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Robotic Imitation of Human Actions
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Abstract—Imitation can allow us to quickly gain an under-
standing of a new task. Through a demonstration, we can gain
direct knowledge about which actions need to be performed and
which goals they have. In this paper, we introduce a new approach
to imitation learning that tackles the challenges of a robot
imitating a human, such as the change in perspective and body
schema. Our approach can use a single human demonstration to
abstract information about the demonstrated task, and use that
information to generalise and replicate it. We facilitate this ability
by a new integration of two state-of-the-art methods: a diffusion
action segmentation model to abstract temporal information
from the demonstration and an open vocabulary object detector
for spatial information. Furthermore, we refine the abstracted
information and use symbolic reasoning to create an action plan
utilising inverse kinematics, to allow the robot to imitate the
demonstrated action.

Index Terms—Imitation, Learning, Robotics

I. INTRODUCTION

Imitation learning allows us to directly learn from the
demonstrations of an expert to quickly adapt to new tasks and
carry out complex chains of action. How exactly imitation
learning works, or even what imitation is, can at times be
hard to define. To gain a better understanding of how imitation
learning works, Tomasello et al. [1] observe naturally occur-
ring instances. Seemingly important for imitation learning in
apes is to learn the specific sequence of actions to reach a
desired goal, while the exact way in which, for example, the
fingers are moving is less important [2], [3]]. Following the
exact motions of an expert can be almost impossible just
because of how each individual differs. When it comes to
humanoid robots, this can be further exaggerated. Our robot
NICOL (Neuro-Inspired COLlaborator) [4], for example, has
more joints in its arm than a human. Therefore, following an
example from a human demonstration by directly copying the
joint movements would not make sense. However, following
the same actions that led to the desired result is still very
feasible. Closely connected to imitation learning is the famous
mirror neuron concept [5]], where Gallese et al. found out
that seeing certain actions can have very similar neuron
activations as doing these actions. They specifically mention
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Fig. 1. The top three images are taken from one of the human demonstrations
at three timesteps: when the object is first grasped, during the movement, and
after it is released. In the bottom three images, we can see three timesteps
taken from the imitation of said demonstration. Again we show the moment
when the object is first grasped, being moved, and after it is released. While
the demonstration was given by a human sitting across from the robot, the
model is able to perform the action from the robot’s perspective.

four actions where this pattern can be found: grasping an
object, releasing an object, manipulating an object and tearing
an object. These fundamental actions can be combined into
more complex higher-level actions. Playing basketball is a
sequence of grasping the ball, moving it and releasing it. So,
if we are able to use a given body scheme to perform these
actions and combine it with imitation learning to learn the
sequence and goals of the action, it can allow us to imitate
high-level actions [3]]. For these reasons, imitation learning has
been a field of study in computer science for a long time [6].
However, while having the potential to solve many problems,
imitation learning also comes with difficulties. To imitate
someone, the ability to perceive and understand the actions
done by the target of the imitation is necessary. One of the
difficulties stems from the differences between the bodies of
the imitator and demonstrator. One way to address this prob-
lem is to control the robot and use it as its own demonstrator
[[7], [8]]. Another approach to simplify the action perception is
to do the action from the perspective of the robot; since human
data is easier to collect than data from a controlled robot [9]].
Imitation learning can also be accomplished by making the



goal of the action simpler to understand. This way, the variance
of actions is reduced, making the imitation process easier. This
could be done by using language to specify the tasks in one
demonstration, limiting the possible actions from the start on,
or using pre-learned knowledge about the objects that will be
part of the imitation [10], [[11]].

Simplifying the imitation often means we lose out on some
capabilities such as generalisability or that we need more
pre-existing conditions to be fulfilled in order to allow the
approach to work. We do not try to simplify the imitation
but the action instead. For this, we use demonstrations from
a human from a different perspective, so a demonstration that
could easily happen in real life and the kind of imitation that
we see naturally. This means that following the exact motion of
the actions is close to impossible because of different bodies
and different spatial positions in regard to potential objects
that have to be moved. We deal with these challenges in two
steps. First, we use action segmentation to find out step by
step which actions have been executed by the demonstrator to
achieve their goals. Our action segmentation model is based on
a generative diffusion model. With the demonstration as our
condition, the model generates action labels for each frame.
We focus on the base actions that were found in the mirror
neuron: grasping, holding and manipulating an object [5[]. The
results from the action segmentation are the action sequences
the robot needs to replicate to imitate the demonstration. The
next step is to use the knowledge of when the actions happen
and with which objects they happen to find out where we need
to perform the actions. As we know the time points in which
the demonstrator performs their grasps, we can use the object
detection on key frames to find out the 3D coordinates of
where the objects that were grasped are. Combining the spatial
and temporal knowledge of the actions, we can replicate them
with the robot. So, from a simple demonstration of a complex
action, we extract the knowledge of the order of actions as
well as the goals of the actions and allow the robot to replicate
them. To facilitate the movement, we use inverse kinematics
which represents the body schema of our robot.

Our approach uses an uncommon strategy to facilitate imita-
tion learning directly from human demonstration by simplify-
ing the action instead of the imitation.

II. RELATED WORK
A. Imitation Learning

Imitation learning is used in many forms and applications
because of a few key advantages. While many machine learn-
ing approaches rely on the availability of large amounts of
training data, imitation learning reduces this requirement by a
large margin. By using the demonstrations from an expert who
is already capable of the task at hand, far less training data is
needed. Expert demonstrations also simplify how to represent
an action. For many tasks we deal with in our daily lives, it is
much easier to show how to do them rather than explain how to
do them. If we were to explain how we walk and how we move
each of the muscles in our legs, the explanation would be far
more contorted and inaccurate compared to simply showing

how we move our legs. This aspect of imitation learning is
especially helpful when it comes to robotics, where many tasks
of such a nature are encountered. The high dimensionality
that many motion tasks for humanoid robots require is far
easier to express through the use of demonstrations. Therefore,
robotics and imitation learning often go hand in hand [6]. Of
course, getting an expert to do demonstrations to learn from
is a challenge in itself which is why first attempts tried to
learn quickly from single demonstrations [12]. This failed at
the time, in part due to the differences between humans and
robots, as well as the mechanisms controlling the robot being
imprecise. The task chosen, swinging a pendulum, might also
have been particularly difficult because of the rapidly shifting
forces that are only indirectly controlled. However, kuniyoshi
et al. [13]] showed that learning from a single demonstration
is possible. They had to focus on one task and forgo a lot
of generalisation, but through using a strategy similar to our
approach of finding action sequences and using the perceived
body-object relations, they managed to show that learning by
watching and teaching by showing can work. Another way
to get demonstrations is to hard code the actions for the
robot and then use the recorded execution as a demonstration
to learn from through imitation learning [7]. This facilitates
the creation of many demonstrations. Instead of depending
on the human demonstrator, it is, however, dependent on the
flexibility of the written script in order to get a range of
demonstrations. To add to the scripted generation, language
commands can be used to further direct the task [10]], [[14]].
Using a scripted robot for the demonstrations can make it
easier to record more modalities than just vision [15]. Using
a simulation makes it possible to reduce the demonstrations
to more important parts, such as only the end-effector, which
can improve the imitation learning [[16]. Mixing human and
robotic demonstration can give the benefits of both [9]] in turn
needing both sorts of demonstrations and the capabilities to
handle them.

B. Vision

1) Action Segmentation: To imitate a demonstrator, the
robot needs to be able to perceive them. Without an additional
sensor that can be attached to the demonstrator or using the
robot as a demonstrator for itself, this perception relies on
the visual sense of the robot. From the demonstration, the
robot should perceive the actions that are done and where they
happen. To identify the actions and their temporal connections,
we use an action segmentation model. The temporal abilities
of RNNs [17] or transformers have improved the action
segmentation quite a bit, ASFormer (Action Segmentation
transFormer) [[18]] shows how to modify transformers to fit the
task of action segmentation. They have improved how to han-
dle the input sequence and how to better utilise the temporal
information of the model. The ASFormer model can also easily
be used as a backbone which has led to many modifications
and uses of it. Another recently developed machine learning
model is the diffusion model. In this generative model, a noise
is put over the input and step-wise removed during inference.



Apart from generating images, it has also been used for object
detection . From there, it has been further adjusted to be
used in action segmentation. Using the ASFormer model as
its backbone and features from the videos extracted with 13D
as the condition, the model uses a noisy version of the
ground truth as its input only to predict the ground truth as
its output, removing the noise [21]. The diffusion process
of having multiple differently noised versions of the input
and the possibility of using multiple inference steps allows
the model to improve the results of the ASFormer. Action
segmentation can also be improved by using further modalities
for the input. Instead of just RGB images, prompts can be used
to give the network a direction. In addition to that, changing
how the input looks and forming graphs out of the videos,
therefore representing the data differently, can help improve
the action segmentation [22]. Having direct knowledge about
the movement that happens during actions through the use of
accelerometers is also helpful as the additional knowledge if
fused correctly, leads to very good results [23]]. However, using
a more complex representation of the data or more modalities
also means that more work is necessary to get the action
segmentation running and not all modalities will always be
available, and therefore, limits the use of such methods.

2) Object Detection: Apart from the temporal information,
it is also important to gain a spatial understanding of the
demonstrated actions. As the demonstrations are recorded in
two-dimensional data, the first step of extracting spatial infor-
mation is to find the two-dimensional position. As the robot
acts in three dimensions, the third dimension is deducted in a
second processing step. A single 2D image does not always
offer enough spatial information to find the 3D coordinates
of an object. Most 3D object detectors use three-dimensional
data such as point clouds, voxels or depth cameras. While we
only have one 2D image, the challenge in transforming the
information to 3D is lower. Fortunately, all the objects are
on the table, which mostly eliminates one of the dimensions.
Traditional object detectors are trained on a specific set of
class labels, stopping them from recognising objects outside
of that set [24]. However, first attempts with object detectors
that are not dependent on a set number of classes have been

made [23].

III. IMITATING HUMAN ACTION

The focus point of this approach is imitating human actions.
We look at actions as hierarchical, with more complex actions,
such as eating, being made up of a sequence of simpler
actions, such as grabbing a fork, moving the fork to the food,
picking up food and so on. Therefore, in our demonstration,
we decided to demonstrate sequences of such simple actions
that could be used in many situations. We pick up objects and
move these objects before putting them down somewhere else.
This sequence of grasping an object, moving it somewhere and
releasing it is something that can be seen almost everywhere.
For our scenario, we picked the workplace in front of our
NICOL robot, as shown in Figure 2] so that the demonstrations
happen in the same place as the imitations later on. We use

Fig. 2. Our robot in its natural environment during one of the imitations
where it grasps the spam can.

five objects, which are roughly hand-sized from the YCB
object data set [26]], the red bowl, the spam can, the Jello
strawberry, the Jello chocolate cardboard boxes and the tomato
can. For each of the objects, we record 24 videos in which we
go through a sequence of picking one object up, moving it,
releasing it, moving our hand away before picking it up once
more, moving it to yet another place and releasing it again. We
pick the objects up naturally, so the hand configuration differs
between many attempts and the object is often occluded during
grasping and being moved. Every scene holds multiple objects
to simulate a cluttered working environment. The videos all
have the same length of 20 seconds, and the demonstrations
are all done by the same actor.

The part of our approach to detect and segment the actions
from the demonstrations is based on the diffusion action
segmentation model . From the RGB video data, we create
image flow images and use them as well as the RGB data to
extract feature vectors using the 13D model [20]. This is the
part of our input that is used as the so-called conditioning in
our diffusion model, similar to what is proposed by Ho et al.
[27]. The noised ground truth makes up the rest of the input.
During training, the amount of noise is chosen randomly and
applied to the ground truth and the amount of noise used is
embedded in the input. This enables the network to iteratively
denoise the output during inference. In diffusion models, there
generally is a choice between predicting the noise and the
ground truth. Our model predicts the ground truth, so we
can skip some of the iterative denoising steps. Predicting the
ground truth also allows us to use the cross entropy loss
to directly see how good the predictions are. We tried all
the losses used by Liu et al. but found the best results
when we only used a singular cross-entropy loss. For us, the
most important aspect is correctly identifying the sequence of
actions, while the exact time of transitions between actions is
not quite as important. As the boundary alignment loss and
the temporal smoothness loss direct the network to improve
the correct classification of the borders of the actions, they are
not beneficial here. Our backbone is based on the ASFormer
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Fig. 3. An overview of our architecture. The start of the approach is on the left, where the input is the human demonstration. We record the human
demonstration as a video with the cameras in our robot’s head. This video then goes through two models: our diffusion action segmentation model and the
VILD object detector. The object detector provides us with 3D positions for each detected object in each frame. The action segmentation model provides us
with a class label for each frame. The class is either moving with the object or without. This information is used in our logical programming algorithm to
create an action plan. This action plan is given to the inverse kinematic of our robot which then moves our robot to imitate the demonstration.

model [[18]. The model has three encoder blocks and three
decoder blocks. All of the blocks use sliding attention, and
there are 28 layers in total. The output of our model has one
class vector for each frame of the input video.

We also perform object detection on every frame of the video
demonstration. For this, we are using ViLD [25]]. VILD utilises
a number of possible prompts representing possible parts of
our scene and a pre-trained ResNet-50 which takes care of
the region proposals. VILD finds the text embeddings closest
to the visual embedding and thus decides on a class. Our
approach uses both of these information streams, combining
them with symbolic reasoning in order to plan which action
we need to do at what time and where to imitate the human
demonstration. The first part of this is to use the knowledge
gained about the action sequences to find the time steps in
which the position of the objects is important for our actions.
Then, the algorithm uses the object detection to find the
positions of the objects in the key moments. We translate from
two-dimensional coordinates to three-dimensional coordinates
using our knowledge of the robot’s camera position and pre-
existing knowledge about the height of the table on which the
demonstrations are performed. As the time steps often span
over multiple frames, we use majority voting to improve the
object detection. The majority voting starts from the frame in
the key moment, checks how plausible the detected objects
are, and, if necessary, compares it to the adjacent frames to
increase the certainty of the detections. Using the knowledge
of the positions of each object during the different actions,
the algorithm determines which object is important for the
actions and finds the key positions for each of the actions.
Determining where to grasp the object and where to release it.
Our approach utilises this knowledge to create an action plan.
Finally, an inverse kinematic algorithm realises these abstract
plans.

By concentrating on very basic human actions such as grasp-
ing, moving and releasing objects, we allow our approach to
stay flexible and less dependent on specific actions. This is
further emphasised by using an object detector that allows for
many different object classes. The object detection came with
two challenges: many false positives, and while the detections

were mostly correct, the classifications were not quite as
accurate. As the object detection was not fine-tuned, it often
detected the robot or human arm as a further object. Neither
of these detections was constant, however, making it harder to
tell which object would be moved in a given action. This was
further emphasised by our second challenge, which came from
the classifications not always being consistent. This meant that
in one frame, an object could be classified as a cardboard box
and in the next one as a can. We use an off-the-shelf object
detector to keep our approach generalisable and easy to set
up with a pre-trained object detector. As the actions all went
on for multiple frames, we used majority voting to narrow
these problems down. When our detection was not concrete
about which object was part of the action, the algorithm would
continue to go to the neighbouring frames up to a threshold
of 10 frames or until it got to a concrete decision. This helped
with both of our challenges as it eliminated many of the false
positives and allowed us to keep track of the objects even
through miss-classifications. Further adjustments to the text
prompts could improve the classifications.

The action segmentation only has to identify whether an action
is actually happening or not, as an object in our scenario can
only be manipulated after we grasp it and only be released
after we manipulate it. The biggest challenges for the action
segmentation came from the data set. As it consisted of
natural human actions for the demonstrations, some of the
grasps would completely obscure an object. Coupled with
the distractor object, which also could occlude the object of
the actions, some of the demonstrations were hard to follow
for our model. The second part stems from most of the
demonstrations following some natural patterns in regard to
how long it would take to grasp an object or move it. In some
of the demonstrations, however, the demonstrations escaped
these patterns. This could, for example, lead to unusually long
grasping actions or long times of inaction. These troubles
could likely be reduced by increasing our data set.

As our action planning makes use of both of these sometimes
flawed information streams, it is not always able to plan the
action accurately. We can realise that our plan is flawed in
many cases. There are demonstrations where multiple actions



were detected correctly, but the object detections were flawed.
This means the planner knows that there should be an action
happening but does not know where the action happens or
has conflicting information about where the action happens.
There are also some cases where the object detection can let
us know that the action segmentation is likely to be wrong,
such as the action segmentation detecting an action that moves
an object, but the object detection detecting the same positions
as before the action. This knowledge could be used to inform
the human working with the robot that it needs a repetition
of the demonstration. A new demonstration should allow us
to gain more correct information about the action and then
realise that action.

As this approach always uses the same grasping technique,
regardless of the object, it does fail for some object shapes.
Of course, some other issues can also appear due to the rigid
grasping technique, such as failing to grasp the object if it fell
to one of its sides after it was released. We focus on directly
imitating the demonstrator’s goals and, therefore, learning a
task extremely quickly. We are only using one demonstration
for each sequence of actions, and directly using the body
schema of the robot for grasping is one of the key factors.

IV. RESULTS

The nature of our approach allows us to see in detail to
which degree the individual parts perform. First, we start with
the action segmentation, where we look at both the direct
prediction as well as after 100 diffusion steps. As we directly
predict the ground truth instead of the noise, we do not have to
go through all the time steps during inference. We randomly
partition our data into a train set and a test set with 80% of the
samples for training and the other 20% for testing. In Table
[ we can see the results from using different combinations
of losses. We reach an accuracy of almost 90% for the action
segmentation. This accuracy is classification per frame, and for
each video sample, we had 440 frames. The accuracy seems
quite high compared to some of the benchmark data sets, on
which the best performances tend to be in the mid-eighties.
However, we only have three classes, so it can be expected
that our model does have a slightly higher accuracy on our
data set. Apart from the overall accuracy, we can also see that
the model seems to have a few videos on which it performs
quite badly, approaching a 50% accuracy. These are often the
video samples in which the object is very hard to see, as it
has low contrast compared to the background, or in which the
hand grasping the object significantly occludes the object. We
show the results of the action segmentation model for three
demonstrations in Figure [ In the first example, the model
mistakenly detects a third grasp and movement of the object.
The second example has a very good performance, with only
the borders of the segmented actions not quite matching up,
while in the third example, we see this effect in higher intensity
with some uncertainty in the first grasping action the diffusion
detected. The red parts of the bar are when the label should
be that the demonstrator’s hand is moving on its own, while
the green label represents the action starting with grasping an

Losses Action Segmentation | Position Detection
CE 0.8919 0.8171
CE +BA 0.8732 0.77717
CE + BA + TS 0.8748 0.7453
CE + TS 0.8778 0.7314
TABLE I

THIS TABLE SHOWS THE RESULTS OF OUR APPROACH. THE FIRST COLUMN
DENOTES THE LOSSES USED FOR THE ACTION SEGMENTATION. CE =
CROSS-ENTROPY, BA = BOUNDARY ALIGNMENT, TS = TEMPORAL
SMOOTHNESS. THE SECOND COLUMN SHOWS THE ACCURACY OF THE
ACTION SEGMENTATION, AND THE THIRD SHOWS THE ACCURACY IN
DETERMINING THE 3D POSITIONS.
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Fig. 4. The results from the action segmentation on three demonstrations.
For each demonstration there is one bar showing the ground truth and one
bar showing the results from the action segmentation. For each of them, the
time goes from left to right. The two possible classes are shown with different
colours: red is for movement without an object, and green is for movement
with an object.

object until it is released. During the annotation, we counted
the action as starting with grasping when all fingers involved
in the grasp touched the object, and similarly, once this was
not the case anymore, it would count as released. Imitating
Human Actions

The final positions obtained from the object detection have
an accuracy between 0.73 and 0.81, as shown in Table
We have used a pre-trained object detector with an open
vocabulary, but the classification has mostly been suboptimal.
The classification is based on predefined possible classes; we
used 15 possible classes, including “metal can” for the cans,
“cardboard box” for the Jello boxes, and red plate” for the
red bowl, as “bowl” did not seem to work well and many
more. The network ended up classifying a large majority of
all the objects as cardboard boxes. The object detection part
went better than the classification. The main problem that
we encountered here was the irregular detection of the robot
arm. While most objects were consistently detected, the robot
arm was only detected in some of the frames. The second
challenge that the object detection had was that objects would
be obscured during the grasping action, making it harder to
detect them. Our object detector also tracks objects over time
which helps in detecting the movement of said objects. This
mechanism is also hindered by the aforementioned challenges.
Despite these challenges, we are able to use the RGB data
as well as the camera position and the known table position
to accurately find the 3D coordinates, where the actions take
place. To test the object detection directly, we randomly took
500 images of our data set; we included some knowledge for
the object detection, mainly that we have five objects we want
to detect. The objects are detected with an accuracy of 0.8724
and classified with an accuracy of 0.5011. The object detector
also detects parts of the image as objects wrongly, with an
average of 0.406 wrong objects detected per image.



When it comes to using the approach in the real world with
our NICOL robot, a few more difficulties present themselves.
Some of the objects we use are quite hard to grasp; both
the red bowl and the tomato soup are round and need a
specific approach and angle to grasp them. For this reason, we
concentrated on the spam can and both of the Jello boxes. The
next challenge is the positioning of the objects. We are using
the images from the demonstration and rebuild the scene. As
we have also only focused on the object that is the target of our
action, the approach does not consider possible obstacles that
we have to avoid. To make sure that no accidents happen, we
rearrange the distractor objects to make sure they are not in the
trajectory of the robot arm. Then, we use the demonstration
fitting the current setup to generate our action plan and execute
said plan.

Our grasps have a success rate of 69,44%. As we had two
grasps per demonstration, we put the object into the correct
position if the first grasp failed. Most failures with the grasps
came from inaccuracies in the exact position. This means
that the robot’s finger did not correctly connect to the object,
causing it to be pushed to the side. The first grasp had a success
rate of 66% while the second grasp had a success rate of 72%.
We only used demonstrations where the generated plan was
correct to avoid accidents. In these cases, the imitation worked
out completely with a 44% success rate.

V. CONCLUSION

In this paper, we show that robots can learn how to perform
tasks directly from human demonstrations despite different
bodies and perspectives. As these demonstrations are very
natural and easy to collect and we only need a small number
of demonstrations, this allows the robot to quickly adapt to a
new task. Our approach demonstrates the benefits of learning
by observing: what would otherwise be a hard-to-describe
solution to a task can be demonstrated by actions instead.
Despite using a small number of demonstrations and a large
difference between the demonstrations and desired imitations,
we achieve a high success rate in performing pick-and-place
tasks. Our approach only takes in the demonstrations and
only uses these demonstrations to learn. The ability learned
only from one demonstration is enough to successfully imitate
the demonstrator and achieve the demonstrated goals. This
approach shows how powerful demonstrations are as a tool
for learning.
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