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Abstract—Architectures for vision-based robot manipulation
often utilize separate domain adaption models to allow sim-to-
real transfer and an inverse kinematics solver to allow the actual
policy to operate in Cartesian space. We present a novel end-to-
end visuomotor architecture that combines domain adaption and
inherent inverse kinematics in one model. Using the same latent
encoding, it jointly learns to reconstruct canonical simulation
images from randomized inputs and to predict the corresponding
joint angles that minimize the Cartesian error towards a depicted
target object via differentiable forward kinematics.

We evaluate our model in a sim-to-real grasping experiment
with the NICO humanoid robot by comparing different ran-
domization and adaption conditions both directly and with addi-
tional real-world finetuning. Our combined method significantly
increases the resulting accuracy and allows a finetuned model
to reach a success rate of 80.30%, outperforming a real-world
model trained with six times as much real data.

Index Terms—domain adaption, domain randomization, sim-
to-real, kinematics, robot manipulation, humanoid robot

I. INTRODUCTION

Developing vision-based object manipulation abilities is
essential for humanoid robots to interact with realistic envi-
ronments. Generating the large amounts of data required to
train such tasks successfully is time-consuming and expensive
[1]–[4], requires multiple, identical robot setups to parallelize
[2], [3] and wears them out in the process [2].

Simulators provide a more accessible and scalable en-
vironment to collect training data. Existing robot learning
frameworks such as RLBench [5] provide a variety of different
tasks and robots that can be extended with new ones.

However, due to the difficulty of vision-based robot ma-
nipulation policies to generalize to new environments [6], a
model trained on simulated data with approximated visuals
and dynamics is often unable to perform well in a real-world
environment [4], [7]. While domain randomization [7] can
directly make a policy more transferable by randomizing dif-
ferent aspects of the simulation environment, domain adaption
approaches utilizing a separate GAN model [8] to transfer
images into the input domain of the policy, with mechanisms
to maintain consistent visual features, have proven to be more
effective at closing this reality gap [9]–[11].

Another challenge in learning robot manipulation tasks is
the choice of action representation. An end-to-end model that
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predicts the target angles for each motor is directly applicable
to the robot and ensures that the solution lies within its
workspace boundaries, whereas policies using Cartesian end
effector actions perform better in tabletop manipulation tasks
[12], [13], but require an additional motion planner or inverse
kinematics solver to transfer the solution into joint space
and apply it to the robot [13], [14]. As such, rather than
making the policy itself more robust to these challenges, the
addition of models that solve these issues separately allows it
to operate under simplified conditions. However, each model
adds training and execution time as well as additional sources
of error, whereas end-to-end models can be directly applied
to the robot and have been shown to benefit from additional
image reconstruction losses [15] or integrating multiple action
representations with a differentiable kinematic module [12].

Therefore, we examine the benefits of leveraging domain
randomization and adaption as well as differentiable forward
kinematics as error signals for an end-to-end model that
directly predicts joint angles for a given input image. In
order to reconstruct the target object in the output image,
the latent space of a domain adaption autoencoder has to
include an encoding of that object’s position, which should
make its encoder reusable for grasp pose estimation. Predicting
joint angles can be viewed as inherently solving the inverse
kinematics problem to reach the object pose. Thus, instead of
calculating the error in joint space, using differentiable forward
kinematics allows us to compute a loss in Cartesian space
between the robot’s end effector and the target object.

We propose an end-to-end architecture that combines a
randomized-to-canonical adaption network inspired by RCAN
[9] with a joint angle predictor trained to directly minimize
the error in Cartesian space using differentiable forward
kinematics similar to CycleIK [16]. We create a simulated
grasping experiment for the NICO humanoid robot [17] to
autonomously collect training data with matching random-
ized and canonical images and replicate our experiment in
a real-world setup to transfer and compare to. To train our
model, we define a loss function combining the Euclidean
and geodesic distance between the position and orientation of
the target object and the forward kinematics for the predicted
joint angles. First, we demonstrate that our method increases
the grasping accuracy of our end-to-end model compared to
alternative losses and subsets of our method in simulation.



We then evaluate each model in our real-world environment
before and after finetuning with real-world data. Our method
is able to increase the direct transferability of the model and
with additional finetuning can outperform a model exclusively
trained on six times more real-world data.

II. RELATED WORK

A. Sim-to-Real Transfer

Models trained in simulation often perform poorly when
transferred to the real world due to the visual and dynamic
differences. Approaches to overcome this issue can be catego-
rized into domain randomization and domain adaption [4].

1) Domain Randomization: In order to make a trained
model more robust to changes in its environment, domain
randomization methods alter different visual features [7] or
dynamics [18] of the scene for the model to interpret the real
environment as another variation of the simulation. James et
al. [19] utilize the known position information in simulation
to train a pick and place task from trajectories generated with
inverse kinematics and significantly increase the transferability
of the model by altering visual features such as lighting, colors,
and textures, the positions and sizes of objects as well as the
start configuration of the robot. The approach presented by
Gäde et al. [20] trains a NICO robot in simulation to reach an
object on a table by first randomly generating valid arm poses
within a predefined set of constraints and then placing the
target object at the resulting position of the hand. They show
that randomizing colors of the scene as well as the head pose
of the robot to alter the camera angle increases the real-world
performance of the model.

2) Domain Adaption: Rather than improving the robustness
of a model towards changing input data, domain adaption [21]
transforms input images into the target domain. RL-CycleGAN
[10] jointly trains a CycleGAN [22] to transform simulated
into real images and a reinforcement learning model for vision-
based robotic grasping, ensuring consistency between the
original and generated images in both domains by adding an
additional loss term which penalizes differences in predicted
Q-values. Similarly, RetinaGAN [11] also maps simulated to
real images with a CycleGAN, but instead of task-specific
Q-values, it ensures perception consistency by computing the
bounding box and class prediction loss of an object detector
between the images. RCAN [9] combines domain adaption
with domain randomization by training an adaption network
to transform randomized simulation images into canonical
simulation images, enabling the model to transfer real-world
images into canonical simulation images as well. They show
that their model outperforms regular domain randomization
in a grasping task, both when transferred directly and after
additional finetuning with real-world data.

B. End-to-End Robot Learning

As the end effector position of the arm results from the
combination of its joint angles, close or redundant positions
in Euclidean space can require large differences in joint
angle space. This makes it more difficult to train a model

to directly predict joint angles rather than the target pose for
an inverse kinematic solver [13], [15]. Rahmatizadeh et al.
[15] combine a VAE-GAN for image reconstruction with an
autoregressive Mixture Density Network for joint prediction
sharing the same encoder to learn the distribution of each
arm joint in sequence from human demonstrations for different
robot manipulation tasks. Instead of explicitly learning actions
for a given observation, Florence et al. [23] propose the
use of implicit models, which learn an energy function for
given observation-action pairs by identifying correct actions
from random counterexamples. Inference is done via stochastic
optimization. They show that these models outperform explicit
approaches in multiple robot control tasks. Chi et al. [24] in-
troduced Diffusion Policies, which learn to iteratively retrieve
actions from the Gaussian noise input for a given observation.

C. Differentiable Forward Kinematics

A direct way to reflect the relationship between angle space
and Cartesian space is to compute the forward kinematics
for a given joint configuration to obtain the position of one
or more joints. As these calculations are differentiable, they
can be used for backpropagation. Pavllo et al. [25] used
differentiable forward kinematics with a standardized human
skeleton to create a position-based loss function for human
pose estimation. Ganapathi et al. [12] extended an implicit
model with a differentiable forward kinematic module to use
both joint angles and the corresponding Cartesian position
as input, showing that this increases performance in difficult
robot manipulation tasks. Lastly, CycleIK by Habekost et
al. [16] is trained to compute the inverse kinematics for
the NICOL robot [13] by calculating differentiable forward
kinematics for the predicted joint angles and computing the
loss on the input target position in Cartesian space, achieving
position errors below 1mm and rotation errors under 1°.

III. APPROACH

In our approach, we investigate enhancing the performance
and transferability of an end-to-end grasping model by jointly
learning random-to-canonical domain adaption and predicting
joint angles for grasp poses that minimize differentiable for-
ward kinematics, thereby inherently solving inverse kinemat-
ics. We evaluate our approach in a grasp pose estimation task
trained on a simulated NICO humanoid robot and transferred
to a real-world setup. To collect our training data, we develop
an autonomous recording method with an evolutionary inverse
kinematics solver, which creates matching randomized and
canonical simulation images for the same target position. A
real-world variant is used to create additional data with the
physical robot to finetune and test our model.

We create a neural architecture based on convolutional
autoencoders and determine the optimal hyperparameters to
solve our task in simulation. With the optimized architecture,
we evaluate the performance of different subsets of our model
components, first in simulation, then in reality, both before and
after finetuning the models with additional real-world data.



Fig. 1. Simulated environment of a seated NICO robot grasping a target
object on a table

A. Experimental Setup

Our experimental setup expands upon the grasp pose esti-
mation task which was first proposed in [26] and is further
investigated in other experiments with the NICO [20], [27]
and NICOL robot [13]. A cylindrical object is placed on a
table in front of a NICO humanoid robot, which has to reach
the object with its left hand to grasp it from the side.

The arms of the NICO robot are actuated by four Dynamixel
MX64 servomotors, three of which rotate the upper arm in any
direction, while the fourth serves as the elbow. Additionally, a
three-fingered SeedRobotics RH4D hand is mounted on each
arm, whose rotation can be adjusted with two wrist motors,
with another two actuators opening and closing the fingers.
The palm of each hand also contains an infrared distance
sensor to detect whether an object is placed within it. Another
two MX64 motors are used to pose the head of the NICO
robot, which contains two cameras as its eyes.

Using the CoppeliaSim simulator [28], we recreate this
setup with a simulated NICO robot (see Fig. 1). Control
instructions can be used interchangeably between the simu-
lated and real robot. The simulated controller is based on the
PyRep [29] library, which controls the simulation environment
through external Python scripts.

B. Dataset Recording

With our simulated setup, we create a dataset of 5184
simulated training samples and 324 test samples containing
matching images for four different levels of randomization
which are simultaneously collected for each data point, with
one canonical image maintaining a consistent visual repre-
sentation, while the other three have different visual features
randomized. Additionally, we collect 2268 real-world samples
to test the transferability of our approach and finetune models
with additional real-world data points. Each sample contains
an image of the scene from the right eye camera of the robot,
as well as the joint angles of the 6 left arm motors and the
corresponding three-dimensional coordinates and orientation
of the left hand to grasp the target at the depicted location.

To collect our data, we expand the strategies proposed
by previous works [20], [26], [27] in which the robot au-
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Fig. 2. Matching images for the same sample with different randomization
conditions (a-d) as well as a real-world comparison (e)

tonomously places the object at different positions on the
table to generate samples. Rather than relying on human
demonstration [26] or random pose generation [20], we create
EvoIK, an evolutionary inverse kinematics solver inspired by
gaikpy [27], which minimizes the weighted sum of the position
and orientation distances defined in Section III-E3 using the
gpu-accelerated CMA-ES [30] implementation provided by
EvoTorch [31] combined with the forward kinematics of
PyTorch Kinematics [32]. With EvoIK, we generate grasping
poses from a grid of 18×18 predefined positions on the table
with 1cm horizontal and vertical spacing between them to
systematically cover the robot’s workspace. For each row in
the grid, the robot repeatedly pushes the object with its left
arm from the leftmost position to the right in 1cm increments.
At each position, the robot tries to enclose the object with its
hand to verify the grasping success before the arm is moved
back into its initial, pre-grasp position to record images of the
object on the table with the right eye camera of the robot.

As the simulation has access to the position of both the
target object and the end effector of the robot, the grasp ver-
ification is done by ensuring the Euclidean distance between
the two is less than 2cm. On an unsuccessful grasp or at the
end of each row, the simulator can immediately reset the arm
pose and position the object for the next trial.

In contrast, the real-world robot has no direct knowledge of
the position of the target object. Therefore, we use the infrared
proximity sensor embedded in its palm to detect if the object is
enclosed by the hand. To move the object to the next row, the
robot grasps it at its last known position and physically moves
it across the table. However, at the beginning of the recording
and in case of failure, the robot requires human assistance to
set the object to a known position. For this purpose, the robot
assumes a grasping pose next to the current target position and
asks a human observer to place the object in its open hand.

C. Domain Randomization

In order to increase the visual variety in our simulated data
and allow a model to convert input images into a canonical
representation to improve transferability to the real world, we
create two randomization mechanisms to manipulate the visual



Fig. 3. Optimized network architecture to learn end-to-end visuomotor manipulation from randomized simulation data to improve simulation to real-world
transferability. The model consists of a convolutional autoencoder for randomized-to-canonical domain adaption and a fully connected joint control network
sharing the same encoder. A differentiable forward kinematics module computes the end effector pose for the predicted joint angles, which allows calculation
and backpropagation of the loss in Cartesian space

features of the scene, which we employ both separately and
combined to create three additional variants of each image.

As the recorded colors in real-world data are dependent on
multiple factors such as lighting conditions, surface texture,
and camera settings, we attempt to account for these differ-
ences by randomizing the colors, light sources, and textures of
the scene. The colors are randomized by sampling the lightness
channel of the HSL (hue, saturation, lightness) representation
of each color from a normal distribution with a standard
deviation of 0.2 around its base value. For the light sources, we
place each of the four default light sources of the simulator
randomly within an area of 0.25m2 at a fixed height above
the table and assign a random orientation. The textures in our
simulated scene are generated with a Perlin noise function
[33], which is initialized with a random positive integer seed
by default, whereas our canonical representation has a fixed
seed of 42.

Due to the ego-movement of the robot, which can cause
minor shifts in the robot’s position and thus its head angle, and
limitations of the simulated cameras, the angle and distortion
of the camera differ between the simulated and real-world
data. To counteract this, we randomly alter the camera angle
of the simulated robot for each sample. In doing so, the
resulting model should be able to learn a more generalized
representation of the object’s position relative to the table as
it can no longer rely on the absolute position in the image. The
camera angle is determined by the joint angles of the head,
which is controlled by two separate motors rotating around the
horizontal y-axis (pitch) and the upwards-facing z-axis (yaw).
By default, the y-axis motor is positioned at 40◦ and the z-axis
at 0◦, which results in the head looking downward in front of
its center. Both of these angles are randomized by up to 10◦

in either direction, resulting in camera angles of 30◦ to 50◦

on the y-axis and −10◦ to 10◦ on the z-axis.

For each collected sample, we first record a canonical image
with the default colors and camera angle. Then we change

the camera angle for the second image and alter the visual
features of the scene for the third image, combining both
randomization conditions. Lastly, we return to the default
camera angle and record a fourth image with only the random
visual features applied. In doing so, we create four consistent
variant images for each data point, allowing the reconstruction
of the canonical representation from the randomized images.

D. Network Architecture

We construct an end-to-end architecture to predict the joint
angle for each of the six arm motors for a given image of
the scene. Our model consists of a convolutional autoencoder,
which transforms randomized input images into the corre-
sponding canonical representation and a controller network of
two fully connected layers to predict the joint angles of the
arm required to reach the target object depicted in the image.
Similar to Rahmatizadeh et al. [15], the encoder and latent
vector are shared between both networks (see Fig. 3).

As our task only involves the area in front of the robot,
it does not require the large field of view provided by the
fisheye cameras of the NICO robot. Therefore, we pre-process
our RGB input images by first cropping out the central region
of the original 640 × 480 image before downsampling it to
our input dimensions of 80 × 60. To account for differences
between the distortion of the real and simulated cameras, we
use slightly different crop areas so that the resulting, downsam-
pled images depict the object in similar locations of the image
to prevent unpredictable out-of-distribution behaviour. For the
real-world images, we simply crop the central 320×240 region
of the image whereas for the simulation images, we shift the
cropped region 35 pixels towards the top of the image and
reduce its height to 180 pixels.

Our encoder contains 7 convolutional layers whose strides
alternate between 2 and 1, downsampling the input image
4 times without pooling. Likewise, our decoder mirrors this
structure by alternating between a total of 4 transposed con-
volutions of stride 2 to upscale the latent vector back to the



TABLE I
SEARCH SPACES AND RESULTS FOR CONVOLUTIONAL FILTERS (CON),

LATENT UNITS (LAT), NUMBER OF LINEAR LAYERS (#) AS WELL AS UNITS
(LIN) OF THE MODEL AND INITIAL LEARNING RATE (γ), BETAS (β1, β2),

EPSILON (ϵ) AND WEIGHT DECAY (l2) OF ADAM.

Con Lat # Lin γ β1 β2 ϵ l2
Min 4 16 1 16 1e-5 0.85 0.95 1e-8 1e-7
Max 128 512 4 512 1e-2 1.0 1.0 1e-4 1e-4
Res 92 27 1 459 6e-4 0.86 0.98 1.3e-6 1.1e-6

original dimensions and 3 convolutions of stride 1. Each layer
has 3× 3 kernels and a zero-padding of 1 to replace the lost
edges. All hidden layers in the autoencoder use the leaky
ReLU activation. For the output of the decoder, we choose
the Sigmoid activation to produce normalized RGB channels.

To predict the joint angles required to reach the target
at the depicted position, the latent vector of the encoder is
also processed by a fully connected layer of 459 neurons
with the leaky ReLU activation, followed by an output layer
containing six neurons with the hyperbolic tangent activation
corresponding to the individual arm joints with normalized
limits within [−1, 1]. Each angle is scaled according to the
respective motor limits in radians set by the NICO software
API, which restricts the robot’s action space to reduce the
number of unnatural movements and potential self-collisions.

E. Network Training

We conduct a hyperparameter optimization of 128 trials
with the Quasi-Monte Carlo sampler provided by Optuna [34]
to find our optimizer parameters as well as the number of
convolutional filters, linear layers, and units (see Table I).
Each model is trained for 400 epochs using 6-fold cross-
validation with batch size 54, an Adam optimizer [35] with
weight decay, and a learning rate scheduler which halves the
learning rate if the validation loss plateaus for 10 epochs.
Both the image decoder and the joint angle prediction are
trained simultaneously by computing the sum of the image
reconstruction loss Lrec and the Cartesian pose loss Lpose as
our total loss for backpropagation.

1) Image Reconstruction Loss: Instead of reconstructing
the randomized input images, we train our model to re-
construct the corresponding canonical image with default
camera angle and visual features, thus performing random-to-
canonical domain adaption to invert the domain randomization,
similar to RCAN [9]. This way, we condition the model to
learn a standardized representation, which should improve its
ability to interpret real-world data. Therefore, we compute the
image reconstruction loss Lrec by taking the mean squared
error between the decoder output and the normalized canonical
image for the given randomized input image.

2) Cartesian Pose Loss: While an end-to-end model that
directly predicts the target angles for each motor makes the
output directly applicable to the robot and ensures the solution
lies within its workspace boundaries, this increases the training
complexity as the model has to learn to inherently solve
the inverse kinematics of the robot due to the end effector

pose resulting from the combined motor angles. Therefore,
computing the individual joint errors does not accurately
represent the distance to the target object and can lead to
averaged solutions with poor grasping performance.

Instead, we first determine the forward kinematics for the
predicted joint angles to obtain the position and orientation of
the end effector and then calculate the loss in Cartesian space
between the predicted and the target end effector pose. We
compute the forward kinematics using the PyTorch Kinematics
library [32], which allows parallel processing of batches on the
GPU and computes the necessary gradients for backpropaga-
tion. The end effector poses are represented as 7-D vectors
consisting of the position as x, y, z coordinates in meters and
the orientation as unit quaternion. Rather than computing a
single error for the full vector, we compute two separate losses
Lpos, for the 3-D positional part of the output, and Lquat for
the 4-D unit quaternion.

For Lpos we use Smooth L1 loss [36], which squares
absolute errors below a threshold β to smooth the gradient
towards 0, while computing the L1 loss for greater errors to be
less susceptible to outliers. We choose β = 0.01 to incentivize
our model to bring the positional error below 1cm.

Our rotation loss Lquat is calculated by taking the mean
cosine distance for half of the minimal rotation angle between
the unit quaternions of our target and the predicted end effector
pose, which is a valid rotation metric according to Huynh [37],
eliminating the need to compute the inverse cosine:

Lquat(qpred, qtarget) = 1− |qpred · qtarget| (1)

Additionally, we define a scaling factor αquat for Lquat and
sum it with Lpos to obtain the full pose loss Lpose:

Lpose = Lpos + αquatLquat (2)

We choose αquat = 0.33 such that Lquat ≈ Lpos for
a positional error of 1cm and an orientation error of 20°,
matching the thresholds of our success metric.

3) Evaluation Metrics: In addition to these losses, we eval-
uate our model using more interpretable distance metrics for
the position and orientation of the predicted end effector pose.
The positional error is determined by the three-dimensional
Euclidean distance between the target and predicted end ef-
fector positions in meters. For the orientation, we calculate the
minimum rotation angle θ between both unit quaternions:

θ = 2arccos (|qpred · qtarget|) (3)

Both distance metrics are then used to compute the success
rate of the model under the definition of Kerzel et al. [27],
which considers a grasp pose as successful if the positional
error is below 1cm and the orientation error under 20°.

IV. EXPERIMENT RESULTS

We conduct multiple experiments to determine the influ-
ence of the individual components of our architecture on its
performance. First, we show that using differentiable forward
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Fig. 4. Mean Euclidean distance error (a) and percentage of successful grasps (b) in simulation for each evaluated input and output image domain. The
models with a canonical output domain (blue) attempt to reconstruct images with canonical camera angle and visual features, whereas the camera domain
(green) retains the randomized camera angle and visuals (yellow) the visual features. The combined domain (red) remains fully randomized

TABLE II
LOSS FUNCTION COMPARISON

Loss Function Precision (cm) Grasp Success
MSE 1.39 46.96%

Smooth L1 1.03 61.21%
Cartesian 0.60 85.55%

kinematics to calculate the loss on the end effector pose in
Euclidean space leads to a more precise model than computing
the loss directly over the individual arm joints. Then, we
analyze how different levels of domain randomization and
their adaption to more canonical representations affect the
performance of the model in simulation and when evaluated
with real-world data. Finally, we finetune our model with a
small amount of real-world data and demonstrate that we can
outperform a model trained exclusively on the real robot.

A. Loss Function Comparison

To evaluate the benefit of our loss function calculated in
Cartesian space using differentiable forward kinematics, we
optimize our architecture within the same search space and
parameters as defined in Table I, altering the loss function
to directly minimize the mean squared error of the predicted
joint angles as well as Smooth L1 loss with β = 0.01 for
comparison. As we can see in Table II, both of these losses
result in a positional error above 1cm, with mean squared loss
resulting in the lowest average precision of 1.39cm whereas
models trained with Smooth L1 loss can reach 1.03cm. The
generated poses are sufficient to grasp the object in 46.96%
and 61.21% of the test cases respectively. In contrast, models
trained with our Cartesian loss function utilizing forward
kinematics reach an average precision of 6.0mm resulting in
a success rate of 85.55%, outperforming both other methods.
This shows that differentiable forward kinematics can provide
our end-to-end model with better context to internally solve
the inverse kinematic problem on highly randomized visual
information, reaching similar precision as a dedicated neural
IK solver such as IKFlow [38] or CycleIK [16].

B. Domain Randomization and Adaption

We retrain our architecture with different input and output
image domains to analyze the influence of varying levels of

domain randomization and random-to-canonical adaption on
the model performance in simulation. For each of our four
simulated image domains, we compare the possible encoder
output domains, either reconstructing the input image or re-
producing a target image with non-randomized visual features,
camera angle, or both, if applicable.

As we can see in Fig. 4, the performance decreases for more
complex input domains, with the fully canonical model achiev-
ing 4.4mm precision and 88.84% grasp successes, whereas
the autoencoder with fully randomized in- and outputs has an
average position error of 7.3mm and only 79.68% successful
grasps. Altering the camera angle decreased the performance
less than randomizing the visual features of the scene.

Consistent with our observations on the input domain,
reducing the complexity of the output domain increases the
performance of the resulting model, with the least improve-
ment for models trained on randomized camera angles from
5.7mm position error and 88.22% successes to 5.3mm po-
sition error and 88.68% successes whereas the performance
of models trained on randomized visuals increases from a
precision of 6.16mm and success rate of 84.77% to 5.5mm
and 85.91% respectively. The largest improvement is seen in
the full random-to-canonical models with an improvement of
1.3mm in average distance and 5.8% successes, resulting in
a positional error of 6.0mm and a success rate of 85.55%,
even outperforming an autoencoder model trained with random
visuals but default camera angles. Therefore, we can conclude
that using the latent space of a random-to-canonical domain
adaption model instead of a regular autoencoder improves the
generalization of the model in more visually complex domains.

C. Simulation to Real-world Transfer
1) Direct Transfer: To examine if our previous results hold

true when deployed to the physical robot, we evaluate each
model with our real-world test data. Additionally, we optimize
a baseline model trained only on our full real-world dataset to
compare it to the performance of our other models. As we can
see in Fig. 5, most of the models are unable to adapt directly to
real-world inputs with positional errors above 5cm. Training
a model to predict canonical camera angles without also
randomizing the visuals seems to greatly increase the position
error to 16.96cm. Full domain randomization with no domain



Fig. 5. Mean Euclidean distance error when directly evaluating each model
on real-world test data

(a)

(b)

Fig. 6. Mean Euclidean distance error (a) and percentage of successful grasps
(b) on real-world test data after finetuning the models trained in simulation
with additional real-world training samples

adaption yields the second worst precision at 15.13cm. While
any form of random-to-canonical adaption brings this error
below 10cm, they still do not sufficiently transfer to the real
world. However, training a model to predict canonical images
from randomized visual features with the default camera angle
significantly decreases the real-world position error to 2.27cm
with a standard deviation of 1cm, resulting in a success rate of
6.79%. Therefore, while none of the models are able to directly
solve the real-world task with high accuracy, we can see that
our method significantly increases the ability to interpret real-
world inputs over regular domain randomization.

2) Finetuning: Thus, in order to increase the real-world
performance of our models trained in simulation, we finetune
them for 10 epochs using 6-fold cross-validation with a single
batch of 54 real-world samples for each fold. The Adam
parameters are optimized in another 128-step Quasi-Monte
Carlo search with the search space defined in Table I. We
also train a real-world baseline on the same 324 samples.

Notably, while all finetuned models reach between 0.93cm
and 1.05cm positional accuracy (see Table III), the highest
errors of over 1cm are produced when training models with
domain randomization but no random-to-canonical adaption,

TABLE III
MEAN EUCLIDEAN DISTANCE ERROR AND PERCENTAGE OF SUCCESSFUL

GRASPS ON REAL-WORLD TEST DATA AFTER FINETUNING

Train Adaption Precision (cm) Grasp Success
canonical no 0.98± 0.02 67.13%± 1.58
canonical yes 0.95± 0.02 70.73%± 1.80
camera no 1.05± 0.08 62.71%± 6.19
camera yes 0.96± 0.02 72.79%± 2.09
visuals no 1.03± 0.06 59.41%± 4.13
visuals yes 0.99± 0.01 74.33%± 0.90
combined no 1.04± 0.03 72.74%± 2.56
combined yes 0.93± 0.01 80.30%± 1.59
real (324) no 0.94± 0.03 67.54%± 1.86
real (1944) no 0.76± 0.01 73.56%± 1.05

performing worse than both the model with only canonical
training data with 0.98cm precision and our real-world base-
line with 0.94cm (see Fig. 6). Likewise, the models trained
on just one of the two randomization conditions generate less
successful grasps with 62.71% for random camera angles and
59.41% for visual features, compared to the canonical and real-
world baseline models with 67.13% and 67.54% successful
grasps respectively. Using the fully randomized data does
however increase the success rate to 72.74%, despite the higher
distance error, which is close to the real-world model trained
on all 1944 samples at 73.56%.

Once we finetune our models with random-to-canonical
adaption, the success rates increase to over 70%, outperform-
ing the baseline real-world model trained on just the finetuning
data. The models trained solely on random camera angles
or visual features reach similar success rates of 72.79% and
74.33% compared to the model trained on the full real-world
dataset with 73.56%. Finally, if we finetune our model trained
with random-to-canonical adaption on fully randomized data,
the resulting model reaches a success rate of 80.30%, sig-
nificantly outperforming the full real-world model, despite its
positional error of 9.3mm not matching the 7.6mm precision
of the real-world model. Therefore, we conclude that our
model is able to find a better trade-off between position and
orientation error, generating more generalized poses within our
success metric at the cost of positional accuracy.

V. CONCLUSION

In this paper, we investigated the benefit of random-to-
canonical domain adaption and differentiable forward kine-
matics for the training and sim-to-real transfer of a vision-
based end-to-end model for humanoid robot grasping. To train
our architecture, we collected a dataset of 22032 simulated
images divided into 4 matching sets with full, partial, and no
domain randomization as well as 2268 real-world samples for
finetuning and testing. Our approach was able to significantly
increase the success rate of the model in simulation and im-
prove its ability to learn from highly randomized training data.
We demonstrated that a model trained to perform random-
to-canonical adaption as an auxiliary task is more robust to
the sim-to-real gap compared to only domain randomization.
With additional finetuning, our method is able to outperform
a model fully trained on real-world data.
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