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Abstract. The state of an object reflects its current status or condition
and is important for a robot’s task planning and manipulation. How-
ever, detecting an object’s state and generating a state-sensitive plan
for robots is challenging. Recently, pre-trained Large Language Models
(LLMs) and Vision-Language Models (VLMs) have shown impressive
capabilities in generating plans. However, to the best of our knowledge,
there is hardly any investigation on whether LLMs or VLMs can also gen-
erate object state-sensitive plans. To study this, we introduce an Object
State-Sensitive Agent (OSSA), a task-planning agent empowered by pre-
trained neural networks. We propose two methods for OSSA: (i) a modu-
lar model consisting of a pre-trained vision processing module (dense cap-
tioning model, DCM) and a natural language processing model (LLM),
and (ii) a monolithic model consisting only of a VLM. To quantitatively
evaluate the performances of the two methods, we use tabletop scenarios
where the task is to clear the table. We contribute a multimodal bench-
mark dataset that takes object states into consideration. Our results
show that both methods can be used for object state-sensitive tasks, but
the monolithic approach outperforms the modular approach. The code
for OSSA is available at https://github.com/Xiao-wen-Sun/OSSA

Keywords: Object State Identification · Artificial Intelligence · Robotics
· Language Models · Multimodality

1 Introduction

Object attributes such as color, shape, and size play important roles in shaping
the diverse states objects can exhibit, significantly impacting our daily interac-
tions. Understanding and managing these states is crucial as overlooking them
can result in unforeseen consequences. Humans intuitively rely on their under-
standing of object states and common sense to interact with everyday objects.
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However, integrating state-sensitive knowledge poses a significant challenge for
robotic systems. Enumerating and seamlessly integrating this nuanced under-
standing into robotic systems remains a complex endeavor.

Recent approaches that leverage Large Language Models (LLMs) [39] have
shown promising results in tasks that require human-level commonsense knowl-
edge. Such approaches use LLMs’ commonsense reasoning ability to interpret
natural language goals [41], such as ‘put one apple into the fridge.’ According to
those goals, LLM generates the suggested action plan, ‘next actions: pick up the
apple, move to the kitchen, open the fridge, . . . .’ However, the object’s physical
state (e.g., intact apple, sliced apple, etc.) is crucial yet less considered in the
task planning [26]. To the best of our knowledge, there is hardly any research
that leverages a pre-trained neural network (e.g., LLM or VLM) to address the
integration of object states into planning tasks for household robots. To address
this gap, we introduce an Object State-Sensitive Agent (OSSA), which utilizes
commonsense reasoning of pre-trained neural networks for robot task planning.

We pose several real-world challenges in object state-sensitive agent (OSSA)
task planning. First, in order to solve the tasks, the agent does not only involve
identifying different objects in the scene but also distinguishes between their
states. For example, in the ‘clear the table’ [19,9] task, a robot needs to be able
to distinguish between whole and sliced fruit, and between clean and dirty plates.
This is a challenge because existing state-of-the-art object detection models often
fail at differentiating between objects in different states. A plan lacking state-
sensitive awareness may lead to unexpected results.

Second, the agent needs to employ commonsense reasoning for taking state-
sensitive actions that correspond to the object states of various scenarios instead
of asking the users for an exhaustive design or an intervention. For example,
whole fruit go directly into the fridge or to the cupboard, while sliced fruit
can either go into the fridge or be discarded into the trash bin if they are re-
garded as leftovers. One way to solve the commonsense reasoning problem is
using rule-based symbolic approaches [19], but by design, they do not general-
ize to situations outside their rule base, i.e., they cannot handle new objects
and states. Commonsense reasoning with a data-driven model trained on a large
dataset that generalizes well (e.g., a large language model [31]) is, therefore, a
more viable choice.

Third, the robot needs to identify cases where common sense should not
dominate. For example, a robot has to take into account the preferences of the
user when handling specific objects in specific states [36]. In the table clearing
example, different users might handle the leftover food differently, e.g., some
might prefer to discard the leftovers, while others are more frugal and prefer
to keep the leftovers for the next meal. The robot, therefore, needs to detect
situations where different user preferences come into play, and has to ask the
user for clarification instead of arbitrarily choosing one on its own. Existing
approaches, however, do not take user preferences into account [28,24].

In this paper, we study the problem of state-sensitive instruction following.
We investigate two different methods, (i) a modular model consisting of an ob-
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Fig. 1: The given scene contains various objects in various states. For example,
orange, half-orange, and orange peel; clean napkin and dirty napkin; banana
and banana peel. Based on commonsense knowledge, the agent sorts the objects
(discard the banana peel in the trash bin; keep the bananas in the cupboard).
However, the robot is not able to decide how to deal with the leftover food
because different people may have different preferences regarding leftover food
(e.g., half orange and half bread).

ject detection module and an LLM, and (ii) a monolithic VLM-only model to
caption and reason universally. We use cluttered tabletop scenarios (in Fig. 1)
as a specific application of our approaches, where the task is to clear the table
based on the object’s attributes, states, and user preferences. We summarize our
contributions as follows:

1. We introduce an object state-sensitive agent (OSSA) that can perceive fine-
grained scene information (objects and their states) and generate an appro-
priate object manipulation plan for the robot’s low-level executor to fulfill a
given task.

2. To explore a pre-trained neural network’s capability for object state-sensitive
task planning, we propose two methods for OSSA: a modular approach con-
sisting of dense captioning model (DCM) and LLM modules and a monolithic
approach consisting only of a VLM.

3. To evaluate the proposed methods, we formulate an instruction-following
task for robots that focuses on the objects’ attributes and states in a tabletop
scenario.

4. We provide an open-source benchmark dataset containing various object
states, which involves 40 scenarios and 184 objects in total.
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2 Related Work

2.1 Vision and Language Models for Task Planning in Robotics

Recently, vision-language models (VLMs) [31,32] and large language models
(LLMs) [39] have transformed robot task planning, with the integration of LLMs’
commonsense knowledge into planning for embodied agents garnering growing
interest [34,11,3,27,23,40,26,41].

However, these methods assume a singular state for objects in their plans,
which may not suit the variability of the domestic settings we study. The most
high-performance perception frameworks (e.g., OWL-ViT [17], OWL-V2 [18],
YOLO [4], CLIP [22], etc.) that the existing work is using [42] are not trained to
distinguish the object states, e.g., half apples, apple, dirty plate, and clean plate.
Thence, we conclude that these approaches are not sensitive to object states.

One of the closely related works to ours is TidyBot [36], a system that enables
a domestic cleaning robot to adapt to individual user preferences in managing
objects, recognizing that each item may require a unique approach based on
personal taste. They leverage the summarization capabilities of LLMs to get the
user’s preference for sorting the objects, e.g., ‘put light-colored clothes in the
drawer and dark-colored clothes in the closet’. In our work, we take advantage
of commonsense knowledge from LLMs to sort the objects and detect when
human preference needs to be involved in automation tasks.

In other research, VILA [10] utilizes GPT-4V(vision) as VLM to do task
planning, which is also close to our work. However, the difference is that they
focus on long-horizon robotic tasks, where the manipulation actions and goals
can be derived from the user instruction. In our work, we focus on automation
tasks where the robot manipulation goals stem from visual perception. Then our
model performs reasoning and generates a manipulation plan, according to the
visual perception.

2.2 Benchmarks for Task Planning in Household Robots

Gutman et al. [9] use the clear the table as an experiment task to explore
the users’ preference for different autonomy levels of an assistive robot. The re-
sults show that the participants prefer the highly autonomous assistant. Other
research uses table clearing task to study the robot to understand and ex-
ecute humans’ natural language instructions [19]. However, overall, their work
does not mention that the objects from the same category may be in a different
state, which would change the robot’s action.

From the computer vision research perspective, two datasets [13] focus on
object state recognition in cooking, e.g., whole, peeled, floured, etc. The Object
State Detection Dataset [7] involves the object states: open, close, empty, con-
taining something liquid, containing something solid, plugged, unplugged, folded,
and unfolded. However, it does not consider the leftover food in our daily life.
From the robot kinematics research perspective, many benchmarks [2,43,12,29]
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and methods have been proposed to enable robots to complete certain manipu-
lation tasks, e.g., picking, wiping, dragging, pushing, pouring, and placing. We
focus on automated task planning and research how to utilize these enabled
robot skills to complete certain complex tasks. For example, the robot, accord-
ing to various object states, generates plans for a robot low-level executor that
receives a specification of how to ‘pick’ and where to ‘place’ the target.

3 Methodology

3.1 Architecture

We introduce an Object State-Sensitive Agent (OSSA) that can perceive fine-
grained scene information (object name and state, etc.) and generate an appro-
priate object manipulation plan for the robot’s low-level executor according to
those visual perceptions. The pseudocode of the system architecture is provided
in Algorithm 1. OSSA generates object manipulation plans when an utterance
(U) and an image of the table (I) are given. A chat system is for ambiguous sit-
uations. If uncertainties arise (e.g., encountering a peeled pear on the table), the
robot will ask the user for disambiguation. Lastly, a low-level executor will exe-
cute language-conditioned instructions, such as picking and placing for fulfilling
the tasks. We assume that the low-level executor has these skills, which can be
acquired via machine learning [21] approaches (e.g., reinforcement learning [15,1]
and imitation learning [12]) or direct hard-coding.

3.2 Object Manipulation Plan Generation

To explore the best way to employ commonsense knowledge [41] and reason-
ing [11] capabilities of pre-trained neural networks (e.g., LLMs or VLMs) for
object sensitive-state agent task planning (OSSA), we propose two categories
of methods for object manipulation plan generation. The input of the method
is a scene (I) and a user’s utterance (U). We prompt LLMs to generate struc-
tured responses in a JSON-like format, ‘object name’: { ‘color’, ‘size’, ‘shape’,
‘container’, ‘state’, ‘grasping type’, ‘destination’, ‘placing type’ }. ‘Color’, ‘size’,
and ‘shape’ are the object attributes that are visible in the scene. The object’s
physical ‘state’ is visible in the scene. However, reasoning the human-defined
object state requires commonsense knowledge. ‘Grasping type’ is an action that
informs the robot how to grasp the target at the initial place. ‘Destination’ is a
place that informs the robot where the target should be stored. ‘Placing type’
is an action that informs the robot what it should do at the destination. Those
three items are from commonsense knowledge reasoning. For object state detec-
tion, a computer vision system dense captioning [14] can localize salient regions
in images and use natural language to describe them. The natural language de-
scription of a salient region includes the condition of the object in the region.
Therefore, state-of-the-art dense captioning can be utilized in our study. How-
ever, the output of the dense captioning model does not include ‘grasping type’,
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Algorithm 1 System architecture
1: r ← Robot.Initialize()
2: commands = NULL
3: while True do
4: U ← r.GetUserUtterance()
5: I ← r.GetImageofTable()
6: {OMP1, . . . ,OMPn} ← r.OSSA(U, I)
7: for OMPi in {OMP1, . . . ,OMPn} do
8: if OMPi.destination is "uncertain" then
9: AIResponse ← r.ChatSystem(OMPi)

10: U ← r.GetUserUtterance()
11: OMPi ← r.ChatSystem(U) # ChatSystem revise OMPi

12: commands.append(OMPi)
13: else
14: commands.append(OMPi)
15: end if
16: end for
17: if commands not NULL then
18: r.LowLevelExecutor(commands)
19: commands = NULL
20: end if
21: end while

‘placing type’, and ‘destination’; another module with commonsense knowledge
and reasoning abilities is needed to generate them. GPT-4 [37,20] can not only
be a visual perception model but also perform as a vision-language model. In
this study, we utilize both of the abilities of GPT-4. We propose two methods:
i) a modular model consisting of a vision processing module (dense captioning
model) and natural language processing model (LLM), and (ii) a monolithic
VLM-based model.

Modular Method A modular pipeline [3,40,23,27,26,11,36] combines two mod-
els, e.g., vision and language. First, a vision detection model (e.g., YOLO [4],
ViLD [8], OWL-ViT [17], OWL-V2 [18], etc.) detects the objects in the scene.
Second, a large language model processes the user’s instruction and the output
of the vision model. Those vision models are trained to detect the abstract object
category. Therefore, we cannot use their methods directly.

The dense captioning model does not only localize salient regions in images
but also uses natural language to describe them [14]. Instead of object detec-
tion models, we use a dense captioning model to get the description of salient
regions of a scene as text. As Fig. 2a shows, a prompt LLM processes a user
instruction and dense caption. The quality of the dense captions is an important
factor influencing the model’s performance. We choose the state-of-the-art dense
captioning model GRiT [35]. Additionally, GPT-4V was also successfully used
for image or video understanding [16,31,30]. In this work, we use both GPT-4V
and GRiT to generate the dense caption for a given image.
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(b) Monolithic Method: OSSA-VLM

Fig. 2: Overview of our two proposed methods for OSSA: (a) OSSA-LLM-DCM
represents the modular model that combines a prompt large language model
(LLM) and a dense captioning model (DCM); (b) OSSA-VLM represents only
a vision-language model (VLM).

Monolithic Method As shown in Fig. 2b, the user’s instruction U and im-
age of a table I are the input of a monolithic model. The model’s output is
object manipulation plans: {OMP1,OMP2, . . . ,OMPn}. Yang et al. [37,20] are
given preliminary explorations with GPT-4V(ision). GPT-4V has also shown re-
markable results for game action prediction in the simulation environment [6,5].
The approach VILA by Hu et al. [10] unveils the capability of GPT-4V for
long-horizon robotic planning to generate a sequence of actionable steps. The
difference from those works is that we leverage GPT-4V to recognize the object
state and generate a manipulation plan for an object according to its state.

Prompts for Object State Detection and Reasoning LLMs and VLMs
are pre-trained on massive datasets from a diverse set of sources, which allows



8 X. Sun et al.

Is container?
Is edible ? 

container
food

 other clean

intact

containing leftover 

dirty

peel

leftover 

state

shape

size

state

user's utterance and dense captioning (text)

trash bin

cupboard

dishwasher

fridge

user's utterance and raw image (image)

size

shape

top grasp

edge grasp

ungraspable

destination
place

pour

uncertain

uncertain

(a) object state-sensitive reasoning

(b) commonsense reasoning 
for destination generation

(c) commonsense reasoning 
for grasping action generation

(d) commonsense reasoning 
for placing action generation

OR

Fig. 3: Chain-of-thought for OSSA. (a) The pre-trained model (e.g., LLM or
VLM) utilizes commonsense knowledge to reason about the object state; (b)
according to the object’s state and user’s preference, the model generates a
destination for the object; (c) according to the object’s state, shape, and size,
the model generates a grasping action for the object; (d) according to the object’s
state and destination, the model generates a placing action for the object.

them to acquire human-level commonsense knowledge for handling object states.
To unleash their full potential, however, it is necessary to devise appropriate
prompts and guide them; otherwise, their generation cannot be directly used for
robot tasks [3,24]. In this study, we utilize an LLM or a VLM as a high-level
planner for the robot’s low-level executor. Fig. 3 shows a schematic chart of the
chain-of-thought [33,38] that both models share, which guides them to recognize
the objects’ states and plan the objects’ destinations, grasping types, and placing
types.

4 Experiments

To quantitatively evaluate the performance of the two proposed methods, we
formulate tabletop scenarios where the task is to clear the table (in Sec. 4.1).
We contribute a multimodal benchmark dataset according to these scenarios
that take object states into consideration (in Sec. 4.2). We then evaluate our
proposed methods on the dataset (in Sec. 4.3).
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4.1 Task Formulation

In our study, we identify two types of object states about leftovers: “containing
leftover food”, where containers like plates or bowls hold liquid or semi-fluid
contents that are not directly manipulable by the robot (e.g., a bowl filled with
leftover soup), and “leftover food”, referring to food remains that have been sliced
or peeled, which robots can handle.

According to these specified leftover types, we consider three different com-
mon scenarios: T1) The instruction is “clear the table” without specifying what
to do with the leftover food. In this scenario, the robot is supposed to generate a
manipulation plan for all the objects except those classified as “leftover food” or
“containing leftover food”. In this case, the expected behavior of the robot is to
ask the user for handling specifications about the leftovers. T2) The instruction
is “clear the table and keep all the leftover food”. In this scenario, if the object
state is “leftover food” or “containing leftover food”, the robot should store it in
the fridge. T3) The instruction is “clear the table and discard all the leftover
food”. In this scenario, if the object state is “leftover food”, the robot is supposed
to throw it into the trash bin. However, if the object state is “containing left-
over food”, the robot is supposed to grab the container (not the soup directly)
and pour the contents into the trash bin before putting the container into the
dishwasher.

4.2 Benchmark Dataset

To quantitatively evaluate the methods that we propose, we built a benchmark
dataset, which is composed of 40 scenes involving 184 objects. First, we sourced
27 scenes from our daily lives. Second, to create balanced data, we use a diffusion
model [25] to generate an additional 13 scenes. Fig. 4a shows all the objects that
are involved in this dataset and the proportion among them. The same object
may be in different states at different times. The object states that we consider,
and their proportion are shown in Fig. 4b.

Annotation Rules The object manipulation plan format, outlined in Sec. 3.2,
was employed for annotating the dataset. We asked two individuals to label the
dataset according to set rules to reduce bias. In the end, they collaborated to
resolve discrepancies and finalize the annotations.
Object name: use the object name as a JSON key. When more than one item
from the same object category is in the scene, add the number behind the name
(e.g., ‘plate 1’, ‘plate 2’); Color: the object color (e.g., ‘white’, ‘silver’, ‘orange’,
‘red’); Size: the object size, ‘small’, ‘medium’, ‘big’; Shape: the object shape,
‘elongated’, ‘irregular’, ‘oval’, ‘round’, ‘spherical’, ‘cylindrical’, ‘rectangle’; Con-
tainer: use ‘true’ or ‘false’ to label the object as a container or not; State: If
the object is a container, we label it with three states: ‘clean’, ‘dirty’, or ’con-
taining leftover food’. If the object is not a container but edible, we label it with
three states: ‘intact’, ’peel’, or ‘leftover food’. If the object is not a container and



10 X. Sun et al.

plate 28.8

saucer
0.5

bowl

8.2
fork

12.0 banana
0.5 knife

6.5

spoon8.7

orange
4.9

apple
3.8

tray
3.8

cup

10.3

chopsticks

1.6
napkin

8.7bread
1.6

(a) Distribution of Objects(%).

leftover
4.3

containing
leftover

26.1

clean

14.1
peel

0.5

dirty
48.9

intact
6.0

(b) Distribution of Object States(%).

Fig. 4: Dataset Statistics

inedible (fork, knife, spoon), we label it with two states: ‘dirty’ or ‘clean’; Des-
tination: we use four places: ‘trash bin’, ‘fridge’, ‘cupboard’, and ‘dishwasher’;
Grasping type: we set two types of grasp action: ‘top grasp’ or ‘edge grasp’;
Placing type: In most cases, the robot places the object in the destination. But
in the special case that the object is a container that contains leftover food, the
robot should pour the leftover food into the trash bin.

Evaluation In this study, we aim to generate a manipulation plan for the ob-
jects to the robot’s low-level executor. The main evaluation metric is accuracy.
There are five parts of the output needed for low-level execution. We evalu-
ate our proposed methods’ performance in those five parts: 1) State Detection
Accuracy (StaA), 2) Ambiguous Detection Accuracy (AmbA), 3) Destination
Generation Accuracy (DesA), 4) Grasping Type Generation Accuracy (GraA),
and 5) Placing Type Generation Accuracy (PlaA). Finally, we calculate one
overall accuracy, representing how many objects are being predicted correctly,
Completion Accuracy (ComA).

4.3 Results

First, we test the performance of our proposed methods on object state de-
tection. For the modular method, we prompt the GPV-4V(ision)1 as a dense
captioning model to get the description of the image. GRiT is another dense
captioning model that we used in our experiment. We prompt an LLM (GPT-
42) to process the image description (text) to abstract the object states. For the
monolithic method, we prompt GPV-4V(ision) as a vision-language model to di-
rectly detect the object state. We prompt the pre-trained model in zero-shot or

1 gpt-4-vision-preview
2 gpt-4-0125-preview
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Table 1: Object State Detection Average Accuracy(%)±Standard deviation

Method Result
OSSA-LLM(Zero-shot)-GRiT 55.61±5.05

OSSA-LLM((Few-shot)-GRiT 55.69±4.76

OSSA-LLM((Zero-shot)-GPT-4V 73.47±1.39

OSSA-LLM((Few-shot)-GPT-4V 74.77±1.37

OSSA-VLM (Zero-shot) 75.14±0.37

OSSA-VLM (Few-shot) 79.83±1.00

few-shot settings, respectively. Therefore, we evaluate six variants: OSSA-LLM-
GRiT with the zero-shot setting, OSSA-LLM-GRiT with the few-shot setting,
OSSA-LLM-GPT-4V with the zero-shot setting, OSSA-LLM-GRT-4V with the
few-shot setting, OSSA-VLM with the zero-shot setting, and OSSA-VLM with
the few-shot setting.

As Tab. 1 shows, the monolithic method with few-shot prompts achieves the
highest performance compared to the other five variants. Overall, the modular
model that combines LLM with GRiT performs worse than the other four vari-
ants. However, the advantage of this model is the robot does not need an extra
object detection model to determine the object’s location. The model that com-
bines LLM with GPT-4V is the most expensive in this experiment because it
calls two pre-trained models for one plan generation. The performance is worse
than OSSA-VLM with GPT-4V and does not supply the object’s location. From
the results of OSSA-VLM and OSSA-LLM-GPT-4V, we conclude that GPT-
4 performs well as a vision-language model that plans multimodal tasks. The
potential vision information will be lost after the image is converted to text
descriptions. For example, spatial reasoning and object attribute understanding
are no longer possible.

Second, besides detecting the object state, we prompt the pre-trained LLM
and VLM to generate the object manipulation plan consisting of ‘grasping type’,
‘destination’, and ‘placing type’. Based on the previous experiment’s results, we
conclude that GPT-4 functions more efficiently as a VLM in multimodal tasks.
In this experiment, we test two methods: OSSA-LLM-GRiT and OSSA-VLM.
We also prompt methods in zero-shot or few-shot settings respectively. Hence,
we evaluate the four variants in three tasks which are defined in Sec. 4.1.

The object state detection accuracies shown in Tab. 1 and Tab. 2 are different.
When asking for more reasoning items from the pre-trained models (e.g., LLM
or VLM), the model’s performance decreases. Similarly, in certain cases humans
perform better when focusing on a single task rather than on multiple tasks.
Overall, in those three tasks, the monolithic method OSSA-VLM performs best
in ambiguity detection, destination generation, and completion rate. The few-
shot prompts also enhance the performance of models in ambiguity detection
and destination generation items. We notice outliers in the grasping and placing
action generation. For destination generation (DesA), the few-shot monolithic
method performs much better than the modular method in the three tasks. For
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Table 2: Average Accuracy of Object Manipulation Plan Generation. OSSA-
L(Z)-G represents zero-shot OSSA-LLM-GRiT, OSSA-L(F)-G represents few-
shot OSSA-LLM-GRiT, OSSA-VLM(Z) represents zero-shot OSSA-VLM,
OSSA-VLM(F) represents few-shot OSSA-VLM, State Detection Accuracy
(StaA), Destination Generation Accuracy (DesA), Grasping Type Generation
Accuracy (GraA), Placing Type Generation Accuracy (PlaA), Completion Ac-
curacy (ComA), Ambiguous Detection Accuracy (AmbA), ‘-’ means that the
tasks T2 and T3 do not have ambiguity.

Average accuracy(%)±Standard deviation
Task Method StaA AmbA DesA GraA PlaA ComA

T1
OSSA-L(Z)-G 51.09±0.94 65.78±12.54 50.37±2.62 85.83±1.44 90.74±2.72 21.74±1.09
OSSA-L(F)-G 50.54±0.55 95.30±0.26 57.00±1.47 92.10±1.73 96.41±0.66 26.27±0.83
OSSA-VLM(Z) 71.10±1.33 92.97±2.33 83.38±0.19 89.51±0.57 97.70±0.76 52.91±1.14
OSSA-VLM(F) 74.36±1.78 97.37±0.07 84.81±1.29 83.90±1.74 93.64±0.84 53.09±1.12

T2
OSSA-L(Z)-G 50.18±1.13 − 59.20±2.52 88.45±0.38 90.31±3.72 22.65±0.83
OSSA-L(F)-G 50.36±0.63 − 46.76±3.26 92.83±2.15 97.84±0.03 21.38±1.75
OSSA-VLM(Z) 68.67±1.32 − 81.17±0.90 90.20±1.50 94.99±2.73 48.63±1.91
OSSA-VLM(F) 72.55±0.97 − 85.59±1.01 83.72±1.64 95.48±1.34 54.18±1.11

T3
OSSA-L(Z)-G 50.72±0.83 − 57.54±2.44 84.26±2.70 92.85±1.26 22.83±1.44
OSSA-L(F)-G 50.18±0.31 − 58.13±4.45 92.06±1.67 90.97±0.65 25.18±1.25
OSSA-VLM(Z) 70.00±0.39 − 74.80±2.36 91.43±2.81 94.80±1.19 47.26±1.92
OSSA-VLM(F) 72.19±0.87 − 77.85±2.08 84.88±0.87 91.19±1.87 47.45±0.83

grasping type generation (GraA), the modular model OSSA-LLM-GRiT with
few-shot prompts performs best. We conclude that the pre-trained model reasons
from the text better than from the image, which needs to consider the object’s
size and shape. For all the variants in the placing action generation (PlaA), the
performance is above 90 %. From the completion accuracy (ComA), we can
see that the few-shot monolithic method OSSA-VLM performs better than the
other methods.

5 Conclusion

In this paper, we introduced an object state-sensitive agent (OSSA) that can
perceive fine-grained scene information (object name and state, etc.) and gener-
ate an appropriate object manipulation plan for the robot’s low-level executor
according to those visual perceptions. We proposed two approaches: a modular
approach consisting of vision (GRiT, or GPT-4V) and Language modules (GPT-
4) and a monolithic approach consisting only of a VLM (GPT-4V). To quan-
titatively evaluate the two proposed approaches, we formulated an instruction-
following task for robots in which the object state needs to be considered in a
tabletop scenario. We demonstrated that VLM GPV-4V supplies more concrete
information than the state-of-the-art dense caption model GRiT. Consequently,
the monolithic approach using GPT-4V performed better than the pipeline-based
modular approach consisting of the dense caption model GRiT and the language
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model GPT-4. A limitation of the monolithic approach (GPT-4V) is, however,
that it is not trained to generate bounding boxes of objects. An additional object
detection model is needed to get the locations of objects.

In the future, we will develop a model that can distinguish between objects
in different states and also localize their location. Furthermore, we will use our
models in real scenarios with real robots, taking into account additional objec-
tives such as cost and time for the creation and execution of object state-sensitive
plans.
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