
Published in Transactions on Machine Learning Research (12/2024)

Mental Modelling of Reinforcement Learning Agents by Lan-
guage Models

Wenhao Lu wenhao.lu@uni-hamburg.de
University of Hamburg

Xufeng Zhao xufeng.zhao@uni-hamburg.de
University of Hamburg

Josua Spisak josua.spisak@uni-hamburg.de
University of Hamburg

Jae Hee Lee jae.hee.lee@uni-hamburg.de
University of Hamburg

Stefan Wermter stefan.wermter@uni-hamburg.de
University of Hamburg

Reviewed on OpenReview: https: // openreview. net/ forum? id= JN7iNWaPTe

Abstract

Can emergent language models faithfully model the intelligence of decision-making agents?
Though modern language models already exhibit some reasoning ability, and theoretically
can potentially express any probable distribution over tokens, it remains underexplored how
the world knowledge these pre-trained models have memorized can be utilised to compre-
hend an agent’s behaviour in the physical world. This paper empirically examines, for the
first time, how well large language models (LLMs) can build a mental model of reinforce-
ment learning (RL) agents, termed agent mental modelling, by reasoning about an agent’s
behaviour and its effect on states from agent interaction history. This research attempts
to unveil the potential of leveraging LLMs for elucidating RL agent behaviour, addressing
a key challenge in explainable RL. To this end, we propose specific evaluation metrics and
test them on selected RL task datasets of varying complexity, reporting findings on agent
mental model establishment. Our results disclose that LLMs are not yet capable of fully re-
alising the mental modelling of agents through inference alone without further innovations.
This work thus provides new insights into the capabilities and limitations of modern LLMs,
highlighting that while they show promise in understanding agents with a longer history
context, preexisting beliefs within LLMs about behavioural optimum and state complexity
limit their ability to fully comprehend an agent’s behaviour and action effects.

1 Introduction

Large language models (LLMs) perform surprisingly well in some types of reasoning due to their common-
sense knowledge (Li et al., 2022b), including math, symbolic, and spatial reasoning (Kojima et al., 2022;
Yamada et al., 2023; Momennejad et al., 2023; Zhao et al., 2024b). Still, most reasoning experiments focus
on human-written text corpora (Cobbe et al., 2021; Lu et al., 2022), rather than real or simulated sequential
and temporal data, such as interactions of reinforcement learning (RL) agents with physical simulators. The
latter scenario unveils the potential of leveraging LLMs for elucidating RL agent behaviour, with which
we may further facilitate human understanding of such behaviour—a long-standing challenge in explainable
RL (Milani et al., 2024; Lu et al., 2024). Leveraging LLMs for this purpose is tempting as they can provide

1

https://openreview.net/forum?id=JN7iNWaPTe

Published in Transactions on Machine Learning Research (12/2024)

explanatory reasoning over a sequence of actions in human-readable language, and this is possible due to
their known ability to in-context learn from input-output pairs (Garg et al., 2022; Min et al., 2022; Li et al.,
2023). This capability allows LLMs to integrate both interaction history and task-specific knowledge for more
nuanced explanations, unlike most existing explainability techniques for RL (Milani et al., 2024), which have
failed to consider the dynamics of agent-environment interactions.

Trajectory

reasoning

un
ro

ll approximated

non-transparent

Mental Model

Figure 1: A conception of LLMs approximating an agent’s mental model where language models reason over
non-transparent agent rationale into more interpretable artefacts for end-users.

There is an ongoing debate about whether the next-token prediction paradigm of modern LLMs can model
human-like intelligence (Merrill & Sabharwal, 2023; Bachmann & Nagarajan, 2024). While next-token pre-
dictors can theoretically express any conceivable token distribution, it remains underexplored how the world
knowledge these models have memorised during the pre-training phase (Roberts et al., 2020) can be utilised
to comprehend an agent’s behaviour in the real or simulated physical world. In this work, we conduct the
first empirical study to examine whether LLMs can build a mental model (Johnson-Laird, 1983; Bansal
et al., 2019) of agents (Figure 1), termed agent mental modelling, by reasoning about an agent’s behaviour
and the consequences from its interaction history. Understanding LLMs’ ability to interpret agent behaviour
could guide the development of agent-oriented LLMs that plan and generate sequences of embodied actions.
Though recent studies (Li et al., 2022a; Huang et al., 2023) show that LLMs can aid in planning for em-
bodied tasks, they merely demonstrate a limited understanding of the physical world, often constrained by
basic, low-level control mechanisms. Further, this agent understanding could also inform the use of LLMs as
communication mediators between black-box agents and various stakeholders (see Sec. 5.3 for a discussion).

Understanding RL agent behaviour is more complex for LLMs than solving traditional reasoning tasks, which
often involve the procedure of plugging different values into equations (Razeghi et al., 2022). In our study,
we formalize the process of agent mental modelling, requiring LLMs to not only comprehend the actions
taken by the agent but also perceive the resulting state changes (details in Sec. 3).

The contributions of this paper include: 1) we shed light on evaluating LLMs’ ability to build a mental
model of RL agents, including both agent behaviour and environmental dynamics, conducting quantitative
and qualitative analyses of their capabilities and limitations; 2) we present empirical evaluation results in
RL tasks, offering a well-designed testbed for this research with proposed evaluation metrics, and discuss
the broader implications of enabling agent mental modelling.

2 Related Work

Mental Modelling for Explaining Agents. With rapid advancements in RL techniques, understanding
the behaviour of black-box RL agents has become increasingly critical yet challenging (Qing et al., 2022;
Milani et al., 2024). Various methods have been proposed to improve human comprehension of agent deci-
sions, including visual explanations that highlight salient state features (Greydanus et al., 2018; Iyer et al.,
2018), building surrogate models like decision trees to approximate original complex agents (Bastani et al.,
2018), and learning interpretable agents through causal reasoning (Lu et al., 2024). From a psychological
perspective, the explainability of RL agents relates to mental modelling, i.e., understanding how learning
systems function (Johnson-Laird, 1983; Bansal et al., 2019). Previous studies often focus on isolated aspects

2

Published in Transactions on Machine Learning Research (12/2024)

of agent behaviour, such as state saliency or reward importance (e.g., a salient state leading to a specific
action or a reward motivating a behaviour (Juozapaitis et al., 2019)). Moreover, most techniques fail to
engage with the agent’s learning process or interactions with the environment. This work explores the po-
tential of LLMs to facilitate mental modelling of agents by reasoning over agent-environment context, with
the anticipation of providing more comprehensive explanations-beyond state/reward importance—such as
revealing behavioural patterns and biases in human-readable text. LLMs are uniquely suited for this task
due to their strong in-context learning capabilities (Brown et al., 2020), allowing them to interpret an agent’s
interaction history and provide richer insights into its behaviour than existing explainable RL techniques.
Given their emergent capabilities (Wei et al., 2022a) (e.g., to mediate between humans and machine learning
models), this paper takes a concrete step toward leveraging LLMs for more intuitive mental modelling of RL
agents.

In-Context Learning. LLMs have exhibited strong performance in inferring answers to queries upon being
given input-output pairs without gradient updates, a capability known as in-context learning (Brown et al.,
2020; Garg et al., 2022; Min et al., 2022; Li et al., 2023). In this study, we focus on evaluating LLMs’
understanding of agents within in-context learning but applied to sequential decision-making settings (Xu
et al., 2022). Here, the context is in the form of state-action-reward tuples instead of input-output tuples.
Closely related to our work is in-context reinforcement learning, where pre-trained transformer architecture-
based models are fine-tuned to predict actions for query states in a task, given history interactions (Laskin
et al., 2022; Lee et al., 2023; Lin et al., 2023; Wang et al., 2024). Unlike this line of work, we aim to evaluate
LLMs’ capability of building a mental model of RL agents via in-context learning, instead of optimising
LLMs.

Internal World Models. LLMs can also be grounded to a specific task such as reasoning in the physical
world or fine-tuned for enhanced embodied experiences (Liu et al., 2022; Xiang et al., 2023). However,
because our focus is on the off-the-shelf performance of LLMs, we avoid this by creating a collection of
interactions of RL agents with physics engines (e.g., MuJoCo (Todorov et al., 2012)). This results in a
more challenging dataset benchmarking that does not explicitly query the LLMs for physics understanding,
instead testing their inherent capability to understand the dynamics and rationale behind an RL agent’s
actions. This allows us to look into the inherent internal world model (Lake et al., 2017; Amos et al., 2018)
of LLMs, which may offer capabilities for planning, predicting, and reasoning, as seen in works on embodied
task planning (Ahn et al., 2022; Driess et al., 2023).

3 LLM-Xavier Evaluation Framework

Our work studies the capability of LLMs to understand and interpret RL agents, i.e., agent mental modelling
in the context of Markov Decision Process (MDP) M (Puterman, 2014), including policies π : S → A and
transition function T : S × A → S, where S represents the state space and A represents the action space.
See Figure 2 for an overview of the LLM-Xavier1 evaluation framework.

3.1 In-Context Prompting

The evaluation is carried out in the context of an RL task T which can be viewed as the instantiation of
an MDPM. For each T , we compile a dataset of interactions between the agent and the task environment,
consisting of traversed state-action-reward tuples, denoted as ET := {(si, ai, ri)}i≤L, where L indicates the
task episode length. Further, the subset of the interaction history with a time window (history size) H
ending at time t is denoted as Et,H := {(si, ai, ri)}t−H−1≤i≤t, i.e., capturing the most recent H tuples up to
time t ≤ L− 1.

The in-context learning prompts we constructed consist of task-specific background information, agent be-
haviour history, and evaluation question prompts (see Appendix B for example instantiated prompts):

a) A system-level prompt outlining the MDP components of the environment in which the agent oper-
ates, including the state and action space, along with a brief task description.

1Inspired by Xavier from X-Men who can read minds, to signify its ability to model the mental states of RL agents.

3

Published in Transactions on Machine Learning Research (12/2024)

System Prompts

Trajectory

Answer

Task Prompts

Evaluation

ground truth

extraction

- Argue for or against action
 choice
- Predict next action the agent
 would take
- Predict next state
...

reasoning

unroll

Figure 2: An overview of the LLM-Xavier workflow for offline evaluating LLMs’ understanding of RL agents.
The evaluation involves LLMs in-context analysing RL agent’s past rollouts to argue about current actions,
predict future actions, or infer state changes resulting from the agent’s actions (details in Sec. 3.2).

b) Specific prompts tailored to individual evaluation purposes (Sec. 3.2), adapted based on whether the
RL setting involves a discrete or continuous state/action space.

c) With subsets of interaction history Et,H leading up to the current time t as the in-context history, we
prompt LLMs to respond to various masked-out queries xquery, corresponding to different evaluation
questions, via inference over y ← LLM(·|xquery, Et,H).

3.2 Evaluation Metrics

Evaluating the extent to which LLMs can develop a mental model requires examining their understanding of
both the dynamics (mechanics) of environments that RL agents interact with and the rationale behind the
agent’s chosen actions. Mental modelling implies a comprehensive grasp of agents, which is difficult to fully
capture. However, we believe that predictability is a key component of understanding. To systematically
evaluate these aspects, we designed a series of targeted evaluation questions focused on predictability.

Actions Understanding. To assess LLMs’ comprehension of the behaviour of RL agents, we evaluate their
ability to accurately predict the internal strategies of agents, including

1) predicting next action y = ât+1 given xquery = st+1,

2) deducing last (previous) action y = ât+1 given xquery = (st+1, st+2) , and

3) judging the next action that is given

y =
{

0 if agree with given action at+1

1 if disagree with given action at+1
given xquery = st+1 .

The third evaluation question assesses LLMs’ reasoning by having them judge the rationale behind the
agent’s actions, rather than directly explaining why a specific action was taken.

Dynamics Understanding. To assess the awareness of LLMs to infer state transitions caused by agent
actions, the evaluation of dynamics understanding includes

(1) predicting next state y = ŝt+2 given xquery = (st+1, at+1) , and

(2) deducing last (previous) state y = ŝt+1 given xquery = (at+1, st+2) .

4

Published in Transactions on Machine Learning Research (12/2024)

3.3 Post-processing of LLMs’ Predictions in Practice

The evaluation prompts are tailored to the RL tasks’ action or state space. For discrete actions, LLMs predict
a single integer within the action range. For continuous actions, we explore two options: (1) predicting which
bin (from a manually divided set of 10) the next action will fall into, and (2) directly predicting the absolute
action value within the valid range for each action dimension. For continuous state prediction, we adopt
predicting relative changes (e.g., increase, decrease, unchange) instead of exact state values. This approach
assesses the LLMs’ ability to sense state transitions (∆s), e.g., changes in physical properties in physics
tasks. Detailed evaluation prompts are provided in Appendix B.

We extract predictions by post-processing the generations y ← LLM(·|xquery, Et,H) with regular expressions
and compute performance by comparing them to the ground truth from the dataset. Accuracy/matching
rate for predicting states and actions is calculated as the number of correct predictions divided by the query
length (L−Et,H). Note that if LLMs predict absolute action values, both predicted and ground truth values
are quantised into 10 bins, and matching is based on bin alignment. Detailed prediction post-processing is
discussed in Appendix C.

4 Experimental Setup

We empirically evaluate contemporary open-source and proprietary LLMs on their understanding of the
agent’s mental model, including Llama3-8B2, Llama3-70B, GPT-3.53, and GPT-4o4 models5. All language
models are prompted with the Chain-of-Thought (CoT) strategy (Wei et al., 2022b), explicitly encouraged
to provide reasoning with explanations before jumping to the answer.

Offline RL Datasets. To benchmark LLMs’ ability to build a mental model of an agent’s behaviour, we
selected a variety of tasks featuring different state spaces, action spaces, and reward spaces, resulting in a
dataset comprising seven tasks (Brockman et al., 2016) with approximately 2000 query samples, represented
as (st, at, rt) tuples. Four of the seven tasks are classic physical control tasks of increasing complexity, while
the other three are from the Fetch environment (Plappert et al., 2018), which includes a 7-DoF arm with a
two-fingered parallel gripper. Brief descriptions of each task are provided below, with corresponding visuals
in Figure 3. See Appendix A.2 for detailed descriptions and Table 3 in Appendix A.1 for task statistics.

• MountainCar Task: control a car placed at the bottom of a sinusoidal valley by applying accelerations
in either direction to reach the goal state on top of the right hill.

• Acrobot Task: control a two-link robotic chain to swing its free end above a specified height by
applying torques at the joint.

• Pendulum Task: apply torque to swing a pendulum from a random position to an upright stance,
balancing it above a fixed point.

• LunarLander Task: control a rocket’s engine to land on a designated pad, using discrete actions
(engine on or off), with the challenge of precise landing.

• FetchPickAndPlace Task: a 7-DoF robot moves a block to a target position on a table or in mid-air
using its gripper.

• FetchPush Task: a 7-DoF robot pushes a block to a target position on a table using a locked gripper.

• FetchSlide Task: a 7-DoF robot hits a puck to slide it to a target position on a slippery table, outside
its workspace.

2https://llama.meta.com/llama3/
3https://platform.openai.com/docs/models/gpt-3-5-turbo
4https://platform.openai.com/docs/models/gpt-4o
5Llama-3-8B-Instruct, Llama-3-70B-Instruct, gpt-3.5-turbo, and gpt-4o.

5

Published in Transactions on Machine Learning Research (12/2024)

FetchSlideFetchPickAndPlace FetchPushMountainCar Acrobot LunarLander Pendulum

Figure 3: Visual representations of the seven tasks utilised in the evaluation experiments.

Figure 4: Comparative plots of LLMs’ performance across various tasks with different history sizes (utilising
indexed history in prompts, i.e., Et,H presented with indices as prefixes). The Pendulum task evaluates
continuous action prediction. First two columns show agent understanding; last two columns show dynamics
understanding. A description of these tasks can be found in Appendix A.2.

6

Published in Transactions on Machine Learning Research (12/2024)

5 Results and Discussion

5.1 LLMs can utilise agent history to build mental model

The experimental results indicate that LLMs can predict agent behaviours to a certain extent, for example
in MountainCar, where they achieve over 75% accuracy, far surpassing the random guess baseline (1/3
chance for three action choices). However, performance declines with more challenging tasks like Acrobot
and FetchPickAndPlace, as illustrated in Figure 4 (or Table 7 in Appendix F.5 for averaged accuracy) and
Figure 32, which feature larger state and action spaces. We hypothesise that complex tasks require more
specialized knowledge, whereas common-sense knowledge about cars and hills aids LLMs predictions in the
MountainCar task.

Longer histories enhance understanding but can degrade with excess. We study the impact of
the size of history provided in the context. As expected, as is shown in Figure 4, providing a longer history
generally improves LLMs’ understanding of agent behaviours. However, the benefits of including more history
saturate and may even degrade, as seen in action prediction across different models, particularly Llama3-
70b. This indicates that current LLMs, despite their long context length, struggle to handle excessive data in
context. In this case, more data may hinder the ability to model the agent’s behaviour, which is in contrast
with a typical learning scenario where model performance rapidly increases as learning samples increase.

The issue of performance decline due to an excessively long history becomes more pronounced for dynamics
predictions, as evidenced in the MountainCar results (refer to Figure 26 for extensive details). However,
as task complexity increases, the detrimental effects of redundant history may diminish (as observed in
Acrobot results in Figure 27 and Fetch-series results in Figure 32), primarily because of the challenges posed
by complex state and action spaces.

On the whole, across different tasks, smaller models show significant variations in optimal history sizes for
both behaviour and dynamics predictions (see Figure 4 or Table 8 in Appendix F.6 for extracted values).
In contrast, larger models like GPT-3.5 are more consistent, achieving the highest accuracy with a history
size of 5 (GPT-4o with a size of 1). This indicates that larger models handle contextual information more
consistently in inference to an extent, while smaller models fail to utilise history statistics effectively. To
further explore beyond basic accuracy, we offer a statistical analysis on how gradually increasing history size
affects previous predictions (improve/worsen) in Appendix F.7.

Regressing on absolute action values is easier than predicting action bins. Surprisingly, LLMs
perform better at predicting absolute action values than at predicting the bins into which the estimated action
falls (refer to Appendix B.5 for differences in prompts). At most, LLama3-8b can allocate the numbers into
categories with a mere 10.87% accuracy for the Pendulum task (GPT-3.5 achieves 39.19%), but performs
better in predicting numeric values with an accuracy of up to 47.73% (GPT-3.5 scores 56.82%). A detailed
comparison of the averaged accuracy across LLMs is depicted in Figure 5. We hypothesise that predicting
bins requires additional math ability to categorise values using context information. Refer to Figure 39 and
Appendix F.6.1 for the illustrative discrepancy.

5.2 LLMs’ dynamics understanding has the potential to be further improved

Inferring the dynamics in a simulated world for different tasks can be challenging in many aspects, such as
reasoning on a high-dimension state, computing physics consequences, and so on.

To investigate LLMs’ potential of understanding dynamics, first, we investigate the impact of providing
dynamics principles, which turns out to improve both behaviour and dynamics prediction when the dynamics
context is informed to LLMs (see Figure 36 for details).

Further, we explicitly examined prediction performance across state components for each dimension. As
depicted in Figure 6, LLMs find it relatively easier to sense car position (element 0) than velocity (element
1) for the MountainCar task; in contrast, for the Acrobot task, LLMs exhibit nearly uniform prediction
accuracy across all state elements due to the difficulty in sensing state changes (see Appendix F.2 for

7

Published in Transactions on Machine Learning Research (12/2024)

Figure 5: Comparison of models’ performance in predicting absolute action values and action bins for the
Pendulum task with and without indexed history in prompts. “NA. Pred.” and “LA. Pred.” stand for next
and last action prediction, respectively, and are used throughout the paper. Hatching indicates numeric
prediction accuracy (“No Bins”).

details). We hypothesise that LLMs are more proficient in linear regression, as noted in Zhang et al. (2023),
and the dynamics equation in MountainCar is almost linear, whereas it is non-linear in Acrobot.

Interestingly, the small model (Llama3-8b) is comparable to or even outperforms a larger model like GPT-
3.5 in predicting individual state elements in some tasks, such as Acrobot. This suggests that while small
models have inferior predictive ability in actions, their understanding of action effects may not
be significantly influenced by the model size, but more likely by state complexity (e.g., predicting
y coordinate is easier as the lunar lander is more likely to descent in most steps). Refer to Appendix F.1
and F.2 for more illustrative results.

Figure 6: Dynamics of LLMs’ performance on predicting individual state element for the MountainCar task
(with indexed history in prompts).

State span is statistically influential in LLMs’ dynamics understanding. Based on the observations
above, we examined the factors that statistically influence LLMs’ perception of state changes. Figure 7
demonstrates a decent linear relationship between the span of state elements and LLMs’ ability to detect
these changes in tasks like MountainCar, Acrobot, and LunarLander, especially with GPT-3.5. For Acrobot,
we observe a low slope with a moderate fit, while LunarLander shows a positive slope with a moderate

8

Published in Transactions on Machine Learning Research (12/2024)

fit. Our hypothesis posits that in a given task, a smaller state span makes sensing changes difficult due to
the minimal differences in state values. Conversely, a larger span tends to improve prediction accuracy as
it amplifies the discrepancies between state values, making changes more discernible. Further details and
discussions are provided in Appendix F.3.

Figure 7: The R2 values (also reflected by the linewidth) and slopes of the fitted linear lines for all models
across various tasks. A standardised dummy state span (0-1) and accuracy scale (0-100) are utilised to
account for differing state spans among tasks in the analysis. “MC” stands for MountainCar, “AC” for
Acrobot, “Pen” for Pedulum, “LL” for LunarLander, “FetchPNP” for FetchPickAndPlace.

5.3 Understanding error occurs from various aspects

With the anticipation that LLMs’ explanatory reasoning (elicited via CoT) can benefit the human un-
derstanding of agent behaviour, in addition to the existing quantitative results, we further examined the
reasoning error types across LLMs by manually reviewing their judgments on the rationale of actions taken.
Table 1 shows an examination of the MountainCar task, highlighting that LLama3-8b displays the most
errors. Meanwhile, GPT-3.5, despite having superior task comprehension (e.g., referring to momentum
strategies), is less effective at retaining task descriptions in memory compared to Llama3-70b. Notably,
GPT-4o’s responses are of higher quality overall. While GPT-4o is occasionally inconsistent with the op-
timal momentum strategy (i.e., initially accelerating left), it displayed a significantly better grasp of this
strategy than other models. Furthermore, it avoids fundamental mistakes such as misinterpreting numbers
or the presented information. Detailed error type reports are available in Appendix G.1.

Table 1: Error counts in LLMs’ responses for MountainCar task over 50 steps, with various error types.
Note: Multiple error types can occur within a single step.

Error
Types GPT-3.5 Llama3-8b Llama3-70b GPT-4o

(1) Task Understanding 9 30 16 3
(2) Logic 5 19 4 0

(3) History Understanding 3 18 4 0
(4) Physical Understanding 1 2 3 0

(5) Mathematical Understanding 2 25 2 0
(6) Missing Information 9 10 13 6

Confirmation bias in LLMs: a likely error from initial assumptions of RL agent’s optimality.
In the manual review, we queried LLMs to judge a possible next action (see corresponding prompt in

9

Published in Transactions on Machine Learning Research (12/2024)

Appendix B.4) given the history of the last three actions and states, a history size determined to be optimal
for most models (see Table 8). The provided next action was sometimes correct (if it was the agent’s action)
and sometimes incorrect, ensuring LLMs made context-based conclusions rather than merely agreeing or
disagreeing with the prompt. We evaluated whether the LLMs’ judgments were correct according to a
human reviewer, independent of the RL agent’s action correctness. An automatic evaluation compared
LLMs’ decisions to the RL agent’s actions (as described in Sec. 3.2).

The manual evaluation did differ from the automatic evaluation, as shown in Table 2. The table’s percentages
refer to the proportion of LLMs responses deemed correct. This difference stems from considering a different
action ground truth since the RL agent occasionally acts illogically, leading to the human reviewer deeming
those actions incorrect, while automatic evaluation considers them correct from the RL agent’s perspective.

Hypothetically, this difference may arise from LLMs forming mental models of actions they believe an opti-
mal RL agent should take. This reveals another type of understanding error, where LLMs’ responses may
be influenced by preexisting beliefs or assumptions about optimal behaviour. As a result, LLMs sometimes
propose more optimal actions than the RL agent, particularly in larger models (evidenced by the increased
accuracy in human evaluation), where these beliefs in optimality might be more strongly reinforced. Explor-
ing whether such beliefs exist in LLMs could be a promising research direction, potentially benefiting from
advanced explainability techniques for LLMs Zhao et al. (2024a).

Despite these differences, the variation is minimal and not statistically significant (paired t-test, p-value
= 0.45 > 0.05), suggesting that the RL agent’s behaviour is near-optimal or acceptable to the human
evaluator. Thus, LLMs’ action judgments may offer (less biased) explanations for RL agent actions; when
agent actions are sub-optimal, LLMs may help explain why those actions are deemed inappropriate.

Table 2: The accuracy of models evaluated manually or automatically for 50 steps in the MountainCar task
with the metric judging next action.

Model Manual Automatic
GPT-3.5 60% 67%

Llama3-8b 40% 52%
Llama3-70b 67% 65%

GPT-4o 85% 81%

Pre-training biases may affect understanding despite history length. Interestingly, we found that
LLMs prediction errors may be influenced by pre-training biases towards cautious actions. Figure 33 in
Appendix F.7 shows that increased history size does not affect late-episode steps where RL agents consistently
accelerate right to finish. Instead, LLMs mentally “suggest” conservative actions, like accelerating left to
avoid overshooting, regardless of history context size. We hypothesise that these LLMs’ prediction errors
may not be solely due to difficulty in processing extensive histories but also stem from inherent biases about
agent behaviour and environment context, consistent with our earlier observations on confirmation bias.

5.4 Data format influences understanding

Prompting format generally has an impact on LLMs’ reasoning performance. In the context of agent un-
derstanding, we do an ablation study to investigate the robustness of prompts on the history format and
provided information. We find that:

1) Excluding the sequential indices from the history context in prompts for LLMs generally negatively
impacts their performance in most tasks, indicating that LLMs still struggle to process raw data
and indexing helps. The resulting performance variations are reported in Figure 8.

2) Task description, despite not being directly relevant to numerical value regression as in statistics, is
essential for a better understanding of both agent behaviour and dynamics, which brings the promise
of utilising LLMs to digest additional information beyond mere numerical regression when mental
modelling agents. The ablation results can be found in Appendix F.8.2.

10

Published in Transactions on Machine Learning Research (12/2024)

Figure 8: Performance comparison of language models with and without indexed history in prompts on
various tasks. Bars with hatching indicate accuracy with indexed history in prompts. NS Pred. = Next
State Prediction, LS Pred. = Last State Prediction.

6 Conclusion

This work studies an underexplored aspect of next-token predictors, with a focus on whether LLMs can build
a mental model of agents. We proposed specific prompts to evaluate this capability. Quantitative evaluation
results disclose that LLMs can establish agent mental models to some extent only since their understanding
of state changes may diminish with increasing task complexity (e.g., high-dim spaces); their interpretation
of agent behaviours may tumble for tasks with continuous actions. Analysis of evaluation prompts reveals
that their content and structure, such as history size, task instructions, and data format are crucial for the
effective establishment, indicating areas for future improvement. A further review of LLMs error responses
(elicited via CoT prompting) highlights qualitative differences in LLMs’ understanding performance, with
models like GPT-4o showing superior comprehension and fewer errors compared to the small Llama3 model.
Additionally, it reveals that LLM responses may be influenced by preexisting beliefs about optimal behaviour,
which can be a hurdle or a catalyzer for understanding. These findings suggest the potential and limitations
of in-context mental modelling of agents within MDP frameworks and underscore the possible role of LLMs
as communication mediators between black-box agents and stakeholders, pointing to future research avenues.

Potential Direction
It remains unclear whether LLMs can benefit from thousands of agent trajectories compared to the lim-
ited number of examples studied in this paper. We hypothesise that large amounts of demonstrations
(state-action-reward tuples) in the prompt could enhance the capacity that LLMs have already developed.
Additionally, fine-tuning LLMs with demonstrations (Lin et al., 2023; Wang et al., 2024) from specific do-
mains may further improve their understanding capacity in these domains. Further analysis on this aspect
is left for future work.

At this stage, LLMs lack several key aspects required for true understanding, often due to reasoning errors and
limitations in predictability. Relying on LLMs for mental modelling without oversight could be problematic.
Therefore, our key takeaway is that rather than using a fully automated, LLM-driven evaluation system for
agent mental modelling, domain experts are expected to be involved upfront to audit LLMs’ reasoning and
ensure reasonable predictability and reliability before presenting the results to non-expert practitioners. A
few concrete suggestions for utilising LLMs in agent mental modelling are provided in Appendix H.

We recognise that the issue of hallucination may exist. To increase the robustness and reliability of using
LLMs for explaining an agent’s behaviour, a detailed analysis of this behaviour is necessary before being
deployed to a setting where they directly interact with humans. Also, our evaluation results underscore the
need for developing methods to mitigate hallucinations.

11

Published in Transactions on Machine Learning Research (12/2024)

Our evaluation framework can be adapted for non-deterministic MDPs with minor adjustments. In discrete
state spaces (e.g., FrozenLake (Brockman et al., 2016)), LLMs can output a distribution over possible next
state values, with multiple queries needed to approximate the distribution, evaluated using metrics like KL-
divergence. Alternatively, LLMs could rank next state values, compared to the ground truth probabilities
derived from simulator. In continuous state spaces, states can be quantised into bins, and LLMs can output
a distribution or ranking over sampled values from each bin. For multi-dimensional states, distributions or
rankings can be generated for each dimension separately. This approach also applies to predicting actions,
where the ground truth differs by algorithm: for PPO (Schulman et al., 2017), it would be the mean and
variance of the Gaussian policy, and for DQN (Hasselt et al., 2016), the Q-values for discrete actions. In
continuous action spaces, LLMs can output a mean and deviation for a Gaussian distribution, which can be
compared to the learned (Gaussian) distribution of the PPO agent.

Our study provides a macro-level analysis by examining the average model performance over multiple RL
datasets of varying types. However, the capability of LLMs to build a mental model of agents may vary across
different datasets. While our analysis discusses this aspect, it is important to explore ways of standardising
this type of benchmarking for language models, which may evolve as LLMs become more intelligent. A
long-term goal of this research is to facilitate human understanding of more intelligent agents in critical
domains, and we see this work as a foundational step towards developing progressively more agent-oriented
language models with realistic world models in mind.

Our experiments are limited to uni-modal RL tasks (i.e., using proprioceptive states), but extending them to
multi-modal tasks (e.g., incorporating vision, auditory, and touch feedback) is straightforward. Multi-modal
inputs can provide LLMs with richer environmental information than state vectors, and we hypothesise that
these additional signals may enhance LLMs’ agent mental modelling.

Future-Proofing the Approach for LLM-Based Agents

While our current framework focuses on evaluating LLM’s capability of mental modelling traditional RL
agents, it remains equally relevant as RL agents evolve into LLM-based counterparts that can provide
human-readable justifications for their decisions. One might argue that these self-generated explanations
reduce the need for external evaluation. However, these internal justifications may not reflect a truly objective
mental model as they can be shaped by the agent’s underlying optimisation processes, biases, and emergent
behaviours. To address this, when evaluating LLM-based agents, we can extend our framework to compare
their self-reported rationales against the mental model formed by an independent evaluator LLM.

Furthermore, as LLM-driven agents rapidly adapt policies in response to dialogue histories, external instruc-
tions, or internal reasoning steps, we can integrate temporal tracking of these shifts in real-time. This enables
the evaluator LLM to detect subtle policy shifts and predict future actions based on evolving rationales. As
LLM-based agents expand into multi-domain environments with non-traditional state, action, and reward
structures—such as language-based tasks—our framework can similarly evolve, challenging the evaluator
LLM to generalise beyond conventional RL dynamics. Finally, as we leveraged human input for error-type
annotation and analysis, future-proofing involves integrating semi-automated tools to handle intricate LLM-
agent interactions at scale. Human evaluators may focus on higher-level interpretation and strategic insights,
while automated metrics track the consistency and coherence of evolving mental models over time.

Broader Impact Statement

We do not anticipate any immediate ethical or societal implications from our research. However, since we
explore LLMs applications for enhancing human understanding of agents, it is important to be cautious
about the potential for fabricated or inaccurate claims in LLMs’ explanatory responses, which may arise
from misinformation and hallucinations inherent to the LLMs employed. It is recommended to use our
proposed evaluation prompts and task dataset with care and mindfulness.

Acknowledgements

This research was funded by the Federal Ministry for Economic Affairs and Climate Action (BMWK) under
the Federal Aviation Research Programme (LuFO), Projekt VeriKAS (20X1905)

12

Published in Transactions on Machine Learning Research (12/2024)

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,

Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can and not as i say: Grounding
language in robotic affordances. In arXiv preprint arXiv:2204.01691, 2022.

Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Alistair Muldal, Tom Erez, Yuval Tassa,
Nando de Freitas, and Misha Denil. Learning awareness models. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=r1HhRfWRZ.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv:2403.06963, 2024.

Gagan Bansal, Besmira Nushi, Ece Kamar, Walter S. Lasecki, Daniel S. Weld, and Eric Horvitz. Beyond
accuracy: The role of mental models in human-ai team performance. Proceedings of the AAAI Conference
on Human Computation and Crowdsourcing, 7(1):2–11, Oct. 2019. doi: 10.1609/hcomp.v7i1.5285. URL
https://ojs.aaai.org/index.php/HCOMP/article/view/5285.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy extrac-
tion. Advances in neural information processing systems, 31, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016. URL http://arxiv.org/abs/1606.01540.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal language model.
In International Conference on Machine Learning, pp. 8469–8488. PMLR, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-
context? a case study of simple function classes. Advances in Neural Information Processing Systems, 35:
30583–30598, 2022.

Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding atari
agents. In International Conference on Machine Learning (ICML), pp. 1792–1801. PMLR, 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 2094–2100. AAAI
Press, 2016.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through planning
with language models. In Conference on Robot Learning, pp. 1769–1782. PMLR, 2023.

Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia Sycara. Transparency and
explanation in deep reinforcement learning neural networks. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pp. 144–150, 2018.

Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science of language, inference, and
consciousness. Harvard University Press, Cambridge, MA, 1983.

Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez. Explainable Reinforcement
learning via Reward Decomposition. In IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2019.

13

https://openreview.net/forum?id=r1HhRfWRZ
https://ojs.aaai.org/index.php/HCOMP/article/view/5285
http://arxiv.org/abs/1606.01540

Published in Transactions on Machine Learning Research (12/2024)

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building machines that
learn and think like people. Behavioral and brain sciences, 40:e253, 2017.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning with
algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Teven Le Scao and Alexander M Rush. How many data points is a prompt worth? In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 2627–2636, 2021.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma Brun-
skill. Supervised pretraining can learn in-context reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2023.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive decision-making.
Advances in Neural Information Processing Systems, 35:31199–31212, 2022a.

Xiang Lorraine Li, Adhiguna Kuncoro, Jordan Hoffmann, Cyprien de Masson d’Autume, Phil Blunsom, and
Aida Nematzadeh. A systematic investigation of commonsense knowledge in large language models. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 11838–
11855, 2022b.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as
algorithms: Generalization and stability in in-context learning. In International Conference on Machine
Learning, pp. 19565–19594. PMLR, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforcement
learning via supervised pretraining. In The Twelfth International Conference on Learning Representations,
2023.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny Zhou, and
Andrew M Dai. Mind’s eye: Grounded language model reasoning through simulation. arXiv preprint
arXiv:2210.05359, 2022.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question
answering. Advances in Neural Information Processing Systems, 35:2507–2521, 2022.

Wenhao Lu, Xufeng Zhao, Thilo Fryen, Jae Hee Lee, Mengdi Li, Sven Magg, and Stefan Wermter. Causal
state distillation for explainable reinforcement learning. In Causal Learning and Reasoning, pp. 106–142.
PMLR, 2024.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought. In The
Twelfth International Conference on Learning Representations, 2023.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement learning: A
survey and comparative review. ACM Comput. Surv., 56(7), apr 2024. ISSN 0360-0300. doi: 10.1145/
3616864. URL https://doi.org/10.1145/3616864.

14

https://doi.org/10.1145/3616864

Published in Transactions on Machine Learning Research (12/2024)

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Rethinking the role of demonstrations: What makes in-context learning work? In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 11048–11064, 2022.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi. Reframing in-
structional prompts to gptk’s language. In 60th Annual Meeting of the Association for Computational
Linguistics, ACL 2022, pp. 589–612. Association for Computational Linguistics (ACL), 2022.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid Palangi,
Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large language models
with cogeval. Advances in Neural Information Processing Systems, 36, 2023.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell, Jonas
Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech Zaremba. Multi-
goal reinforcement learning: Challenging robotics environments and request for research, 2018.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Yunpeng Qing, Shunyu Liu, Jie Song, Huiqiong Wang, and Mingli Song. A survey on explainable reinforce-
ment learning: Concepts, algorithms, challenges. arXiv preprint arXiv:2211.06665, 2022.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot numerical reasoning. Findings of the Association for Computational Linguistics:
EMNLP 2022, 2022.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the parameters
of a language model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 5418–5426, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012. doi:
10.1109/IROS.2012.6386109.

Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers learn temporal difference
methods for in-context reinforcement learning. arXiv preprint arXiv:2405.13861, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. Transactions on Ma-
chine Learning Research, 2022a. ISSN 2835-8856. URL https://openreview.net/forum?id=yzkSU5zdwD.
Survey Certification.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022b.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu. Language
models meet world models: Embodied experiences enhance language models. Advances in neural infor-
mation processing systems, 36, 2023.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In international conference on machine
learning, pp. 24631–24645. PMLR, 2022.

Yutaro Yamada, Yihan Bao, Andrew Kyle Lampinen, Jungo Kasai, and Ilker Yildirim. Evaluating spatial
understanding of large language models. Transactions on Machine Learning Research, 2023.

15

https://openreview.net/forum?id=yzkSU5zdwD

Published in Transactions on Machine Learning Research (12/2024)

Ruiqi Zhang, Spencer Frei, and Peter Bartlett. Trained transformers learn linear models in-context. In
R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large Foundation Models, 2023.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei Yin,
and Mengnan Du. Explainability for large language models: A survey. ACM Transactions on Intelligent
Systems and Technology, 15(2):1–38, 2024a.

Xufeng Zhao, Mengdi Li, Wenhao Lu, Cornelius Weber, Jae Hee Lee, Kun Chu, and Stefan Wermter.
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models through Logic. In 2024
Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), May 2024b. URL https://arxiv.org/abs/2309.13339.

16

https://arxiv.org/abs/2309.13339

Published in Transactions on Machine Learning Research (12/2024)

A Statistics of Our Offline-RL Datasets

A.1 Data Collection

The dataset of interaction histories (episodes) is collected by running RL agents in each task. Unlike Liu et al.
(2022), whose physics alignment dataset contains text-based physical reasoning questions resembling physics
textbooks, our dataset comprises interactions of RL agents with various physics engines (environments). For
each task, episodic histories are collected by running single-task RL algorithms (Lillicrap et al., 2015; Hasselt
et al., 2016; Schulman et al., 2017) to solve that task. An overview of the task dataset statistics is provided
in Table 3.

Table 3: A statistical overview of the task dataset tested in the experiment.

Tasks # of Length State Space State Dim Action Space Action Dimepisodes per episode
MountainCar 5 ∼ 100 continuous 2 discrete 1 (3 choices)
Acrobot 3 ∼ 100 continuous 6 discrete 1 (3 choices)
LunarLander 3 ∼ 250 continuous 8 discrete 1 (4 choices)
Pendulum 3 ∼ 50 continuous 3 continuous 1
InvertedDoublePendulum 3 ∼ 50 continuous 11 continuous 1
FetchPickAndPlace 10 ∼ 10 continuous 25 continuous 4
FetchPush 10 ∼ 10 continuous 25 continuous 4
FetchSlide 10 ∼ 25 continuous 25 continuous 4

A.2 A Full Task Description

Below, we provide a complete description of the MountainCar task (at the last of the section), including its
MDP components. For the remaining tasks, only the task descriptions are provided. Most of the texts are
credited to https://gymnasium.farama.org/.

Acrobot Task Description. — The Acrobot environment is based on Sutton’s work in “Generalization in
Reinforcement Learning: Successful Examples Using Sparse Coarse Coding” and Sutton and Barto’s book.
The system consists of two links connected linearly to form a chain, with one end of the chain fixed. The
joint between the two links is actuated. The goal is to apply torques on the actuated joint to swing the free
end of the outer-link above a given height while starting from the initial state of hanging downwards.

Pendulum Task Description. — The inverted pendulum swingup problem is based on the classic problem
in control theory. The system consists of a pendulum attached at one end to a fixed point, and the other end
being free. The pendulum starts in a random position and the goal is to apply torque on the free end to swing
it into an upright position, with its center of gravity right above the fixed point.

LunarLander Task Description. — This environment is a classic rocket trajectory optimization problem.
According to Pontryagin’s maximum principle, it is optimal to fire the engine at full throttle or turn it off.
This is the reason why this environment has discrete actions: engine on or off. The landing pad is always
at coordinates (0,0). The coordinates are the first two numbers in the state vector. Landing outside of the
landing pad is possible. Fuel is infinite, so an agent can learn to fly and then land on its first attempt.

FetchPickAndPlace Task Description. — The task in the environment is for a manipulator to move a
block to a target position on top of a table or in mid-air. The robot is a 7-DoF Fetch Mobile Manipulator
with a two-fingered parallel gripper (i.e., end effector). The robot is controlled by small displacements of
the gripper in Cartesian coordinates and the inverse kinematics are computed internally by the MuJoCo
framework. The gripper can be opened or closed in order to perform the graspping operation of pick and
place. The task is also continuing which means that the robot has to maintain the block in the target position
for an indefinite period of time.

FetchSlide Task Description. — The task in the environment is for a manipulator to hit a puck in order
to reach a target position on top of a long and slippery table. The table has a low friction coefficient in

17

https://gymnasium.farama.org/

Published in Transactions on Machine Learning Research (12/2024)

order to make it slippery for the puck to slide and be able to reach the target position which is outside of
the robot’s workspace. The robot is a 7-DoF Fetch Mobile Manipulator with a two-fingered parallel gripper
(i.e., end effector). The robot is controlled by small displacements of the gripper in Cartesian coordinates
and the inverse kinematics are computed internally by the MuJoCo framework. The gripper is locked in a
closed configuration since the puck doesn’t need to be graspped. The task is also continuing which means that
the robot has to maintain the puck in the target position for an indefinite period of time.

FetchPush Task Description. — The task in the environment is for a manipulator to move a block to a
target position on top of a table by pushing with its gripper. The robot is a 7-DoF Fetch Mobile Manipulator
with a two-fingered parallel gripper (i.e., end effector). The robot is controlled by small displacements of
the gripper in Cartesian coordinates and the inverse kinematics are computed internally by the MuJoCo
framework. The gripper is locked in a closed configuration in order to perform the push task. The task is
also continuing which means that the robot has to maintain the block in the target position for an indefinite
period of time.

MountainCar Task Prompt

task_description =
The Mountain Car MDP is a deterministic MDP that consists of a car placed stochastically at

the bottom of a sinusoidal valley, with the only possible actions being the
accelerations that can be applied to the car in either direction. The goal of the MDP is
to strategically accelerate the car to reach the goal state on top of the right hill.

↪→

↪→

↪→

observation_space =
The observation is a ndarray with shape (2,) where the elements correspond to the following:
position of the car along the x-axis (range from -1.2 to 0.6), velocity of the car (range

from -0.07 to 0.07)↪→

action_space =
There are 3 discrete deterministic actions,
0: Accelerate to the left
1: Do not accelerate
2: Accelerate to the right

reward_space =
The goal is to reach the flag placed on top of the right hill as quickly as possible, as

such the agent is penalised with a reward of -1 for each timestep.↪→

transition_dynamics =
Given an action, the mountain car follows the following transition dynamics,
velocity_t+1 = velocity_t + (action - 1) * force - cos(3 * position_t) * gravity
position_t+1 = position_t + velocity_t+1
where force = 0.001 and gravity = 0.0025. The collisions at either end are inelastic with

the velocity set to 0 upon collision with the wall.↪→

init_state =
The position of the car is assigned a uniform random value in [-0.6, -0.4]. The starting

velocity of the car is always assigned to 0.↪→

termination =
The episode ends if the position of the car is greater than or equal to 0.5 (the goal

position on top of the right hill).↪→

B Prompt Examples

The structured input template used for querying LLMs consists of a system prompt containing the task
description, MDP components, and a prompt with specific evaluation questions, as shown in B.1 and B.2,

18

Published in Transactions on Machine Learning Research (12/2024)

respectively. An example prompt for predicting the next action for tasks with discrete action space is
depicted in B.3, and for judging agent actions in B.4. The prompts for each evaluation metric may vary
slightly depending on the task type (i.e., state and action space as illustrated in Table 4), detailed in B.5.

B.1 System Prompt

System Prompt

Below is a description of the {task_name} task.
Task description:

{task_description}

Observation space:

{observation_space}

Action space:

{action_space}

Reward space:

{reward_space}

Transition dynamics:

{transition_dynamics}

Initial state:

{init_state}

Termination:

{termination}

B.2 Offline Evaluation Prompt

Offline Evaluation Prompt

Given a snippet of an episode (generated by a reinforcement learning agent optimally trained for
solving the given task) of
the states:

{states}

the corresponding actions taken by the RL agent,

{actions}

and the rewards received:

{rewards}

Your task is to analyse the sequence of states, actions, and rewards to address the question:

{question}

19

Published in Transactions on Machine Learning Research (12/2024)

B.3 Example Next Action Prediction Prompt

Next Discrete Action Prediction Prompt

In next step {i} (indexed from 0), the agent transitioned to the state s{i} =
{state}. Based on your observation and understanding of the agent's behaviour,
can you predict the action a{i} (an integer from the given range) the RL agent
will most likely take at step {i}?

↪→

↪→

↪→

Please first provide a compact reasoning before your answer to the action choice.
Think step by step and use the following template in your provided answer:↪→

1. [Reasoning]:
2. [Prediction]:
3. [Formatting]:

Return a list with the following example format,
```python
# final action choice is 0
action_choice = [0]
```

Please choose only one action, even if multiple actions seem possible.

B.4 Example Action Judgment Prompt

Action Judgment Prompt

In next step {i} (indexed from 0), the agent transitioned to the state s{i} =
{state}. In this state s{i}, the agent chose to take action a{i} = {action}.
Based on your observation and understanding of the agent's behaviour up to this
point, critically evaluate the rationale behind the agent's choice of action
a{i} in state s{i}. You're encouraged to scrutinize the correctness of the
action a{i}, especially if your analysis suggests that the action might be
flawed or suboptimal.

↪→

↪→

↪→

↪→

↪→

↪→

After your evaluation, determine whether to accept or reject the agent's action
a{i}. Think step by step and use the following template in your provided
answer:

↪→

↪→

1. [Reasoning]:
2. [Justification]: Critique whether the action is correct given the historical

context and the state s{i}, and whether there are any reasons to doubt its
correctness.

↪→

↪→

3. [Formatting]:
Final vote is [True] (i.e., argue for the agent's action) or [False] (i.e.,

argue against the agent's action)↪→

Return a list with the following example format,
```python
# final vote is to argue against the agent's action
final_vote = [False]
```

Please choose either True or False, even in cases of uncertainty or multiple
possibilities.↪→

20

Published in Transactions on Machine Learning Research (12/2024)

Table 4: Different state spaces and action spaces of MDPs (tasks) considered in the experiments.

continuous action discrete action
continuous state ✓ ✓
discrete state ✗ ✓

B.5 Evaluation Prompts in Practice

The evaluation prompts (parts b, c in Sec. 3.1) are adapted based on the nature of the RL tasks, specifically
the type of action or state space (discrete or continuous). For tasks with discrete action spaces, LLMs
are prompted to output a single integer within the action range. For tasks with continuous actions, we
evaluate two options:

• Predicting bins: The action range is manually divided into 10 bins, and LLMs are queried to predict
which bin the RL agent’s next action will fall into.

• Predicting absolute numbers: LLMs are queried to directly output the exact action value within the
valid action range for each dimension of the action space.

For tasks involving continuous state prediction, we adopt predicting relative changes (e.g., increase, de-
crease, unchange) instead of exact state values. This approach assesses the LLMs’ ability to sense state
transitions (∆s), e.g., changes in physical properties in physics tasks.

C Post-processing LLMs’ Predictions

We evaluate LLMs using metrics that require predicting states and actions. We extract LLMs’ responses
through pattern matching and compute evaluation results by comparing them with the ground truth state-
action pairs from the episodes on which the LLMs are evaluated.

For predicting discrete actions, we compute the matching rate of the LLMs’ predicted actions with the
ground truth. For predicting continuous actions, if LLMs are prompted to predict bins, we compute the
matching rate as we did for discrete actions, with the ground truth represented by the bin index to which
it belongs. However, if LLMs are queried to directly predict absolute action values, we quantize both the
predicted and ground truth values into bins (by dividing the original action range into 10 bins) and then
measure whether they fall into the same bin.

For predicting continuous states, we evaluate if LLMs correctly predict the change in state, ∆s, categorising
increases as 1, decreases as 0, and unchanged as 2. We then compute the accuracy classification score for
their predictions. We also record the accuracy of predicting changes in individual state elements, ∆si.

D Pseudo-code for Performing Evaluation Metrics

D.1 Pseudo-code for Predicting Next Action

Algorithm 1 presents an example pseudo-code for the next action prediction tasks.

E Types of LLMs’ Understanding Failures

Table 5 lists error types we located by analysing LLMs’ responses to evaluation questions for the MountainCar
task. The MountainCar task is an RL task in which the agent has to correctly steer a car to move it onto a
mountain with the actions: “Left Acceleration”, “Right Acceleration”, and “No Acceleration”.

21

Published in Transactions on Machine Learning Research (12/2024)

Algorithm 1: Offline Evaluation of LLMs’ Agent Understanding
Data: Load offline RL dataset ET for a task T
Input: Load the LLM model LLM
Result: Evaluation results
Initialize action matching counter N ← 0 ;
Set the history size H ;
Set the maximum time steps Tmax ;
for t← 1 to Tmax do

if t > H then
Extract the last H transitions Et,H ← (si, ai, si+1, ri)t

t−H+1 ;
// Prepare input for LLM including current state and history Et,H

Predict ât+1 ← LLM(st+1, Et,H) ;
if ât+1 = at+1 then

Increment counter N ← N + 1 ;

if Task goal is achieved then
break ;

Compute evaluation results using the counter N and the query length, e.g., Tmax −H ;

Table 5: List of error types in LLMs’ responses

No. Error Types
(1) Task Understanding
(2) Logic
(3) History Understanding
(4) Physical Understanding
(5) Mathematical Understanding
(6) Missing Information

Examples of each error type from various LLMs responses:

• Task Understanding
Llama3-8b replies —
“However, one could argue that the agent’s velocity is already quite high ([0.0075]), and accelerating
further might not be necessary or even counterproductive if it leads to overshooting the goal position.
Additionally, the agent’s position is still relatively far from the goal ([0.5729] vs. 0.5), so it may
need to adjust its strategy soon.”
Analysis: In this example, the model makes multiple mistakes, it misunderstands the task as it
thinks overshooting the goal would be bad, and it also wrongly interprets the state -0.5729 as 0.5729.

• Logic
Llama3-70b replies —
“Given the current state s20, it’s unclear why the agent would choose to accelerate to the right, as
the position is still below the goal and the velocity is not high enough to guarantee reaching the goal.”
Analysis: Here the reasoning logic does not make sense, If the goal is getting to the right, acceler-
ating to the right should make sense especially if the velocity is not high enough yet-
Llama3-8b replies —
“This pattern suggests that the agent might be trying to control the car’s movement by alternating
between accelerating left (action 0) and not accelerating (action 1) to navigate the valley towards the
goal position on the right hill.”

22

Published in Transactions on Machine Learning Research (12/2024)

Analysis: LLM argues that accelerating left will navigate the car toward the right.

• History Understanding
GPT-3.5 replies, given a history of actions: a20 = 2, a21 = 0, a22 = 0, a23 = 0 —
“The agent has been moving towards the right hill, and in the previous steps, it has been accelerating
to the right (action 2) to gain momentum.”
Analysis: The LLM claims the agent has been accelerating to the right using action 2 when the
last three actions were action 0.

• Physical Understanding
Llama3-70b replies —
“Given the agent’s behaviour of accelerating to the right when the car is far from the right hill
and not accelerating when it is closer, the choice of action 1 (no acceleration) in state s18 seems
reasonable. This action allows the car to conserve momentum and potentially reach the goal position
more efficiently.”
Analysis: Here the LLM wrongly believes that not accelerating could allow the car to conserve
momentum, however moving upwards gravity will cause the car to lose momentum should it stop
accelerating.
GPT-3.5 replies —
“The agent seems to be attempting to move towards the right hill by repeatedly accelerating to the
left.”
Analysis: LLM doesn’t realize that accelerating to the left won’t move the car to the right.

• Mathematical Understanding
Llama3-8b replies, given the state history s25 =

[
−4.0838× 10−1 1.7447× 10−3]

, s26 =[
−4.0849× 10−1 −1.0230× 10−4]

, and the new state s27 =
[
−4.104× 10−1 −1.9× 10−3]

—
“Looking at the sequence of states provided, the car is moving to the right (position is increasing)
while the velocity is decreasing.”
Analysis: The LLM does not realize that the position is decreasing, moving to the left as it wrongly
interprets the numbers.

• Missing Information
Llama3-8b replies —
“The action of not accelerating might delay the agent’s arrival at the goal position, especially when
it is very close to the goal. It is crucial for the agent to maintain its momentum and continue
accelerating towards the goal to minimize the time taken to reach the flag.”
Analysis: The car needs to accelerate to the left to get to a position from which it can build enough
momentum towards the right to overcome the right hill. The LLM is missing the information about
the environment that would allow it to understand this behaviour.
GPT-4o replies —
“Given the car’s current state, taking action ‘0‘ (accelerate to the left) might not be the most optimal
choice. The car is already moving left with a very small velocity, and further accelerating to the left
might not significantly help in building the necessary momentum to move rightward. Instead, it might
be more beneficial to start accelerating to the right (action ‘2‘) to begin the process of climbing the
right hill.”
Analysis: The LLM is missing the exact information about how much velocity is needed at which
position to accurately judge when the agent should switch back to accelerating rightward.

23

Published in Transactions on Machine Learning Research (12/2024)

F Additional Results: Evaluating LLMs’ Understanding Across Various Tasks

F.1 State Element Prediction Accuracy with Increased History

In the task of predicting (full) states, we also plot the prediction accuracy for individual state elements and
how they vary with increased history size for different tasks: Figure 9 for the Pendulum task, Figure 10 for
the Acrobot task, and Figure 11 for the LunarLander task.

Figure 9: Dynamics of LLMs’ performance on predicting individual state element for the Pendulum task
(with indexed history in prompts).

Figure 10: Dynamics of LLMs’ performance on predicting individual state element for the Acrobot task
(with indexed history in prompts).

24

Published in Transactions on Machine Learning Research (12/2024)

Figure 11: Dynamics of LLMs’ performance on predicting individual state element for the LunarLander
task (with indexed history in prompts).

F.2 Average State Element Prediction Accuracy

In addition to reporting the dynamics of prediction accuracy for individual state elements, we report the
averaged prediction accuracy for state elements in the MountainCar task (Figure 12), the Pendulum task
(Figure 13), the Acrobot task (Figure 14), the LunarLander task (Figure 15), the FetchPickAndPlace task
(Figure 16), the FetchPush task (Figure 17), and the FetchSlide task (Figure 18). Refer to Table 6 for the
meanings of the state element indices in Fetch-series tasks.

We find that LLMs are slightly more sensitive to changes in angular velocity than angle, as shown by the
Pendulum and Acrobot results. In addition, LLMs show greater sensitivity to changes in position than linear
velocity, as demonstrated by MountainCar and LunarLander results.

25

Published in Transactions on Machine Learning Research (12/2024)

Figure 12: LLMs’ averaged performance in predicting individual state element for the MountainCar task.
The red dotted line represents the accuracy (33.33%) of randomly guessing state changes for each element
(applicable to the following figures).

Figure 13: LLMs’ averaged performance in predicting individual state element for the Pendulum task.

26

Published in Transactions on Machine Learning Research (12/2024)

Figure 14: LLMs’ averaged performance in predicting individual state element for the Acrobot task.

Figure 15: LLMs’ averaged performance in predicting individual state element for the LunarLander task.

27

Published in Transactions on Machine Learning Research (12/2024)

Figure 16: LLMs’ averaged performance in predicting individual state element for the FetchPickAndPlace
task. Refer to Table 6 for the meanings of the state element indices in Fetch-series tasks.

Figure 17: LLMs’ averaged performance in predicting individual state element for the FetchPush task.

28

Published in Transactions on Machine Learning Research (12/2024)

Figure 18: LLMs’ averaged performance in predicting individual state element for the FetchSlide task.

Table 6: List of state elements in Fetch-series tasks

Indices State Elements Meanings
0 End effector x position
1 End effector y position
2 End effector z position
3 Block x position
4 Block y position
5 Block z position
6 Relative block x position with respect to gripper x position
7 Relative block y position with respect to gripper y position
8 Relative block z position with respect to gripper z position
9 Joint displacement of the right gripper finger
10 Joint displacement of the left gripper finger
11 Global x rotation of the block in a XY Z Euler frame rotation
12 Global y rotation of the block in a XY Z Euler frame rotation
13 Global z rotation of the block in a XY Z Euler frame rotation
14 Relative block velocity in x direction with respect to the gripper
15 Relative block velocity in y direction with respect to the gripper
16 Relative block velocity in z direction with respect to the gripper
17 Block angular velocity along the x axis
18 Block angular velocity along the y axis
19 Block angular velocity along the z axis
20 End effector velocity in x direction
21 End effector velocity in y direction
22 End effector velocity in z direction
23 Right gripper finger velocity
24 Left gripper finger velocity

29

Published in Transactions on Machine Learning Research (12/2024)

F.3 Influential Factors in State Element Prediction

Figure 19 shows the linear relationship between state span and prediction accuracy, while Figure 20 shows
the corresponding residuals-fitted plot. Figure 21 illustrates the relationship between state variance and
prediction accuracy. Detailed state span (min-max) statistics for each state element across all tasks are
detailed in Figure 22. For each task in Figure 19 and Figure 21, we used the raw state span during analysis,
as LLMs process the unscaled state values. The linear analysis was conducted between the raw state span
and prediction accuracy. However, to compare relationships across tasks, we used a 0-1 dummy scale for
plotting purposes, as shown in Figure 7.

The linear relationship analysis for different models and tasks reveals key insights. For GPT-3.5 on the
MountainCar task, the positive slope indicates that accuracy improves with span, and the perfect r2 of
1 shows a flawless fit, meaning the model’s predictions align perfectly with the data. For GPT-3.5 on
the Acrobot task, the moderate slope and r2 of 0.58 suggest a decent correlation with some unexplained
variability. In contrast, the Llama3-70b model on the Pendulum task shows a low or near-zero slope and an
r2 of 0, indicating the model does not effectively explain the variability in the data for this task.

State element variance also influences dynamics prediction, being slightly more significant than state span
in tasks like Pendulum and LunarLander, as shown in Figure 21. This offers a different perspective on
how LLMs’ dynamics understanding can be affected and generalized. Additionally, the linear relationship is
often less significant for smaller models, suggesting that larger models are more sensitive to these changes.
In general, from a statistical point of view, larger spans and greater state variance facilitate the LLMs’
perception of changes due to larger value discrepancies.

Figure 19: The linear relationship between state span and state element prediction accuracy across all LLMs
and tasks. Each blue dot represents the average prediction accuracy for the corresponding state element.
“MC” stands for MountainCar, “AC” for Acrobot, “Pen” for Pedulum, “LL” for LunarLander, “FetchPNP”
for FetchPickAndPlace.

30

Published in Transactions on Machine Learning Research (12/2024)

Figure 20: The residuals versus fitted values across all LLMs and tasks. Randomly distributed residuals
around zero indicate that the linear models are appropriate for the task data.

Figure 21: The linear relationship between state variance and state element prediction accuracy across all
LLMs and tasks.

31

Published in Transactions on Machine Learning Research (12/2024)

Figure 22: Minimum and maximum values of state elements across all tasks.

F.4 Average Action Element Prediction Accuracy

It is observed that all LLMs fall short of scoring reasonable accuracy in predicting 4-dim actions for the
Fetch-series tasks compared to the four classic control tasks. Therefore we report the averaged prediction
accuracy for individual action elements in the FetchPickAndPlace (Figure 23), the FetchPush (Figure 24),
and the FetchSlide tasks (Figure 25).

32

Published in Transactions on Machine Learning Research (12/2024)

Figure 23: LLMs’ averaged performance in predicting individual action element for the FetchPickAndPlace
task. “0” represents x displacement, “1” y displacement, and “2” z displacement, “3” gripper displacement.
The red dotted line represents the accuracy (10%) of randomly guessing action bins (total of 10) for each
element, applicable to the following figures.

Figure 24: LLMs’ averaged performance in predicting individual action element for the FetchPush task.
“0” represents x displacement, “1” y displacement, and “2” z displacement, “3” gripper displacement.

33

Published in Transactions on Machine Learning Research (12/2024)

Figure 25: LLMs’ averaged performance in predicting individual action element for the FetchSlide task.
“0” represents x displacement, “1” y displacement, and “2” z displacement, “3” gripper displacement.

F.5 Average Comparison of Model Predictions

Table 7 displays the average accuracy of LLMs’ predictions regarding the agent’s behaviour and the resulting
state changes in Mountaincar, Acrobot, and Pendulum tasks.

MountainCar Acrobot Pendulum
GPT-3.5 Llama3-8b Llama3-70b GPT-3.5 Llama3-8b Llama3-70b GPT-3.5 Llama3-8b Llama3-70b

NA Pred. 74.60% 59.10% 86.18% 43.94% 46.29% 65.12% 17.08% 3.72% 11.77%
81.48% ↑ 68.63% ↑ 87.06% ↑ 46.36% ↑ 44.95% ↓ 64.73% ↓ 17.49% ↑ 3.51% ↓ 12.42% ↑

LA Pred. 76.73% 61.83% 78.87% 39.25% 47.24% 55.32% 14.28% 1.58% 14.02%
80.06% ↑ 73.99% ↑ 76.85% ↓ 44.62% ↑ 42.35% ↓ 55.40% ↑ 20.63% ↑ 1.89% ↑ 13.86% ↓

NS Pred. 33.43% 30.81% 37.04% 0.30% 0.26% 0.13% 9.52% 8.34% 7.61%
37.41% ↑ 33.65% ↑ 40.68% ↑ 0.00% ↓ 0.42% ↑ 0.43% ↑ 7.89% ↓ 6.65% ↓ 5.49% ↓

LS Pred. 31.97% 22.12% 29.32% 1.14% 2.95% 1.69% 6.46% 10.54% 10.22%
32.41% ↑ 22.45% ↑ 35.25% ↑ 0.61% ↓ 2.32% ↓ 2.87% ↑ 5.41% ↓ 8.27% ↓ 7.64% ↓

Table 7: Comparison of model predictions with and w/o indexed history. Light grey cells show results with
indexed history. NA Pred. = Next Action Prediction; LA Pred. = Last Action Prediction; NS Pred. =
Next State Prediction; LS Pred. = Last State Prediction.

F.6 Dynamic Performance of All Evaluation Metrics

The dynamics of LLMs’ understanding performance (with and without indexed history in prompts) with
increasing history size for the MountainCar task (Figure 26), the Acrobot task (Figure 27), the Pendulum
task (Figure 28 and Figure 29), and the LunarLander task (Figure 30).

Among all results, it is observed that models’ understanding of agent behaviour improves significantly with
smaller history sizes but does not increase further with larger histories. In some cases, like with Llama3-70b,

34

Published in Transactions on Machine Learning Research (12/2024)

it may even degrade. Generally, model performance in action prediction tends to increase and then likely
saturate as the history size grows. The optimal history size for each language model is detailed in Table 8.

In complex tasks like Acrobot, history size has less impact on model performance in state prediction. We
hypothesise that this is due to the complex relationships in the interaction data, where adding more history
does not enhance the LLMs’ understanding of the environment dynamics. For moderately complex tasks
(e.g., Pendulum), model performance initially increases with a small history size, consistent with our earlier
finding for predicting actions. This is demonstrated in the third column of Figure 28.

Figure 26: The dynamics of LLMs’ understanding performance with increasing history size for the Moun-
tainCar task.

Model MountainCar Acrobot Pendulum LunarLander
GPT-3.5 3 5 5 5

Llama3-8b 3 20 1 5
Llama3-70b 5 0 1 10

GPT-4o 1 1 2 1

Table 8: Optimal history size for each language model, evaluated across four metrics for individual tasks.

35

Published in Transactions on Machine Learning Research (12/2024)

Figure 27: The dynamics of LLMs’ understanding performance with increasing history size for the Acrobot
task.

Figure 28: The dynamics of LLMs’ understanding performance with increasing history size for the Pendu-
lum task with discretized actions in evaluation prompts.

36

Published in Transactions on Machine Learning Research (12/2024)

Figure 29: The dynamics of LLMs’ understanding performance with increasing history size for the Pendu-
lum task with continuous actions in evaluation prompts.

Figure 30: The dynamics of LLMs’ understanding performance with increasing history size for the Lu-
narLander task.

37

Published in Transactions on Machine Learning Research (12/2024)

F.6.1 Comparative performance of models on predicting discretized actions

Continuing from the plot of LLMs’ performance on the Pendulum task with continuous actions (third row of
Figure 4 in the main text), Figure 31 presents a comparative plot of LLMs’ performance on the Pendulum
task with discretized actions. The results show that LLMs are generally less effective at classifying action
bins compared to regressing on absolute action values.

Figure 31: A comparative plot of LLMs’ performance on the Pendulum task with discretized actions,
following the plot of predicting continuous actions (third row of Figure 4 in the main text).

F.6.2 Comparative performance of models on Fetch-series tasks

Continuing from Figure 4 in the main text, Figure 32 presents the performance of LLMs on the Fetch tasks,
characterized by continuous actions (dA = 4) and a high-dimensional state space (dS = 25). The results
show that LLMs struggle with state predictions, achieving zero accuracy with very large state elements.

Figure 32: Comparative plots of LLMs’ performance on the Fetch-series task, following the plots in Figure 4
in the main text).

38

Published in Transactions on Machine Learning Research (12/2024)

F.7 Relative Improvement and Worsening Rates with Increased History Size

When increasing history size in prompts for LLMs, we observed that previously incorrect predictions at
certain time steps may become correct, and vice versa (see Figure 33 for an example with the MountainCar
task). We define the relative improvement rate for a history size H > 0 compared to a fixed history size 0
as #(incorrect→correct)0→H

#incorrect0
and the relative worsening rate for the same H as #(correct→incorrect)0→H

#correct0
.

As shown in Figure 33, increasing history size does not impact steps near the episode end, where RL agents
consistently accelerate to the right to cross the finish line. In contrast, LLMs, likely influenced by pre-training
on human preferences, suggest more cautious actions, such as accelerating left to avoid overshooting. This
safety bias, ingrained during pre-training, significantly affects their action predictions regardless of history
length. Thus, LLM prediction failures are not solely due to difficulty processing extensive histories; their
inherent beliefs about agent behaviour and environment context can also impair prediction accuracy in
certain tasks.

Further, by examining step-wise mismatches in the Acrobot task, it is observed that LLMs often justify their
predictions mainly on the rewards received in previous steps, neglecting history patterns, especially when
the history is short.

Figure 34 and Figure 35 illustrate how these improvement/worsening rates change as history size increases.
Analysing the impact of longer history on correcting previous incorrect predictions when H is fixed at 0 shows
that increasing history size improves LLMs’ understanding of agent behaviour initially, but further increases
may degrade it. Conversely, increasing history size has a negligible influence on dynamics predictions.

Figure 33: Step-wise mismatches with increasing history size for the GPT-3.5 model on the MountainCar
task (the same mismatch pattern is observed across different episodes). Each bar (corresponding to a different
history size) at each step index indicates a mismatch between the LLMs’ prediction (based on that history
size) and the action taken by the RL agent at that step.

At certain steps (e.g., around 40), the model with h = 0 fails, while the model with h > 1 succeeds. In
contrast, at other steps (e.g., at the last steps), increasing history size minimally affects the LLMs’

predictions.

39

Published in Transactions on Machine Learning Research (12/2024)

Figure 34: The dynamics of relative improvement with increasing history size across all LLMs and tasks (with
indexed history in prompts). The first two columns represent agent understanding; the last two columns
represent dynamics understanding.

F.8 Ablation Study

F.8.1 Comparison of models without using task dynamics

Figure 36 illustrates the performance variation when dynamics equations are excluded from the prompts.

F.8.2 Comparison of models without using task instructions

Akin to prior works by Mishra et al. (2022); Le Scao & Rush (2021), which show that task framing in prompt
influences language models, we observe a similar effect. When removing task instruction from evaluation
prompts, models’ understanding performance across the majority of evaluation metrics is significantly de-
grading, as demonstrated in MountainCar (Figure 37) and Acrobot (Figure 38) tasks; despite the history
context (i.e., sequence of numerical values) remaining unchanged. We hypothesise that LLMs’ ability to
mental model agents is enhanced by a more informative context.

F.8.3 Comparison of models: action bins vs. absolute values prediction

Figure 39 presents the evaluation results of LLMs on Pendulum tasks, comparing predictions of action bins
(the first three rows) with predictions of absolute action values (the last three rows).

40

Published in Transactions on Machine Learning Research (12/2024)

Figure 35: The dynamics of relative worsening with increasing history size across all LLMs and tasks (with
indexed history in prompts).

Figure 36: Comparative plots of LLMs’ performance on MountainCar with different history sizes (with
indexed history in prompts). The suffix of model names “No Dyna.” indicates not using dynamics
equations in prompts.

41

Published in Transactions on Machine Learning Research (12/2024)

Figure 37: Comparative plots of LLMs’ performance on MountainCar with different history sizes (with
indexed history in prompts). The suffix of model names “No Inst.” indicates not using task description
in prompts.

42

Published in Transactions on Machine Learning Research (12/2024)

Figure 38: Comparative plots of LLMs’ performance on Acrobot with different history sizes (with indexed
history in prompts). The suffix of model names “No Inst.” indicates not using task description in
prompts.

43

Published in Transactions on Machine Learning Research (12/2024)

Figure 39: Comparative plots of LLMs’ performance on Pendulum with different history sizes (with indexed
history in prompts). First three rows: predicting action bins; Last three rows: predicting absolute action
values.

44

Published in Transactions on Machine Learning Research (12/2024)

G LLMs Erroneous Responses in
MountainCar Task

Explanations of Various Error Types in LLMs
Reasoning. A manual review of the MountainCar
task across three LLMs—GPT-3.5, Llama3-8b, and
Llama3-70b—revealed significant differences in their
explanations that were not necessarily anticipated
from the quantitative analysis. Table 5 provides an
overview of the types and Table 1 for counts of errors
found in each model. During the evaluation, a single
response could contain multiple error types. Despite
Llama3-8b producing the shortest responses, it also
had the highest error count.

(1) The first type of error, understanding the
task, appeared frequently when the LLMs
had to evaluate a proposed action, such as
no acceleration in the MountainCar task. All
three models tended to be concerned about
overshooting the goal of reaching a position
of >= 0.5. However, in this task, overshoot-
ing is irrelevant since the goal is to surpass
0.5. Similar replies across models suggest
this mistake stems from a shared common-
sense notion. Additionally, Llama3-8b often
failed to recognise the presence of a hill on
the left side.

(2) Logical mistakes were noted in GPT-3.5 and
Llama3-70b when the LLMs justified moving
left without recognising the need for oscilla-
tion to gain momentum, leading to paradox-
ical replies. These types of errors were more
prevalent in Llama3-8b.

(3) Misunderstanding the history refers to the
occasional misinterpretation or incorrect rep-
etition of the history provided to the LLMs.

(4) Physical misunderstanding, though rare, in-
volved incorrect responses regarding the ef-
fects of acceleration on velocity and similar
cases.

(5) Mathematical errors commonly involved the
LLMs disregarding the minus sign, leading
them to believe that -0.5 is closer to 0.5
than 0.3. Although these mistakes led to
awkward reasoning, they seldom significantly
worsened the final decision.

(6) A common and human-like error involved
judging when to switch directions to either
gain or use momentum in the MountainCar

task. Even the RL agent occasionally makes
such mistakes.

Aside from the errors, GPT-3.5 demonstrated a bet-
ter understanding of the task, often referring to the
need to accelerate left to gain momentum for climbing
the right hill. This was rarely mentioned by Llama3-
70b and never by Llama3-8b, indicating GPT-3.5’s
superior task comprehension and explanatory ability.
Llama3-70b, however, had an advantage in maintain-
ing coherence, as it was less likely to contradict its
arguments, unlike GPT-3.5, which occasionally ar-
gued against an action before ultimately support-
ing it. Both GPT-3.5 and Llama3-8b also displayed
misunderstandings of the actions, such as incorrectly
defining “action 0 (no acceleration)”. This suggests
a common-sense bias toward interpreting 0 as no ac-
tion. Llama3-70b was better at retaining the task
description in memory.

G.1 A Compact Analysis of Error Types

Table 1 shows a quantitative analysis of the frequency
of different error types committed by the LLMs for
the MountainCar task. The evaluation highlighted
various types of errors (see Table 5 in the Appendix),
with Llama3-8b displaying the most errors despite its
shorter responses. A common error among all mod-
els was misinterpreting the goal of the task, reflect-
ing a shared common sense misunderstanding. Logi-
cal errors, particularly in oscillation movements, were
prevalent in GPT-3.5 and Llama3-70b, while Llama3-
8b frequently produced paradoxical replies. Misun-
derstanding the task history and physical principles
was rare but present. Mathematical errors, especially
disregarding the minus sign, occasionally impacted
reasoning. Notably, GPT-3.5 demonstrated a bet-
ter task understanding by referring to momentum
strategies in the task, an insight less frequently or
never mentioned by Llama3-70b and Llama3-8b, re-
spectively. Llama3-70b did have one other advantage
over other models as it was less often confused by its
argument and excelled in maintaining task descrip-
tions. Despite occasional errors in defining actions,
GPT-3.5’s superior comprehension of the task con-
tributed to its higher-quality explanations.

H Guideline on Utilising LLMs for
Agent Mental Modelling

LLMs are not yet capable of robust mental modelling.
Below are some concrete suggestions for LLM and RL
practitioners:

45

Published in Transactions on Machine Learning Research (12/2024)

Exercise caution. In general, LLMs are prone
to hallucination, and their reasoning should only be
trusted after expert auditing to ensure a high rating
of reliability/trustworthiness. It is crucial to explore
ethical metrics to quantify trustworthiness.

Consider multimodal input. While our evalua-
tion used only textual input, practitioners may con-
sider incorporating multimodal environmental data
(e.g., visual or sensory inputs), which could poten-
tially enhance LLMs’ understanding of behaviour and
dynamics, leading to more trustworthy reasoning.

Incorporate domain-specific RL data. LLMs
could benefit from action- and dynamics-related data
(e.g., sequential/temporal trajectories) during pre-
training or post-training stages to improve their abil-
ity to model RL agents. Practitioners may consider
this practice when LLMs fall short of their expecta-
tion in mental modelling for tasks in their domain.

Explore new learning paradigms. Theoreticians
may consider developing new learning paradigms that
enables LLMs to learn and align with cause-effect re-
lationships in input-output data, which could help
LLMs perform agent mental modelling in a more
trustworthy manner for a wider range of complex and
unseen tasks.

46

	Introduction
	Related Work
	LLM-Xavier Evaluation Framework
	In-Context Prompting
	Evaluation Metrics
	Post-processing of LLMs’ Predictions in Practice

	Experimental Setup
	Results and Discussion
	LLMs can utilise agent history to build mental model
	LLMs' dynamics understanding has the potential to be further improved
	Understanding error occurs from various aspects
	Data format influences understanding

	Conclusion
	Statistics of Our Offline-RL Datasets
	Data Collection
	A Full Task Description

	Prompt Examples
	System Prompt
	Offline Evaluation Prompt
	Example Next Action Prediction Prompt
	Example Action Judgment Prompt
	Evaluation Prompts in Practice

	Post-processing LLMs' Predictions
	Pseudo-code for Performing Evaluation Metrics
	Pseudo-code for Predicting Next Action

	Types of LLMs' Understanding Failures
	Additional Results: Evaluating LLMs' Understanding Across Various Tasks
	State Element Prediction Accuracy with Increased History
	Average State Element Prediction Accuracy
	Influential Factors in State Element Prediction
	Average Action Element Prediction Accuracy
	Average Comparison of Model Predictions
	Dynamic Performance of All Evaluation Metrics
	Comparative performance of models on predicting discretized actions
	Comparative performance of models on Fetch-series tasks

	Relative Improvement and Worsening Rates with Increased History Size
	Ablation Study
	Comparison of models without using task dynamics
	Comparison of models without using task instructions
	Comparison of models: action bins vs. absolute values prediction

	LLMs Erroneous Responses in MountainCar Task
	A Compact Analysis of Error Types

	Guideline on Utilising LLMs for Agent Mental Modelling

