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Humans can effortlessly modify various prosodic at-
tributes, such as the placement of stress and the intensity of
sentiment, to convey a specific emotion while maintaining
consistent linguistic content. Motivated by this capability, we
propose EmoAug, a novel style transfer model designed to
enhance emotional expression and tackle the data scarcity is-
sue in speech emotion recognition tasks. EmoAug consists of
a semantic encoder and a paralinguistic encoder that represent
verbal and non-verbal information respectively. Additionally,
a decoder reconstructs speech signals by conditioning on
the aforementioned two information flows in an unsuper-
vised fashion. Once training is completed, EmoAug enriches
expressions of emotional speech with different prosodic at-
tributes, such as stress, rhythm and intensity, by feeding dif-
ferent styles into the paralinguistic encoder. EmoAug enables
us to generate similar numbers of samples for each class to
tackle the data imbalance issue as well. Experimental results
on the IEMOCAP dataset demonstrate that EmoAug can suc-
cessfully transfer different speaking styles while retaining the
speaker identity and semantic content. Furthermore, we train
a SER model with data augmented by EmoAug and show that
the augmented model not only surpasses the state-of-the-art
supervised and self-supervised methods but also overcomes
overfitting problems caused by data imbalance. Some audio
samples can be found on our demo website1.

Index Terms— Speech emotion recognition, data aug-
mentation, style transfer.

1. INTRODUCTION

Speech Emotion Recognition (SER) aims at recognizing
and understanding human emotions from spoken language,
which can significantly benefit and promote the experience
of human-machine interaction. Plenty of studies have inves-
tigated SER in recent years [1]. However, the performance of
SER is constrained by the lack of large-scale labelled datasets.
Most speech emotion datasets are collected under simulated
or elicited scenarios, since capturing natural and spontaneous
emotional speech is very challenging. Furthermore, different
people perceive emotions differently, which may result in
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ambiguity in data labeling, especially in emotions with weak
intensity [2]. Moreover, data imbalance of different emotions
is another problem that can lead to model overfitting to some
frequent emotions, such as “Neutral”.

Data augmentation is treated as a promising method to ad-
dress these issues. Most of the augmentation methods used
in SER are borrowed from Automatic Speech Recognition
(ASR), such as SpecAugment [3], Vocal Tract Length Pertur-
bation (VTLP) [4], speed perturbation [5], pitch shift or noise
injection. However, while the variations in pitch or speed do
not change the semantic content, they may have an effect on
emotion expressions. For instance, sad emotions are often
conveyed at slow speed while angry emotions tend to be ex-
pressed fast.

Alternatively, different variants of models are adopted
to generate intermediate emotional features or alter carried
emotions while keeping speech content unchanged, for in-
stance, star Generative Adversarial Networks (GANs) [6],
CycleGAN [7] and global style token [8]. However, the
generated intermediate features are not easy to evaluate intu-
itively. In addition, prosody expression is strongly associated
with speech content, and the altered emotions by GANs may
cause conflicts or ambiguity between speech prosody and
content.

Humans can easily alter different prosody attributes, such
as stress position and sentiment intensity, to express a given
emotion with invariant linguistic content [9]. For example,
when expressing sad emotions with the semantic content “I
am not happy today”, one can emphasize “not happy” or put
stress on “today”. Inspired by this capability, we propose
EmoAug to vary prosody attributes and augment emotional
speech while keeping emotions unchanged. EmoAug is
trained in an unsupervised manner, which requires neither
paired speech nor emotion labels. The main contributions of
this paper are as follows:

1. We propose a novel unsupervised speaking style trans-
fer model which enriches emotion expressions by al-
tering stress, rhythm and intensity while keeping emo-
tions, semantics and speaker identity invariant.

2. We implement quantized units to represent semantic
speech content instead of using a well-trained ASR
model, which enables us to work on emotional audio
without text transcriptions.
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Fig. 1: Overview of EmoAug. The model comprises two encoders and an attention-based decoder. In the pre-training phase, the decoder
reconstructs input mel-spectrograms using representations acquired from the semantic and paralinguistic encoders. The loss function is
computed by measuring the Mean Square Error (MSE) between the generated and original mel-spectrograms. During fine-tuning, style
transfer is performed by directly substituting the input of the paralinguistic encoder with a target speaking style reference. Additionally, to
enhance the quality of the converted audio, a discriminator is employed to differentiate between real and generated pitch contours.

3. SER models trained with EmoAug outperform the
state-of-the-art models by a large margin, effectively
overcoming overfitting issues caused by data scarcity
and class imbalance.

2. METHOD

An overview of EmoAug is shown in Fig. 1, which consists of
a speech quantization module, a semantic encoder, a paralin-
guistic encoder and an attention-based decoder. An additional
discriminator is utilized during the fine-tuning phase.

2.1. Speech Quantization and Semantic Encoder

Acquiring semantic speech information typically relies on
a proficient ASR system. Nevertheless, training a reliable
ASR model proves challenging due to the extensive labeled
data required. In addition, ASR models are not robust to un-
seen noise or emotional speech [10]. Therefore, we employ
HuBERT representations [11] to capture semantic speech
content. These representations are acquired through self-
supervised training, eliminating the need for human anno-
tations in ASR training. HuBERT empowers us to address
emotional speech and diverse styles that might substantially
compromise the performance of an ASR model. As shown
in Eq.1, the input speech signal x = (x0, ..., xt) is firstly
embedded into continuous vectors by the pre-trained Hu-
BERT2, followed by the k-means algorithm that quantizes the
continuous speech representations into discrete cluster labels
u = (u0, ..., ut), e.g. “23, 23, 2, 2, ..., 57”.

u = k-means(HuBERT (x)) (1)

We investigated how different vocabulary sizes of Hu-
BERT impact in model performance. In this study, we em-
ployed a vocabulary size of 200 clusters, which yielded con-
siderably improved performance compared to using 50 or 100
classes. To refine the semantic content, we proceed to elim-
inate repetitions and filter out tempo information (u → ũ),
e.g. “23, 23, 2, 2, ..., 57” → “23, 2, ..., 57”. After quantiza-
tion, we map the cluster labels into latent representations with

2https://huggingface.co/facebook/hubert-base-ls960

the semantic encoder (Sem) which is comprised of three 512-
channel Conv1D layers with kernel width of 5 and padding
size of 2, and one bidirectional Long Short-Term Memory
(LSTM) with 256 dimensions to capture local and global con-
text information, respectively.

2.2. Paralinguistic Encoder

The paralinguistic encoder (Par) aims to learn utterance-level
non-verbal information from input audio x, which contains
speaking styles, emotion states, speaker identities, and so
on. It is based on the ECAPA-TDNN model [12] which
has been proposed for the task of speaker verification. The
model begins with one Conv1D layer, a ReLU function,
and Batch Normalization (BN), followed by three SE-Res2
blocks. Residual connections between the SE-Res2 blocks
deliver different level outputs to the feature aggregation layer
(Conv1D+ReLU). Subsequently, the aggregated outputs are
dynamically weighed by the attentive statistics pooling layer
(Conv1D+Tanh+Conv1D+Softmax), and then mapped to a
fixed dimension by the last Fully Connected (FC) layer. We
initialize ECAPA-TDNN with the pre-trained model3. The
attentive statistics pooling, fixed dimension mapping and
weight initialization prevent semantic information to leak
from the paralinguistic encoder.

2.3. Decoder

Our decoder is based on the Tacotron2 [13] which uses
location-aware attention (Att) [14] to connect the encoders
and the decoder (see Eq. 2).

m̃ = Dec(Att(Sem(ũ), Par(x))) (2)

The decoder (Dec) generates one frame per time step in an
auto-regressive fashion. Two FC layers map the ground-truth
mel-spectrograms x into latent representations that are used
by an LSTM module for teacher-forcing training. Finally, a
FC layer maps the intermediate features to the dimension of
input mel-spectrograms. The generated mel-spectrograms m̃
are then transformed to waveforms x̃ by HiFiGAN [15].

3https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb

10102



x̃ = HiFiGAN(m̃) (3)

2.4. Discriminator

After pre-training, we observed when feeding a different ref-
erence audio to the paralinguistic encoder for style transfer,
the generated speech signals exhibit some distortions. To en-
hance the quality of the generated speech, we implement a
discriminator to differentiate between the genuine and syn-
thesized speech. Importantly, the discriminator exclusively
differentiates pitch changes while preserving semantic con-
tent. The discriminator starts with three convolutional blocks
(Conv1D+ReLU+BN+dropout), followed by two linear pro-
jection layers.

2.5. Speaking Style Transfer

We denote Xs,e as all utterances with emotion e uttered by
speaker s. After pre-training, as shown in Eq. 4, speaking
style transfer can be achieved by directly replacing the par-
alinguistic encoder input xs,e with a target speaking style ys,e,
where xs,e ∈ Xs,e, ys,e ∈ Y s,e and Y s,e = Xs,e − {xs,e}.

m̃s,e = Dec(Att(Sem(ũ), Par(ys,e))) (4)

Consequently, the converted mel-spectrograms m̃s,e re-
tain the same speaker identity, semantic content and emotions
as the original audio xs,e, but deliver different rhythms or in-
tensities transferred from ys,e. In addition, we generate dif-
ferent numbers of samples for each emotion to counter data
imbalance.

3. EXPERIMENTAL SETUPS

3.1. Datasets

We utilize the LRS3-TED and IEMOCAP datasets for pre-
training and fine-tuning respectively.

• LRS3-TED [16] is comprised of over 400 hours of
video by more than 5000 speakers from TED and TEDx
talks with spontaneous speech. LRS3-TED is collected
with various speaking styles and emotions in a variety
of acoustic scenes, which will help the model learn rich
paralinguistic changes.

• IEMOCAP [17] is a multimodal emotion dataset
recorded by 10 actors in a fictitious scenario. We
follow the settings used in previous work [18, 19, 20],
in which leave-one-session-out is adopted with 5-fold
cross-validation. One session is left for testing and
another one is used for validation, while the rest of
the three sessions is utilized for training in each round.
Four types of emotions (happy, sad, angry and neutral)
with a total of 5531 utterances are considered.

3.2. Evaluation Metrics

We report the experimental results with Weighted Accuracy
(WA) and Unweighted Accuracy (UA).

3.3. EmoAug Training

We first pre-train EmoAug on LRS3-TED and then fine-tune
it on IEMOCAP for style transfer. During pre-training, the
Adam optimizer is used with a weight decay rate of 1e-6. The
initial learning rate is 1e-3, which is decayed with a factor of
0.9 after every 5000 iterations. In addition, gradient clipping
with a threshold of 1.0, early stopping and scheduled sam-
pling are adopted to avoid overfitting.

After pre-training, we fine-tune the model with a discrim-
inator on the IEMOCAP dataset with small learning rates of
1e-5 and 1e-4 to improve the quality of generated speech.

3.4. SER Model Training

We perform SER by adding one additional FC layer on top of
the HuBERT model which is pre-trained on large-scale unla-
belled data by self-supervised learning. During training, dif-
ferent learning rates are used in the HuBERT model (1e-5)
and the FC layer (1e-4) to retain the low-layer representations
and enable the last FC layer to fit to the specific dataset.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Comparison of Different Augmentation Times

We augment each utterance N times by transferring speaking
styles from N randomly selected utterances that belong to the
same speaker with the same type of emotion. We report the
effect of different augmentation times and the discriminator
on SER utilizing representations from HuBERT.

As can be seen in Fig. 2, considerable increases occur on
UA along with the increase of augmentation time, where 0
means training SER models with only raw audio. Further-
more, the discriminator significantly enhances the quality of
the generated speech, resulting in a substantial improvement
in emotion recognition. The figure reveals that the speaking
styles transferred by EmoAug effectively enrich the emotion
expression on prosody and greatly enhance SER performance.

Fig. 2: The effect of different augmentation times on SER when
training EmoAug with or without the discriminator.

In addition, we also visualize the original and generated
mel-spectrograms. As shown in Fig. 3, in comparison to
the original audio, EmoAug successfully transfers different
speaking styles to the source audio while keeping the se-
mantic information invariant. By listening to the generated
audio, we found that EmoAug can effectively augment the
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Transcriptions: I am not in the least bit drunk.

Transcriptions: What do you want me to do?  You're old enough to know your own mind.

earlier stress later stress varying intonation higher emotion intensity

Fig. 3: A comparison of original and augmented mel-spectrograms with the angry emotion where the styles are transferred from the same
speaker with the same emotion as the original audio. Different stress patterns, rhythms and intonations are shown in the augmented audio.

expression of source emotion by varying stress positions, in-
tonations or even the intensity of emotions. We recommend
readers to listen to the audio samples on our demo website.

4.2. Model Performance with and without Augmentation

We select the utterances from session one (two speakers) of
IEMOCAP and visualize the embeddings from the penulti-
mate layer of the model trained with only original data and
with four times augmented data. As depicted in Fig. 4 (a), the
model trained only with original audio struggles to clearly
separate the representations of neutral, sad and happy emo-
tions. However, as shown in Fig. 4 (b), EmoAug successfully
transfers speaking styles and enriches sample diversity, result-
ing in more precise and distinguishable model representations
when trained with augmented audio.

(a) Original audio (b) Four times augmented audio

Fig. 4: Comparison of models trained with original data (a) and aug-
mented data (b), visualized with t-SNE.

4.3. Comparison with Previous Work

We compare our methods with previous supervised and self-
supervised models in Table 1. We also reimplement and aug-
ment IEMOCAP with emotional voice conversion models,
CycleGAN [21] and StarGAN [6]. We reproduce the Copy-
Paste [22] method by randomly concatenating two emotional
utterances with the same emotion, which corresponds to the
Same Emotion CopyPaste (SE-CP) setting in [22]. Addition-
ally, we perturb speech on speed with the factors of 0.9, 1.0
and 1.1. Pitch shift is adopted by randomly raising or lower-
ing 2 semitones on each audio. Table 1 shows that EmoAug
outperforms previous methods by a big margin.

Table 1: Results of SER on IEMOCAP dataset with 5-fold cross-
validation and leave-one-session-out settings.

Methods WA UA
Supervised Methods
CNN-ELM+STC attention [18] 61.32 60.43
IS09-classification [19] 68.10 63.80
Co-attention-based fusion [20] 69.80 71.05
Self-supervised Methods
Data2Vec Large [23] 66.31 -
WavLM Large [24] 70.62 -
HuBERT Large 70.24 71.13
Emotional Voice Conversion Methods
HuBERT Large + CycleGAN [21] 71.57 72.02
HuBERT Large + StarGAN [6] 71.51 72.13
Data Augmentation Methods
VTLP [25] 66.90 65.30
HuBERT Large + CopyPaste 70.79 71.35
HuBERT Large + Speed Perturbation 70.35 71.19
HuBERT Large + Pitch Shift 70.47 71.24
Our Methods
HuBERT Large + EmoAug 72.66 73.75

5. CONCLUSION

We introduce EmoAug to tackle the challenges of data
scarcity and data imbalance in SER. EmoAug is composed of
a semantic encoder, a paralinguistic encoder, and a decoder
to reconstruct speech in an unsupervised manner. Speaking
style transfer is performed by altering the input of the par-
alinguistic encoder. Experimental results on the IEMOCAP
dataset suggest that EmoAug can effectively enrich emotion
expressions with different stress patterns, rhythms and inten-
sities, and achieve superior performance in SER compared to
state-of-the-art supervised and self-supervised methods.
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