
it. Here we have given an initial idea of the developmental
factors at play in replicating the findings of Rochat & Striano
[6] and how they influence learning. We have not considered
strength and fatigue during parameter tuning despite them
playing a role in the models’ results because of their direct
connection to the baseline and threshold values. However,
further ablation studies, which focus on one parameter at a
time, will allow a more exact and in-depth view on how each
parameter affects learning sensorimotor contingencies.

In summary, using two different architectures (SSL &
RL) that implemented the same simplified overall model of
infant sensorimotor control, we showed that the results of
Rochat & Striano [6] can be replicated. Based on plausible
developmental factors, both architectures (SSL & RL) were
able to differentiate between experimental conditions and
adapt activity in ways that closely resemble infant behavior.
Although not a new insight per se (e.g. [15]), we generated
converging evidence that action-effect memory plays a crucial
role for self-exploration. Indeed, other ideomotor theorists
such as [30] have suggested that, besides representing the
current situation, a secondary representation of the desired
goal (that may come from memory) is crucial for agency and
voluntary action. In conclusion, the presented computational
perspective on the emergence of active exploration suggests
a renewed emphasis on action-effect memory for early
sensorimotor contingency learning and developing action
control.
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