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A B S T R A C T

Weakly supervised referring expression comprehension (REC) aims to ground target objects in images according
to given referring expressions, while the mappings between image regions and referring expressions are
unavailable during the model training phase. Existing models typically reconstruct the multimodal relationships
to ground targets by utilizing off-the-shelf information, and ignore to further exploit helpful knowledge
to enhance the model performance. To address this issue, we propose an adaptive knowledge distillation
architecture to enrich the predominant pattern of weakly supervised REC and transfer the target-aware and
interaction-aware knowledge from a pre-trained teacher grounder to enhance the grounding performance of
the student model. Specifically, in order to encourage the teacher to impart more reliable knowledge, we
present a Knowledge Confidence-Based Adaptive Temperature (KCAT) learning approach to learn optimal
temperatures to transfer the target-aware and interaction-aware knowledge with higher prediction confidence.
Moreover, to urge the student to absorb more helpful knowledge, we introduce a Student Competency-Based
Adaptive Weight (SCAW) learning strategy to dynamically integrate the distilled target-aware and interaction-
aware knowledge to enhance the student’s grounding certainty. We conduct extensive experiments on three
benchmark datasets, RefCOCO, RefCOCO+, and RefCOCOg, to validate the proposed approach. Experimental
results demonstrate that our approach achieves superior performance over state-of-the-art methods with
the aid of adaptive knowledge distillation and integration. The code and trained models are available at:
https://github.com/dami23/WREC_AdaptiveKD.
1. Introduction

Referring expression comprehension (REC) locates target objects in
images according to the given referring expressions by comprehensively
understanding the context in images and expressions. REC bridges
object detection and natural language understanding, and can be ap-
plied to multiple tasks, such as image retrieval [1,2], visual question
answering [3,4], visual language navigation [5,6], and human–robot
interaction [7–9].

Benefiting from the accessibility of a large volume of manually an-
notated datasets, existing supervised-based approaches achieve promis-
ing grounding accuracy. The dataset collection requires detailed anno-
tations of bounding boxes, referring expressions, and the corresponding
mapping between each bounding box and referring expressions. How-
ever, building such datasets is time consuming and laborious. In order
to reduce the labor intensity of manual annotations and expand the
applications of REC in practical scenarios, plenty of weakly supervised
methods [10–13] have been proposed.
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In contrast to fully supervised REC, which learns the image region-
expression alignment by utilizing the annotated mapping between im-
age regions and referring expressions, weakly supervised REC does not
require cross-modal mapping annotations during the model training
stage, and the unavailability of the cross-modal mapping relationships
between regions and expressions poses challenges for weakly super-
vised REC. Thus, to locate target regions, the core of weakly supervised
REC lies in exploiting valuable information from visual images and tex-
tual expressions to facilitate the cross-modal mapping reconstruction.
Existing models propose various strategies to build the corresponding
relationships. For instance, Liu et al. [10] introduce an Adaptive Re-
construction Network (ARN) to reconstruct the mapping by combining
the subjection, location, and context features in visual images and tex-
tual expressions. Liu et al. [11] present a Knowledge-guided Pairwise
Reconstruction Network (KPRN) to learn the correspondence between
the detected image regions and expressions. Sun et al. [12] propose a
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Discriminative Triad Matching and Reconstruction (DTMR) framework
to learn the relationship between image regions and expressions by
utilizing the parsed linguistic structures. Most surprisingly, the heuristic
rule-based approach achieves state-of-the-art (SOTA) performance on
the weakly supervised REC task. Zhang et al. [13] develop counterfac-
tual transformation schemes to optimize the visual region and textual
expression alignments. However, these methods mainly utilize off-the-
shelf information to reconstruct the relationships, such as semantics in
deep visual features [10,11], linguistic structure [12], and ignore to
further explore helpful knowledge to boost grounding performance.

Thus, one natural question posed on weakly supervised REC could
be: is there a more effective strategy to exploit and utilize reliable
and helpful information to learn a better grounding model? Inspired
by the salient attribute of knowledge distillation [14], we employ
knowledge distillation as a unique scheme to enrich the predominant
pattern of weakly supervised REC and facilitate the model’s grounding
performance. In other words, we leverage the knowledge transferred
from a pre-trained teacher model as high-quality pseudo-ground-truth
labels to guide the training process of the student model and bolster its
grounding performance.

Moreover, according to the styles of referring expressions in the
benchmark datasets RefCOCO [15], RefCOCO+ [15], and RefCOCOg
[16], the description information of target objects comprises the target
attributes, the interaction information between the image regions, and
the combination of the attribute description and interaction infor-
mation. Namely, the target-aware and interaction-aware information
in expressions play critical roles in disambiguating target objects. In
addition, existing methods demonstrate that transferring knowledge
from multiple teachers [17] or multi-level knowledge from a teacher
model [18] significantly improves the performance of the student
model. Inspired by these observations, we explore and make full use of
the target-aware and interaction-aware prediction information learned
by the teacher model and transfer them from the teacher to boost the
grounding performance of the student.

Unlike the existing knowledge distillation approaches that utilize
an identical temperature hyper-parameter during the knowledge dis-
tillation process, we propose a Knowledge Confidence-Based Adaptive
Temperature (KCAT) learning approach that learns optimal tempera-
tures to urge the teacher model to transfer more reliable knowledge to
the student. Moreover, because the target-aware and interaction-aware
knowledge have complementary semantic strengths for grounding tar-
get objects, we distill them to promote student learning from multiple
perspectives of the teacher model. On the other hand, to avert intro-
ducing information redundancy and to encourage the student to absorb
more helpful knowledge, we further present a Student Competency-
Based Adaptive Weight (SCAW) learning approach to dynamically in-
tegrate the distilled target-aware and interaction-aware knowledge to
facilitate the student’s prediction certainty.

We conduct extensive experiments and ablation studies on bench-
mark datasets RefCOCO [15], RefCOCO+ [15], and RefCOCOg [16] to
evaluate our proposed framework. The proposed approach significantly
improves the grounding performance of weakly supervised REC and
outperforms SOTA models on the validation and testB sets of RefCOCO,
RefCOCO+, and RefCOCOg.

In summary, the main contributions of this paper are summarized
as follows:

∙ We propose to enhance the predominant grounding pattern of
weakly supervised REC with adaptive knowledge distillation, and
employ the transferred knowledge as the high-quality pseudo-
ground-truth labels to boost the grounding performance of the
student model.

∙ We present an adaptive temperature learning approach to learn
optimal temperatures according to the confidence of the dis-
tilled knowledge, and introduce an adaptive weight learning strat-
egy to dynamically assign weights to fuse the target-aware and
interaction-aware knowledge based on the student prediction
2

certainty.
∙ We conduct extensive experiments and ablation studies on the
benchmark datasets, and our proposed approach outperforms
SOTA grounding performance on several splits of the benchmarks.

2. Related work

2.1. Supervised referring expression comprehension

Supervised REC aims to locate target objects in images by jointly
understanding the semantics of the images and the given referring ex-
pressions, where the relationship annotations between region proposals
and referring expressions are available during the training phase. The
pioneering methods of REC [15,16] directly locate target objects by
calculating the matching score between the visual features of image
regions and the text representations of the referring expressions. On this
basis, Hu et al. [19] and Yu et al. [20] propose modular frameworks
to improve the grounding performance. In order to better capture the
crucial relationship information between visual regions and textual
expressions, graph neural network-based methods [21–23] represent
the images and referring expressions in the form of graphs, and ground
target objects by aligning the generated multimodal graphs. According
to the target object grounding pattern, these approaches can be sorted
as the two-stage paradigm. Specifically, these models first adopt a pre-
trained object detection model, such as Faster R-CNN [24], to detect
and extract the visual features of the candidates, and then ground target
objects by calculating the matching score between the visual features
and the expression text representations. To relieve the burden of object
detection and improve the inference speed of the two-stage approaches,
one-stage models are considered an alternative orientation.

Most one-stage methods directly fuse the referring expression text
representations with the extracted visual features to locate target ob-
jects. For instance, Yang et al. [25] directly integrate the text repre-
sentations into the object detection model YOLO v3 [26] to predict the
bounding boxes of the target objects. The newly proposed one-stage
models introduce multiple multimodal feature fusion tactics to improve
the target grounding accuracy. For example, text semantics-aware ap-
proaches [27–29] emphasize the role of text semantics to obtain unique
visual representations for candidate regions, Luo et al. [30] reduce the
difference between the two modes of text and vision, Sun et al. [31]
strengthen the reasoning clues of target objects by leveraging attention-
based multimodal data fusion, and Huang et al. [32] propose Landmark
Feature Convolution to describe the relationship between referring
expressions and target objects. Although the one-stage models avoid
the dependence on the pre-trained candidate region generation models,
they require predefined anchors and are vulnerable to the inconsistency
of modal information.

With the prosperity of pre-trained models in multimodal tasks,
researchers investigate to improve the performance of one-stage models
by introducing BERT [33] into REC, such as VL-BERT [34], TransVG
[35], MDETR [36], Word2Pix [37], and OFA [38]. These methods
utilize Transformer [39] to jointly learn contextualized representations
for image regions and expressions, and they aim to facilitate REC by
learning the generalizable representations from large-scale data. Albeit
these models achieve promising results on the benchmark datasets, they
demand enormous computational power and a longer training time to
complete their training.

2.2. Weakly supervised referring expression comprehension

Weakly supervised REC methods train models without the mapping
annotations between region proposals and corresponding referring ex-
pressions. In this mode, Rohrbach et al. [40] first propose to ground
target objects by reconstructing queries via the calculated attention
scores between image regions and queries. Subsequently, Niu et al. [41]
take advantage of the reciprocity between the candidate region and
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the referring expression to model their relationship, and Liu et al. [10]
integrate the matching score between each region proposal and refer-
ring expression with the contextualized feature of the region proposal
to rebuild the cross-modal mappings. Based on [10], Liu et al. [42]
propose to filter unrelated candidate proposals via an entity enhance-
ment strategy to improve the grounding accuracy. Additionally, Liu
et al. [11] build the mappings by leveraging prior knowledge acquired
from pre-trained Faster RCNN [24] and ground target objects through
the learned pairwise matching score, and Sun et al. [12] locate target
objects via triad-level matching learning and reconstruction.

Unlike these reconstruction-based methods, Zhang et al. [13] utilize
counterfactual results to facilitate the alignment between visual fea-
tures and textual representations. Sun et al. [43] present a Cycle-free
model and develop a region describer to generate a textual descrip-
tion for each region proposal, and grounds targets via the semantic
similarity between the acquired region descriptions and the referring
expressions. Jin et al. [44] introduce an anchor-based contrastive learn-
ing scheme to align the regions and expressions, and the proposed
approach is employed as a teacher model to generate pseudo-labels to
improve the performance of common REC models.

In contrast to the methods mentioned above, we focus on devising
a novel framework that can enrich the prevalent pattern of the weakly
supervised REC with knowledge distillation and aim to explore and
transfer helpful knowledge to achieve a better grounding model.

2.3. Knowledge distillation

Knowledge distillation, initially introduced in [14], transfers knowl-
edge from a pre-trained teacher model to a student model to promote
the student model’s performance. In recent years, plenty of knowledge
distillation methods have been proposed to transfer different kinds of
knowledge, including output probability [14,45,46], intermediate layer
representations [47–50], inter-class correlation [51,52], and knowledge
learned in earlier training epochs [53–55]. Studies on output probabil-
ity distillation aim to optimize the student training phase with learned
prediction logits, intermediate layer-based methods transfer features
from the teacher to enhance the student, inter-class correlation-related
approaches distill the relationship learned by the teacher to the student,
and models distilled knowledge from earlier training epochs investi-
gate to obtain richer supervision information from the teacher. These
approaches focus on distilling one type of knowledge from a single pre-
trained teacher. In contrast, we attempt to transfer multiple kinds of
knowledge with complementary properties to enhance the performance
of the student, and we also investigate to transfer knowledge with
higher confidence by learning dynamic temperatures.

To facilitate student learning from multiple perspectives of the
teacher, some methods distill multi-level knowledge or transfer knowl-
edge from multiple teachers [17,18,56,57]. Instead of equally utilizing
ensemble knowledge or distilling the average of the ensemble knowl-
edge from the teacher, various strategies have been introduced to
address the importance of multi-level knowledge for training students.
For instance, Du et al. [58] distill the ensemble knowledge through
a multi-objective optimization strategy, Liu et al. [59] calculate the
fusing weight via latent representation, Kwon et al. [60] employ the
entropy of the teacher’s labels to obtain the fusing weight, and Li
et al. [61] emphasize the intra-class variance retained by the teacher
model to enhance the performance of the student.

The most relevant contribution of our work is the development of
adaptive weight learning strategies for distilling ensemble knowledge
from multiple teachers. Unlike the existing adaptive and dynamic
knowledge distillation approaches, we aim to distill knowledge with
higher confidence to the student via adaptive temperature and en-
courage the student to digest more reliable knowledge based on the
student’s competency.
3

3. Problem formulation and teacher grounder

3.1. Problem formulation

Given an image 𝐼 with 𝑀 regions of interest (RoIs) 𝑂 = {𝑜𝑖}𝑀𝑖=1
and a referring expression 𝐸, weakly supervised REC aims to locate
the target region 𝑜∗ ∈ 𝑂 by learning the relationship between 𝐸 and all
region candidates 𝑜𝑖. Specifically, we aim to learn a model to ground 𝑜∗

via reconstructing the mapping between 𝑜𝑖 and 𝐸, and select the region
candidate with the maximum matching score as the target object 𝑜∗:

𝑜∗ = arg max
𝑜𝑖∈𝑅

G(𝑜𝑖, 𝐸), (1)

where G(⋅, ⋅) denotes the mapping reconstruction operation.

3.2. Textual and visual representation encoding

Textual Feature Encoding. To extract the textual representations,
we first employ the natural language parsing method introduced in
DTMR [12] to parse referring expressions. DTMR parses expressions
into discriminative triads, where each triad comprises the discrimina-
tive description information for the target object, the related subject,
and the relationship between the target object and the related subject.
Formally, each expression 𝐸 is parsed into multiple triads, and each
discriminative triad includes a target unit 𝑢𝑡, a subject unit 𝑢𝑠, and
a relationship unit 𝑢𝑟. We then adopt GloVe [62] to extract textual
embeddings 𝑒𝑡, 𝑒𝑠, 𝑒𝑟 ∈ R1 × 300 for 𝑢𝑡, 𝑢𝑠, and 𝑢𝑟 respectively.

Visual Feature Encoding. For the given images, we adopt Faster
R-CNN [24] to detect region candidates 𝑜𝑖 for each image 𝐼 , and utilize
ResNet-101 [63] to extract a visual feature 𝑓 𝑖

𝑣 ∈ R7 × 7 × 2048 from the
-th layer of the ResNet-101 with RoI pooling [24] as the visual feature
epresentation of each 𝑜𝑖.

To explore the spatial relation between the region candidates, fol-
owing [15], we utilize a 5-dimensional vector 𝑓 𝑖

𝑠𝑝 = [ 𝑥𝑡𝑙
𝑊 , 𝑦𝑡𝑙

𝐻 , 𝑥𝑏𝑟
𝑊 , 𝑦𝑏𝑟

𝐻 ,
𝑤⋅ℎ
𝑊 ⋅𝐻 ] to encode the absolute location feature for each 𝑜𝑖, where 𝑥𝑡𝑙, 𝑦𝑡𝑙,
𝑏𝑟, 𝑦𝑏𝑟 represent the top left and bottom right positions, respectively.

and ℎ are the width and height of the region candidate, 𝑊 and 𝐻
represent the width and height of the image 𝐼 , and 𝑤⋅ℎ

𝑊 ⋅𝐻 is the relative
size of 𝑜𝑖 in image 𝐼 . The spatial vector 𝑓 𝑖

𝑠𝑝 is then projected to a
vector 𝑓 𝑖

𝑠𝑝 ∈ R1 × 512, which is combined with 𝑓 𝑖
𝑣 as the input for the

reconstruction of the correlated referring expressions.

3.3. Teacher grounder

In order to transfer the target-aware and interaction-aware knowl-
edge, we pre-train a teacher grounder at first. For each region proposal
pair (𝑜𝑖, 𝑜𝑗), we learn the matching score between the region candidate
𝑜𝑖 and the parsed target element 𝑢𝑡 through a pairwise attention module

𝑠𝑡𝑖 = Sof tmax(𝑤𝑡
2𝛹 (𝑤𝑡

1𝛹 (𝑓 𝑖
𝑣 ⊕ 𝑒𝑡) + 𝑏𝑡1) + 𝑏𝑡2), (2)

where 𝑤𝑡
1, 𝑏

𝑡
1, 𝑤

𝑡
2, 𝑏

𝑡
2 are learnable parameters, 𝛹 represents the ReLU

activation function, and ⊕ denotes the concatenation operation. The
hierarchical pairwise attention learns the matching score using the
syntax structure of the expressions and thus can further promote target
grounding.

Similarly, we model the matching score between (𝑜𝑖, 𝑜𝑗) and the
subject element 𝑢𝑠 and the discriminative relationship element 𝑢𝑟 via

𝑠𝑠𝑗 = Sof tmax(𝑤𝑠
2𝛹 (𝑤𝑠

1𝛹 (𝑓 𝑗
𝑣 ⊕ 𝑒𝑠) + 𝑏𝑠1) + 𝑏𝑠2),

𝑠𝑟𝑖,𝑗 = Sof tmax(𝑤𝑟
2𝛹 (𝑤𝑟

1𝛹 (𝑓𝑣 ⊕ 𝑒𝑟) + 𝑏𝑟1) + 𝑏𝑟2),
(3)

where 𝑓 𝑗
𝑣 represents the visual feature of the related subject 𝑜𝑗 , 𝑓𝑣 =

𝑓 𝑖 ⊕ 𝑓 𝑖 ⊕ 𝑓 𝑗 ⊕ 𝑓 𝑗 and 𝑓 𝑖 is the projected spatial vector of 𝑜 .
𝑣 𝑠𝑝 𝑣 𝑠𝑝 𝑠𝑝 𝑗
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For reconstructing the triad elements via the extracted visual rep-
resentations, we first compute the weighted sum of the regions’ visual
features and the associated triad element matching scores as follows:

ℎ𝑡 =
𝑁
∑

𝑖=1
𝑠𝑡𝑖𝑓

𝑖
𝑣, ℎ𝑠 =

𝑁
∑

𝑗=1
𝑠𝑠𝑗𝑓

𝑗
𝑣 , ℎ𝑟 =

𝑁
∑

𝑖,𝑗=1
𝑠𝑟𝑖,𝑗𝑓𝑣. (4)

We then utilize a Multilayer Perceptron (MLP) to learn the linguistic
embeddings responding to the parsed triad elements via

𝑒𝑡 = MLP(ℎ𝑡), 𝑒𝑠 = MLP(ℎ𝑡), 𝑒𝑟 = MLP(ℎ𝑟). (5)

To ground the target 𝑜∗, we first calculate the triad-level attention
score 𝐴𝑡𝑡𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖) and select the region candidate with the maximum
𝐴𝑡𝑡𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖) as the target 𝑜∗. The grounding process can be formulated
as
𝐴𝑡𝑡𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖) = 𝛾1𝑠

𝑡
𝑖 + 𝛾2𝑠

𝑠
𝑗 + 𝛾3𝑠

𝑟
𝑖,𝑗 ,

𝑜∗ = arg max
𝑜𝑖∈𝑅

𝐴𝑡𝑡𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖),
(6)

where 𝛾1, 𝛾2 and 𝛾3 are the weighting hyper-parameters to imbalance
the impact of each attention score to the overall matching score. 𝛾1𝑠𝑡𝑖
is the target prediction score and directly contributes to locating the
target objects. (𝛾2𝑠𝑠𝑗 + 𝛾3𝑠𝑟𝑖,𝑗) denotes the interaction prediction informa-
tion between image regions described in expressions and is employed
as an important auxiliary information of 𝛾1𝑠𝑡𝑖 to disambiguate the target
regions.

We train the teacher model by minimizing the mean squared er-
ror between the parsed triad element textual representations and the
reconstructed triad element embeddings, and the final reconstruction
loss 𝐿𝑊𝑅𝐸𝐶 is defined as

𝐿𝑡 = ‖

‖

𝑒𝑡 − 𝑒𝑡‖‖
2
2 , 𝐿𝑠 = ‖

‖

𝑒𝑠 − 𝑒𝑠‖‖
2
2 , 𝐿𝑟 = ‖

‖

𝑒𝑟 − 𝑒𝑟‖‖
2
2 ,

𝐿𝑊𝑅𝐸𝐶 = 𝜇1𝐿𝑡 + 𝜇2𝐿𝑠 + 𝜇3𝐿𝑟,
(7)

where 𝜇1, 𝜇2, 𝜇3 are the weights wo balance the impact of 𝐿𝑡, 𝐿𝑠, 𝐿𝑡.

4. Adaptive knowledge distillation and integration

The proposed adaptive knowledge distillation and integration ap-
proach for weakly supervised REC aims to build a novel training
strategy, which regards the target- and interaction-related prediction
information learned by the pre-trained teacher grounder as high-quality
pseudo-labels to guide the training process of the student, and to further
boost the student’s grounding performance. In order to encourage
the teacher to transfer more reliable knowledge to the student, we
propose a Knowledge Confidence-Based Adaptive Temperature (KCAT)
learning module to adaptively learn optimal temperatures during the
knowledge distillation. To encourage the student to absorb more help-
ful knowledge, we introduce a Student Competency-Based Adaptive
Weight (SCAW) learning module to dynamically integrate the target-
aware and the interaction-aware knowledge to enhance the student’s
prediction certainty. The proposed architecture diagram is shown in
Fig. 1.

4.1. Overview of knowledge distillation

For transferring the teacher’s knowledge to the student model, we
employ the knowledge distillation method introduced in [14] that
distills the softened logits prediction knowledge from the teacher with
Kullback–Leibler (KL) divergence loss. We denote 𝑃 = {𝑝𝑖}𝑀𝑖=1 as the
output logits of the models, where 𝑀 is the number of the RoIs of given
images. The softened prediction information is acquired by function
𝛷(𝑝𝑖) = Sof tmax(𝑝𝑖). For the output logit vector 𝑃 𝑇 of the teacher, and
the student logit vector 𝑃 𝑆 , the objective of knowledge distillation is
given by

𝐿𝐾𝐷 = KL(𝛷(𝑃 𝑇 ∕𝜏) ∥ 𝛷(𝑃 𝑆∕𝜏)), (8)
4

where 𝜏 denotes the temperature hyper-parameter.
4.2. Target-aware knowledge distillation

The target-aware prediction information 𝛾1𝑠𝑡𝑖 directly contributes to
grounding the target regions. Thus, we distill the target-aware predic-
tion knowledge learned by the teacher to facilitate the target-related
prediction information learning during student training. Specifically,
we first reactivate the target-aware prediction knowledge 𝐾𝑇

𝑇 𝑎𝑟 = 𝛾1𝑠𝑡𝑖
learned by the teacher model and distill the softened target-aware
prediction knowledge via

𝐿𝑇 𝑎𝑟
𝐾𝐷 = KL(𝛷(𝐾𝑇

𝑇 𝑎𝑟∕𝜏𝑇 𝑎𝑟) ∥ 𝛷(𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖)∕𝜏)), (9)

where

𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖) = 𝛾1𝑠
𝑡,𝑆
𝑖 + 𝛾2𝑠

𝑠,𝑆
𝑗 + 𝛾3𝑠

𝑟,𝑆
𝑖,𝑗 (10)

is the triad-level reconstruction score learned by the student model.
The overall loss of the target-aware knowledge distillation is formu-

lated as

𝐿𝑆
𝑊𝑅𝐸𝐶 =

∑

𝐴∈{𝑡,𝑠,𝑟}

‖

‖

‖

𝑒𝐴 − 𝑒𝑆𝐴
‖

‖

‖

2

2
,

𝐿𝑇 𝑎𝑟 = 𝐿𝑆
𝑊𝑅𝐸𝐶 + 𝜆𝐿𝑇 𝑎𝑟

𝐾𝐷,
(11)

where 𝑒𝑆𝐴, 𝐴 ∈ {𝑡, 𝑠, 𝑟} denotes the triad element embeddings recon-
structed by the student model, and 𝜆 represents the trade-off parameter
to balance the importance of the knowledge distillation loss and the
triad-level reconstruction loss for the student training.

4.3. Interaction-aware knowledge distillation

In order to ground target objects according to the given referring
expressions, the interaction-related prediction information between re-
gion candidates described in the expressions also plays a key role
in obtaining discriminative cues for grounding targets. Thus, we also
re-attend and transfer the interaction-aware prediction information
learned by the teacher to enrich the grounding proofs for the student
model. Concretely, we utilize the interaction-aware prediction knowl-
edge 𝐾𝑇

𝐼𝑛𝑡𝑒𝑟 = 𝛾2𝑠𝑠𝑗 + 𝛾3𝑠𝑟𝑖,𝑗 and distill the softened interaction-aware
knowledge by

𝐿𝐼𝑛𝑡𝑒𝑟
𝐾𝐷 = KL(𝛷(𝐾𝑇

𝐼𝑛𝑡𝑒𝑟∕𝜏𝐼𝑛𝑡𝑒𝑟) ∥ 𝛷(𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖)∕𝜏)). (12)

The loss of the interaction-aware knowledge distillation is defined
as

𝐿𝐼𝑛𝑡𝑒𝑟 = 𝐿𝑆
𝑊𝑅𝐸𝐶 + 𝜆𝐿𝐼𝑛𝑡𝑒𝑟

𝐾𝐷 . (13)

4.4. Knowledge confidence-based adaptive temperature learning

During the knowledge distillation, temperature 𝜏 balances the gro-
und truth label knowledge and the softened prediction knowledge
learned by the teacher model. A fixed temperature is not necessarily the
optimal value for distilling knowledge in the whole training process,
and it may also impede the helpful knowledge distillation from the
teacher to the student. On the other hand, if the teacher obtains
unreliable grounding predictions on some region-expression pairs, di-
rectly distilling the knowledge with low confidence will hinder the
grounding performance of the student. Moreover, Liu et al. [64] demon-
strate that temperature scaling on the teacher can bring about more
calibrated predictions. To achieve a more effective knowledge distilla-
tion, we propose a Knowledge Confidence-based Adaptive Temperature
(KCAT) learning approach to dynamically learn optimal temperatures
for distilling more reliable knowledge from the teacher model.

According to [60], the entropy of the teacher output logit vector
can be deemed a confidence indicator. In other words, a higher entropy
implies that the teacher has more confidence in specific samples, while
a lower entropy indicates a higher prediction uncertainty of the teacher.
Thus, we utilize the entropy of the logits of the knowledge learned

by the teacher as a proxy to assess the confidence of each kind of
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Fig. 1. Architecture diagram of the proposed adaptive knowledge distillation and integration for weakly supervised REC. (a) Teacher Grounder, which locates target objects in
images by triad-level matching and reconstruction. (b) Training of the student model with adaptive knowledge distillation and integration. The proposed framework comprises a
Knowledge Confidence-Based Adaptive Temperature (KCAT) learning module and a Student Competency-Based Adaptive Weight (SCAW) learning module. KCAT learns optimal
temperatures to encourage the teacher to impart more reliable knowledge to the student model. SCAW urges the student to absorb more helpful knowledge by dynamically
fusing the target-aware knowledge and the interaction-aware knowledge to boost the prediction certainty of the student. 𝐾𝑇

𝑇 𝑎𝑟 and 𝐾𝑇
𝐼𝑛𝑡𝑒𝑟 denote the target-aware knowledge and

the interaction-aware knowledge learned by the teacher grounder. 𝐿𝑇 𝑎𝑟′
𝐾𝐷 and 𝐿𝐼𝑛𝑡𝑒𝑟′

𝐾𝐷 represent the target-aware knowledge distillation loss and the interaction-aware knowledge
distillation loss with adaptive temperatures. 𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖) is the triad-level attention score learned by the student model, and 𝐿𝑆

𝑊𝑅𝐸𝐶 indicates the triad-level reconstruction loss. 𝜂
is the adaptive weight learned by SCAW to balance the contribution of 𝐿𝑇 𝑎𝑟′

𝐾𝐷 and 𝐿𝐼𝑛𝑡𝑒𝑟′
𝐾𝐷 for the student model training. 𝐿𝐹

𝐴𝐾𝐷 is the final adaptive knowledge distillation loss for
training the student model.
knowledge. Specifically, we learn the adaptive temperatures for the
target-aware and the interaction-aware knowledge distillation by

𝐶𝑇 𝑎𝑟 = Entropy(𝐾𝑇
𝑇 𝑎𝑟) = −

𝑀
∑

𝑖=1
𝑘𝑇𝑇 𝑎𝑟,𝑖𝑙𝑜𝑔(𝑘

𝑇
𝑇 𝑎𝑟,𝑖),

𝜏′𝑇 𝑎𝑟 = Sigmoid(𝜑(𝐶𝑇 𝑎𝑟)),

(14)

and

𝐶𝐼𝑛𝑡𝑒𝑟 = Entropy(𝐾𝑇
𝐼𝑛𝑡𝑒𝑟) = −

𝑀
∑

𝑖=1
𝑘𝑇𝐼𝑛𝑡𝑒𝑟,𝑖𝑙𝑜𝑔(𝑘

𝑇
𝐼𝑛𝑡𝑒𝑟,𝑖),

𝜏′𝐼𝑛𝑡𝑒𝑟 = Sigmoid(𝜑(𝐶𝐼𝑛𝑡𝑒𝑟)),

(15)

where 𝜑 denotes MLP employed to learn the dynamic temperatures.
Accordingly, the target-aware knowledge distillation loss (Eq. (9))

and the interaction-aware knowledge distillation loss (Eq. (12)) with
the learned adaptive temperatures 𝜏′𝑇 𝑎𝑟 and 𝜏′𝐼𝑛𝑡𝑒𝑟 are reformulated to

𝐿𝑇 𝑎𝑟′
𝐾𝐷 = KL(𝛷(𝐾𝑇

𝑇 𝑎𝑟∕𝜏
′
𝑇 𝑎𝑟) ∥ 𝛷(𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖)∕𝜏)), (16)

and

𝐿𝐼𝑛𝑡𝑒𝑟′
𝐾𝐷 = KL(𝛷(𝐾𝑇

𝐼𝑛𝑡𝑒𝑟∕𝜏
′
𝐼𝑛𝑡𝑒𝑟) ∥ 𝛷(𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖)∕𝜏)). (17)

4.5. Student competency-based adaptive weight learning

In order to guarantee that the student learns knowledge from mul-
tiple perspectives, we transfer the target-aware and interaction-aware
knowledge to promote the grounding performance of the student.
Because of the different patterns used to describe specific targets in re-
ferring expressions, simply combining the target-aware and interaction-
aware knowledge will introduce information redundancy and may
discourage the student from learning more helpful knowledge and
5

may bring information redundancy during knowledge distillation. Ad-
ditionally, it is unnecessary to distill the knowledge mastered by the
student with a high prediction certainty. Hence, we present a Student
Competency-Based Weight (SCAW) learning module to dynamically
adjust the weight to integrate the target-aware and interaction-aware
knowledge, so that the student can effectively inherit the knowledge
from the teacher.

Better student competency indicates that the student acquires higher
prediction certainty on specific samples. Motivated by the uncertainty
sampling policy in Active Learning [65], we employ entropy to mea-
sure the uncertainty of the instances and informative samples. Lower
entropy of specific instances denotes higher prediction uncertainty on
the current training samples. Thus, we utilize the student prediction
uncertainty as the proxy to represent the competency of the student,
and adopt the entropy of the student output logit vector to learn
the adaptive weight for transferring the target-aware and interaction-
aware knowledge. Concretely, we learn the competency-based adaptive
weight via

𝑉 = Entropy(𝛷(𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖))),

𝜂 = −𝑉 ∕
𝑀
∑

𝑖=1
𝑎𝑡𝑡𝑖,𝑐 𝑙𝑜𝑔(𝑎𝑡𝑡𝑖,𝑐 ),

(18)

where 𝑎𝑡𝑡𝑖,𝑐 denotes the column vector of 𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖), and 𝑐 is the
dimension of 𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖).

We transfer the target-aware and interaction-aware knowledge with
the learned adaptive weight 𝜂 by

𝐿𝑇 𝐼
𝐾𝐷 = 𝜂𝐿𝑇 𝑎𝑟

𝐾𝐷 + (1 − 𝜂)𝐿𝐼𝑛𝑡𝑒𝑟
𝐾𝐷 ,

𝐿𝐹
𝐾𝐷 = 𝐿𝑆

𝑊𝑅𝐸𝐶 + 𝜆𝐿𝑇 𝐼
𝐾𝐷.

(19)

Finally, we integrate the dynamic temperature learned by KCAT

with the adaptive weight obtained by SCAW to distill more reliable
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Algorithm 1: Adaptive Knowledge Distillation and Integra-
tion for Weakly Supervised REC

Input: image 𝐼 and expression 𝐸;
pre-trained teacher grounder 𝑇 ;
total iteration number 𝑁 = 150,000;
current iteration 𝑖 and training step 𝑘 = 𝑖/10,000;
temperature hyper-parameter 𝜏 = 1;
trade-off hyper-parameter 𝜆;
EMA decay weight 𝛿 = 0.9997.

Output: student model 𝑆 with parameters 𝜃𝑆 .

1 while i < N do
2 for I, E in dataloader do
3 𝛾1𝑠𝑡𝑖, 𝛾2𝑠

𝑠
𝑗 + 𝛾3𝑠𝑟𝑖,𝑗 = 𝑇 (𝐼 , 𝐸);

4 𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖) = 𝑆(𝐼 , 𝐸);
5 𝜏′𝑇 𝑎𝑟 ← Entropy(𝛾1𝑠𝑡𝑖); // Learn adaptive temperature for

the target-aware knowledge distillation using Eq. 14
6 𝜏′𝐼𝑛𝑡𝑒𝑟 ← Entropy(𝛾2𝑠𝑠𝑗 + 𝛾3𝑠𝑟𝑖,𝑗); // Learn adaptive

temperature for the interaction-aware knowledge
distillation using Eq. 15

7 𝐿𝑇 𝑎𝑟′
𝐾𝐷 = KL(𝛷(𝐾𝑇

𝑇 𝑎𝑟∕𝜏
′
𝑇 𝑎𝑟) ‖ 𝛷(𝑠∕𝜏)); // Compute

target-aware knowledge distillation loss with 𝜏′𝑇 𝑎𝑟
using Eq. 16

8 𝐿𝐼𝑛𝑡𝑒𝑟′
𝐾𝐷 = KL(𝛷(𝐾𝑇

𝐼𝑛𝑡𝑒𝑟∕𝜏
′
𝐼𝑛𝑡𝑒𝑟) ‖ 𝛷(𝑠∕𝜏)); // Compute

interaction-aware distillation loss with 𝜏′𝐼𝑛𝑡𝑒𝑟 using Eq.
17

9 𝜂 ← Entropy(𝐴𝑡𝑡𝑆𝑡𝑟𝑖𝑎𝑑 (𝑜𝑖)); // Learn competency-based
adaptive weight using Eq. 18

10 𝐿𝑇 𝐼
𝐾𝐷 = 𝜂𝐿𝑇 𝑎𝑟′

𝐾𝐷 + (1-𝜂)𝐿𝐼𝑛𝑡𝑒𝑟′
𝐾𝐷 ;

11 𝐿𝐹
𝐴𝐾𝐷 = 𝐿𝑆

𝑊𝑅𝐸𝐶 + 𝜆𝐿𝑇 𝐼
𝐾𝐷. // Compute final loss using

Eq. 20
12 end
13 𝜃𝑘𝑆 ← 𝛿𝜃𝑘−1𝑆 + (1 − 𝛿)𝜃𝑘𝑆 // Update student parameters using

EMA
14 end

knowledge from the teacher to boost the grounding certainty of the
student. The final training loss 𝐿𝐹

𝐴𝐾𝐷 of the proposed approach is
formulated as
𝐿𝑇 𝐼
𝐴𝐾𝐷 = 𝜂𝐿𝑇 𝑎𝑟′

𝐾𝐷 + (1 − 𝜂)𝐿𝐼𝑛𝑡𝑒𝑟′
𝐾𝐷 ,

𝐿𝐹
𝐴𝐾𝐷 = 𝐿𝑆

𝑊𝑅𝐸𝐶 + 𝜆𝐿𝑇 𝐼
𝐴𝐾𝐷.

(20)

Moreover, inspired by Mean Teacher [66] and its application in
REC [67], we employ EMA [66] to update the parameters of the student
and improve its training efficiency. The proposed adaptive knowledge
distillation approach is summarized in Algorithm 1.

5. Experiments

5.1. Datasets and metric

We train and validate the proposed framework on RefCOCO [15],
RefCOCO+ [15], and RefCOCOg [16]. The images of the three datasets
originate from the MSCOCO dataset [68].

RefCOCO includes 19,994 images with 142,210 expressions for
50,000 referents. We adopt the UNC split introduced by [15], which
divides RefCOCO into training, validation, testA, and testB sets. The
training set comprises 120,624 expressions for 42,404 objects in 16,994
images, and the validation includes 10,834 expressions for 3811 ob-
jects in 1500 images. In comparison, testA has 5657 expressions for
1975 objects in 750 person-centric images, and testB possesses 5095
object-centric expressions for 1810 objects in 750 images.

RefCOCO+ contains 19,992 images with 141,564 expressions for
49,856 referents. The split is the same as RefCOCO. The training parti-
6

tion contains 120,191 expressions for 42,278 objects in 16,992 images,
and the validation partition includes 10,758 expressions for 3,805
objects in 1500 images. Similar to the split in RefCOCO, testA has 5726
expressions for 1975 objects in 750 images, and testB comprises 4889
expressions for 1798 objects in 750 images. Compared to RefCOCO, the
expressions in RefCOCO+ pay more attention to describing the attribute
differences between objects.

RefCOCOg comprises 95,010 expressions for 25,799 images with
9,822 referents, and the average length of RefCOCOg referring expres-
ions is longer than those of RefCOCO and RefCOCO+ expressions. We
tilize the Google splits [16], which includes train and validation parti-
ions. The training split contains 85,474 expressions for 44,820 objects
n 21,149 images, and the validation split includes 9536 expressions
or 5000 objects in 4650 images.
Evaluation Metric. We utilize the Intersection over Union (IoU)

core widely employed in existing methods [12,15,19] to validate the
erformance of our proposed approach. We calculate the IoU score be-
ween the predicted image region and the ground truth. If the IoU score
xceeds 0.5, we select the predicted region as the correct grounding.

.2. Implementation details

We set the hyper-parameters for the experiments as follows. For the
eacher model training, we select 𝛾1 = 2 and 𝛾2 = 𝛾3 = 1 in Eq. (6) to
cquire the triad-level attention weight, as the target-aware attention
core directly serves to ground the targets. We set 𝜇1 = 𝜇2 = 𝜇3 =

in Eq. (7) to learn the reconstruction loss. During the knowledge
istillation and the student training, we adopt the same values of 𝛾1,
2, and 𝛾3 within the teacher model. In addition, we use 𝛿 = 0.9997 as
he EMA decay weight to update the student model parameters.

We adopt the Adam optimizer with an initial learning rate 1.26e−5
to train our model. We employ an iteration-based learning rate schedule
to decay the learning rate by 0.1 every 30,000 iterations. We train and
evaluate the models on one single NVIDIA RTX A6000 through a total
of 150,000 iterations.

5.3. Comparison with state-of-the-art

In order to demonstrate the effectiveness of the proposed frame-
work, we compare the grounding accuracy with SOTA weakly su-
pervised REC methods, including VC [41], ARN [10], KPRN [11],
IGN [13], EARN [42], DTMR [12], and Cycle-Free [43]. The compar-
ison results are reported in Table 1. All the listed approaches adopt
the ground truth bounding box to train their models. Apart from the
ground truth training, some listed models adopt different settings to
acquire their best grounding accuracy on the datasets. For example,
KPRN [11] utilizes 𝑠𝑜𝑓𝑡 + 𝑎𝑡𝑡𝑟 setting to achieve the best performance
on RefCOCO and RefCOCO+, and employs ℎ𝑎𝑟𝑑 + 𝑎𝑡𝑡𝑟 to obtain the
highest grounding accuracy on RefCOCOg.

We select the teacher model, SCAW, and SCAW+KCAT with weight
coefficient 𝜆 = 1 to compare with the SOTA approaches. As can be
observed from Table 1, our proposed approach achieves new SOTA
performance on several splits. Compared to the SOTA method Cycle-
Free [43], the grounding accuracy acquired by SCAW is 1.47% lower on
testA of RefCOCO. In contrast, the accuracy on testB split of RefCOCO
surpasses Cycle-Free by 1.73%, and the results on testA, testB, and
val of RefCOCO+ exceeds Cycle-Free by 0.93%, 0.59%, and 2.34%,
respectively. Compared to the results acquired by the SCAW+KCAT, the
accuracy on testB splits RefCOCO and RefCOCO+ outperforms Cycle-
Free by 3.28% and 3.50%. In addition, compared with the best result
of RefCOCOg [42], the grounding accuracy acquired by our approach
outperforms EARN by 2.63%. Besides, SCAW and SCAW+KCAT outper-
form SOTA grounding accuracy on several splits. These acquired results

indicate the effectiveness of our proposed approach.
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Table 1
Performance (Acc%) comparison with state-of-the-art approaches on RefCOCO, RefCOCO+, and RefCOCOg. The best grounding results are in
bold.

Approaches Settings RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val

VC [41]
w/o reg – 13.59 21.65 – 18.79 24.14 25.14

– – 17.34 20.98 – 23.24 24.91 33.79
w/o 𝛼 – 33.29 30.13 – 34.60 31.58 30.26

ARN [10]

L𝑎𝑑𝑝+L𝑎𝑡𝑡 33.07 36.43 29.09 33.53 36.40 29.23 33.19
L𝑙𝑎𝑛+L𝑎𝑑𝑝 33.60 35.65 31.48 34.40 35.54 32.60 34.50
L𝑙𝑎𝑛+L𝑎𝑡𝑡 38.05 35.27 36.47 34.51 34.40 36.12 39.62

L𝑙𝑎𝑛+L𝑎𝑑𝑝+𝐿𝑎𝑡𝑡 34.26 36.01 33.07 34.53 36.01 33.75 34.66

KPRN [11]

hard 35.04 34.74 36.53 35.10 32.75 36.76 35.44
hard+attr 34.93 33.76 36.98 35.31 33.46 37.27 38.37

soft 34.43 33.82 35.45 35.96 35.24 36.96 33.56
soft+attr 36.34 35.28 37.72 37.16 36.06 39.29 36.65

IGN [13] Base 31.05 34.39 28.16 31.13 34.44 29.59 32.17
CCL 34.78 37.64 32.59 34.29 36.91 33.56 34.92

EARN [42]
L𝑙𝑎𝑛+𝐿𝑎𝑑𝑝 35.31 37.07 32.66 35.50 37.39 33.65 38.99
L𝑙𝑎𝑛+L𝑎𝑡𝑡 34.93 33.76 36.98 35.31 33.46 37.27 38.37

L𝑙𝑎𝑛+L𝑎𝑑𝑝+L𝑎𝑡𝑡 38.08 38.25 38.59 37.54 37.58 37.92 45.33

DTMR [12] – 39.21 41.14 37.72 39.18 40.01 38.08 43.24
Cycle-Free [43] – 39.58 41.46 37.96 39.20 39.63 37.59 –

Proposed
Teacher 38.96 39.37 39.41 39.67 39.98 39.93 47.71
SCAW 39.71 39.99 39.69 40.13 40.22 39.93 47.75

SCAW+KCAT 39.84 39.90 40.24 40.05 40.12 41.09 47.96
Table 2
Ablation studies on RefCOCO, RefCOCO+, and RefCOCOg with different settings to validate KCAT.

Temperature Settings RefCOCO RefCOCO+ RefCOCOg

val testA testB Avg val testA testB Avg val

– Teacher 38.96 39.37 39.41 39.25 39.67 39.98 39.93 39.86 47.71

Fixed
Target-aware 39.51 39.83 39.43 39.59 39.83 40.19 40.29 40.10 47.69

Interaction-aware 39.10 39.54 39.45 39.36 39.38 39.87 40.23 39.83 46.95
SCAW 39.71 39.99 39.69 39.80 40.13 40.22 39.93 40.09 47.75

Adaptive
Target-aware 39.80 39.88 40.07 39.91 39.98 39.84 40.63 40.15 47.88

Interaction-aware 38.88 39.81 39.61 39.43 39.46 39.61 40.15 39.74 47.05
SCAW+KCAT 39.84 39.90 40.24 39.99 40.05 40.12 41.09 40.42 47.96
5.4. Ablation study

To evaluate the performance of each module, we conduct extensive
ablation experiments on the three benchmark datasets.

5.4.1. Knowledge confidence-based adaptive temperature
We first evaluate the effects of KCAT by utilizing multiple settings,

including the knowledge distillation with fixed temperature 𝜏 = 1 to
transfer the target-aware knowledge, the interaction-aware knowledge,
and the adaptively fused knowledge acquired by SCAW via Eqs. (11),
(13), and (19), respectively. We then substitute the fixed 𝜏 with the
adaptive temperatures obtained by the KCAT module to demonstrate
the benefits of KCAT for transferring the target-aware and interaction-
aware knowledge, which utilizes Eqs. (16), (17), and (20) to train the
models. For a fair comparison, we set 𝜆 = 1 in these experiments.

The comparison results are listed in Table 2. At first glance, the
esults acquired by the teacher model and the other settings demon-
trate the effects on the knowledge distillation for the model grounding
erformance. From the comparison of the target-aware knowledge
istillation with fixed temperature and adaptive temperature, we can
ind that KCAT improves the grounding accuracy on the splits of
he three datasets except for testA split of RefCOCO+, and the av-
rage accuracy on three datasets is improved by 0.32%, 0.05%, and
.19% respectively. By comparing the accuracy obtained by SCAW
nd SCAW+KCAT, we can observe that KCAT obviously enhances the
rounding accuracy on the testB splits of RefCOCO and RefCOCO+,
he accuracy acquired by SCAW+KCAT surpasses 0.55% and 1.16%, re-
7

pectively. These comparison results demonstrate that KCAT promotes
Table 3
Grounding results on RefCOCO, RefCOCO+, and RefCOCOg with fixed distilling
temperatures 𝜏′ to verify the effectiveness of KCAT.

𝜏′
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val

0.1 39.97 40.11 40.06 39.54 39.43 39.54 47.69
0.5 39.87 40.20 40.61 40.05 39.91 40.91 47.92
1 39.71 39.99 39.69 40.13 40.22 39.93 47.75
5 38.96 39.08 39.39 39.72 39.63 39.99 47.36
10 37.66 36.63 39.78 39.17 38.11 40.25 46.21

SCAW+
KCAT

39.84 39.90 40.24 40.05 40.12 41.09 47.96

transferring knowledge with higher confidence from the teacher to the
student model and further boosts the student’s grounding performance.

To further validate the benefits of KCAT, we conduct experiments
with fixed temperatures for distilling the knowledge from the teacher.
Concretely, we utilize fixed temperature 𝜏 = 1 for the student, and
adjust the temperatures for transferring the target-aware and the intera-
ction-aware knowledge from 0.1 to 10 to verify the gain of KCAT,
i.e., the temperatures in Eqs. (16) and (17) are set to 𝜏′𝑇 𝑎𝑟 = 𝜏′𝐼𝑛𝑡𝑒𝑟 = 𝜏′ ∈
{0.1, 0.5, 1, 5, 10}. In these experiments, we set 𝜆 = 1 and summarize
the obtained grounding results in Table 3.

As observed from Table 3, the models with 𝜏′ = 0.1 and 𝜏′ = 0.5
acquire the best accuracy on RefCOCO val, and RefCOCO testA and
testB, respectively. However, the grounding results on RefCOCO+ and
RefCOCOg are lower than that achieved by SCAW+KCAT. When 𝜏′

is set to 1, the model obtains the best accuracy on val and testA of



Knowledge-Based Systems 286 (2024) 111437J. Mi et al.

d
s
t
l

5

v
R
t

Table 4
Ablation studies with different 𝜂 in Eq. (19) to evaluate the performance of SCAW.

𝜂
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val

0 39.10 39.54 39.45 39.38 39.87 40.23 46.95
0.3 39.26 39.56 39.35 39.85 39.49 40.48 47.24
0.5 39.07 39.61 39.55 39.66 39.96 40.42 47.64
0.8 39.32 39.81 39.49 39.89 39.85 40.05 47.66
1.0 39.51 39.83 39.43 39.83 40.19 40.29 47.69

Sum 39.44 39.37 39.21 40.00 40.05 40.46 47.46

SCAW 39.71 39.99 39.69 40.13 40.22 39.93 47.75

RefCOCO, but the accuracy on other splits is inferior to that obtained
by SCAW+KCAT. The models with 𝜏′ ∈ {5, 10}, the grounding accuracy
ecreases dramatically. SCAW+KCAT acquires better accuracy on each
plit of the datasets, and it demonstrates that KCAT encourages the
eacher to transfer more reliable knowledge and impels the student to
earn more helpful knowledge from the teacher.

.4.2. Student competency-based adaptive weight
We evaluate the benefits of SCAW by setting multiple values for 𝜂

in Eq. (19). In these experiments, we employ the same fixed tempera-
ture 𝜏 = 𝜏′𝑇 𝑎𝑟 = 𝜏′𝐼𝑛𝑡𝑒𝑟 = 1 to train the teacher and the student models
to exclude the impact of KCAT. Specifically, we set 𝜂 ∈ {0, 0.3, 0.5,
0.8, 1.0} and 𝜆 = 1 to train the models. Note that 𝜂 = 1.0 and 𝜂 = 0
denote two special variants of SCAW, i.e., the target-aware knowledge
distillation and the interaction-aware knowledge distillation. And 𝜂
= 0.5 represents the equal contribution of the target-aware and the
interaction-aware knowledge during the knowledge distillation phase.
Additionally, we sum the target-aware and interaction-aware loss by
removing the trade-off parameter 𝜂 in Eq. (19) and denote the variation
as ‘‘Sum’’ in Table 4.

As can be observed from Table 4, SCAW acquires the best grounding
accuracy on six splits, except testB of RefCOCO+. By comparing the re-
sults listed in Line 1 and Line 6, transferring the knowledge by directly
summing the target-aware and the interaction-aware knowledge will
decrease the grounding accuracy on RefCOCO and RefCOCOg, whereas
the ‘‘Sum’’ strategy improves the grounding performance on val and
testA of RefCOCO+. The primary reason is that the target description
pattern in the datasets contributes to the different accuracy gains. The
expressions in RefCOCO+ adopt appearance discrimination and object
interaction to define targets, while RefCOCO describes target objects by
utilizing the object attribute and absolute location.

From the comparison between the results of several variations with
different values of 𝜂 and SCAW, the obtained results confirm the effec-
tiveness of the dynamic weight for transferring the target-aware and
interaction-aware knowledge. Transferring the knowledge according to
the student’s competency ensures the student absorbs more reliable
knowledge, further boosts the student’s prediction certainty and avoids
bringing information redundancy during the knowledge distillation
process. Moreover, SCAW outperforms the SOTA methods on six splits
of the benchmark datasets. Due to that, we also select SCAW to compare
with the SOTA in Table 1.

5.5. Comparison with online distillation

The proposed scheme transfers knowledge in an offline manner,
where the knowledge is distilled from a pre-trained teacher model.
This offline manner requires more training time and decreases knowl-
edge distilling efficiency. In order to validate the effectiveness of the
proposed approach, we also conduct experiments that transfer the
target-aware and interaction-aware knowledge in an online distillation,
i.e. directly transfer the multiple knowledge during the model training.
In these online distillation implementations, we keep the same settings
8

in KCAT and SCAW with the knowledge inherited from the pre-trained
teacher. We summarize the obtained results in Table 5.

From Table 5, it can be observed that the model learned from the
pre-trained teacher acquires better grounding accuracy on five splits
of the benchmarks. In comparison, the online distilled model with
SCAW surpasses the model learned from the pre-trained teacher on
testA of RefCOCO by 0.21%, and the online model with SCAW+KCAT
outperforms the offline model on val of RefCOCOg by 0.30%, while the
average accuracy on RefCOCO acquired by the models learned from
the pre-trained teacher is higher than the online one. Moreover, except
for the teacher model pre-training, the training route of the online
distillation model spends about 10 h on one single A6000 GPU. It is
almost identical to the training duration of the student model learned
from the pre-trained teacher. In a nutshell, the proposed knowledge
transferring strategy demands a pre-trained teacher, but it acquires
better grounding accuracy than the online distillation scheme.

5.6. Hyper-parameter analysis

In this section, we evaluate the performance of the adaptive knowl-
edge distillation branch via setting the hyper-parameter 𝜆 in Eq. (20),
which is adopted as a trade-off between the triad-level reconstruction
loss and the knowledge distillation loss. In order to better indicate the
effects of 𝜆, we summarize the acquired results in Table 6, where 𝜆
varies from 0.01 to 10. As shown in Table 6, when 𝜆 is set to 1, our
proposed method achieves the best average grounding accuracy on the
benchmark datasets and outperforms SOTA models on six splits. Due to
that, we select the results obtained by setting 𝜆 = 1 to compare with
SOTA methods in Table 1.

As can be observed from Table 6, compared with the results ob-
tained by the teacher grounder, 𝜆 ∈ {0.3, 0.5, 0.8, 1, 3, 5} prompts the
accuracy improvements on all splits of RefCOCO, RefCOCO+, and Ref-
COCOg, whereas 𝜆 ∈ {0.01, 0.05, 0.1, 8, 10} decreases the grounding
accuracy on some splits. The primary reason is that the different pat-
terns of expressions in the datasets result in different performance. The
expressions in RefCOCOg pay more attention to the relations among
the target objects and their neighboring regions. As a result, larger 𝜆
alues worsen the grounding accuracy. In contrast, the expressions in
efCOCO combine object attributes and location descriptions to define

arget candidates, so the best results are achieved when 𝜆 ∈ {0.3, 0.5,
0.8, 1, 3, 5}. The expressions in RefCOCO+ utilize more appearance-
related phrases to depict objects rather than location descriptions, 𝜆 ∈
{8, 10} enhances the grounding accuracy on val splits, but deteriorates
the accuracy on testA and testB.

In addition, as can be observed from Table 6, the results on Ref-
COCO are sensitive to 𝜆, where the performance fluctuation is more ap-
parent than on RefCOCO+ and RefCOCOg. For RefCOCOg, the volatility
contributed by our adaptive knowledge distillation framework is rela-
tively tiny. Specifically, the margin value between the best and worst
accuracy is 0.73%, while the margin values of RefCOCO val, testA,
and testB are 1.90%, 1.73%, and 2.03%, respectively. These results
demonstrate that the adaptive knowledge distillation promotes transfer-
ring knowledge with higher quality and confidence, and the transferred
knowledge can boost the student’s grounding performance.

5.7. Qualitative results

We present some qualitative visualization results on RefCOCO, Re-
fCOCO+, and RefCOCOg in Fig. 2. The referring expressions are po-
sitioned under the related images, the grounded target objects, and
the ground truth regions are denoted as solid red and green bounding
boxes. The grounding results in the first row show examples comprising
multiple objects of the same category. The second row shows some
complex samples with long referring expressions. These results demon-

strate that our approach can help ground targets in the hard samples
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Table 5
Performance (Acc%) comparison with online distillation scheme. The best grounding results are in bold.

Scheme Settings RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val

Proposed SCAW 39.71 39.99 39.69 40.13 40.22 39.93 47.75
SCAW+KCAT 39.84 39.90 40.24 40.05 40.12 41.09 47.96

Online SCAW 39.33 40.20 39.06 39.74 39.77 39.95 47.61
SCAW+KCAT 39.51 40.14 39.35 40.10 39.42 40.70 48.26
Fig. 2. Qualitative results acquired by our proposed model on RefCOCO, RefCOCO+, and RefCOCOg. The referring expressions are positioned under the corresponding images.
The solid green bounding boxes indicate the ground truth, and the red boxes are the predicted targets. We also attach some incorrect grounding samples under the dotted line.
Table 6
Grounding accuracy on RefCOCO, RefCOCO+, and RefCOCOg when the value of 𝜆 in
Eq. (20) varies from 0.01 to 10.

𝜆
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val

Teacher 38.96 39.37 39.41 39.67 39.98 39.93 47.71

0.01 37.95 38.59 38.21 39.55 39.75 39.54 47.34
0.05 38.60 39.51 38.25 39.54 39.77 40.54 48.09
0.1 39.16 39.44 38.37 39.65 40.15 39.68 47.99
0.3 39.41 39.74 39.61 39.86 40.27 40.34 48.04
0.5 39.41 39.97 39.27 39.78 39.82 40.11 47.93
0.8 39.85 40.30 40.10 40.02 39.70 41.11 47.86
1.0 39.84 39.90 40.24 40.05 40.12 41.09 47.96
3.0 39.73 39.97 39.51 39.95 39.91 40.48 47.73
5.0 39.70 39.92 39.43 40.12 39.82 40.21 48.07
8.0 39.73 39.58 39.18 40.07 39.77 39.72 47.66
10.0 39.49 39.12 38.59 40.15 39.68 39.62 47.59
9

that comprise complex expressions and multiple objects of the same
category.

For comparison, we also list some incorrect grounding examples
under the dotted line. One type of incorrect grounding is caused by
triads erroneously parsed from the expressions. For instance, for the
case ‘‘number 14’’ and the related image, the expression is parsed into a
target element ‘‘number’’, a subject element ‘‘14’’, and a discriminative
relationship element ‘‘self’’. The wrongly parsed triad brings challenges
to ground the target region. Besides incorrect expression parsing, am-
biguous expressions dramatically affect the model performance. For
example, the expression ‘‘left player in back’’ is not enough to define
the target region of the players in the left rear. Finally, the sparsity of
training data in the datasets and object occlusion could lead to incorrect
groundings, which also pose challenges in other vision tasks.

6. Conclusion

In this paper, we propose an adaptive knowledge distillation and
integration architecture to enrich the dominant pattern of weakly
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supervised REC. Specifically, the proposed adaptive knowledge distil-
lation architecture integrates a Knowledge Confidence-Based Adaptive
Temperature (KCAT) learning approach with a Student Competency-
Based Adaptive Weight (SCAW) learning strategy to boost the model
grounding performance. KCAT learns adaptive distilling temperatures
according to knowledge confidence to transfer more reliable knowledge
from the teacher to the student model. SCAW enhances the student’s
prediction certainty by learning dynamic weight to integrate the target-
aware and interaction-aware knowledge based on the student’s compe-
tency. The experimental results achieved on three benchmark datasets
demonstrate that our approach outperforms SOTA models under fair
comparison, and extensive ablation experiments indicate the superior-
ity of the knowledge confidence-based adaptive temperature learning
and the student competency-aware interrelated knowledge dynamic
integration.
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