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Abstract
Active speaker detection (ASD) in multimodal environments is crucial for various applications, from video conferencing to

human-robot interaction. This paper introduces FabuLight-ASD, an advanced ASD model that integrates facial, audio, and

body pose information to enhance detection accuracy and robustness. Our model builds upon the existing Light-ASD

framework by incorporating human pose data, represented through skeleton graphs, which minimises computational

overhead. Using the Wilder Active Speaker Detection (WASD) dataset, renowned for reliable face and body bounding box

annotations, we demonstrate FabuLight-ASD’s effectiveness in real-world scenarios. Achieving an overall mean average

precision (mAP) of 94.3%, FabuLight-ASD outperforms Light-ASD, which has an overall mAP of 93.7% across various

challenging scenarios. The incorporation of body pose information shows a particularly advantageous impact, with

notable improvements in mAP observed in scenarios with speech impairment, face occlusion, and human voice background

noise. Furthermore, efficiency analysis indicates only a modest increase in parameter count (27.3%) and multiply-accu-

mulate operations (up to 2.4%), underscoring the model’s efficiency and feasibility. These findings validate the efficacy of

FabuLight-ASD in enhancing ASD performance through the integration of body pose data. FabuLight-ASD’s code and

model weights are available at https://github.com/knowledgetechnologyuhh/FabuLight-ASD.
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1 Introduction

Active speaker detection (ASD) aims to determine whether

a specific person within a video scene is speaking or silent

in each frame. This task is essential for various applica-

tions, such as speaker diarisation [10, 11], speech

enhancement [1], speaker localisation and track-

ing [6, 27, 28], speech separation [29], and human-robot

interaction [35, 36]. By accurately identifying when a

person is speaking or silent within a given timeframe, ASD

enables the extraction of valuable insights from audiovisual

data, driving advancements across multiple domains.

Recent advancements in lightweight and efficient ASD

approaches, such as Light-ASD [23], have shown promise

for deployment in embedded architectures, such as social

robots. These approaches allow fast and accurate deter-

mination of active speakers within a group, facilitating

more fluid and credible human-robot interactions. How-

ever, in scenarios involving large groups or where indi-

viduals are at a distance from the robot, the effectiveness of

ASD models that rely solely on facial and audio cues is

limited. To overcome this challenge, we propose Fabu-

Light-ASD (Face, audio, and body utilisation for Light-

weight Active Speaker Detection), an extension of Light-

ASD that integrates skeleton-based pose information from

the target individual. Figure 1 presents FabuLight-ASD’s

architecture. This enhancement allows the model to com-

plement cues from facial expressions and audio with body

pose information, improving its ability to accurately iden-

tify active speakers, even in scenarios, where facial nuan-

ces are not easily discernible. By leveraging multiple

modalities, FabuLight-ASD aims to improve the robustness

and accuracy of speaker detection, thereby advancing the
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capabilities of ASD systems for deployment in real-world

scenarios, including those involving social robots.

To capitalise on pose information for active speaker

detection, we opted to utilise the WASD (Wilder Active

Speaker Detection) dataset [32] as a benchmark. WASD

stands out for its reliable face position annotations and

comprehensive body position annotations. Moreover,

WASD presents a diverse range of challenging scenarios,

making it conducive to the development of more robust

ASD models. Notably, WASD features a high frequency of

speaking instances, which is beneficial for applications

requiring ASD models that are not biased toward non-

speaking individuals [6]. Figure 2 provides examples of

the various challenging scenarios in WASD.

The contributions of this paper are threefold: (1)

development of FabuLight-ASD, an ASD model that

integrates facial, audio, and pose information to enhance

speaker detection performance and robustness; (2)

demonstration of the relevance of human pose to detect the

source of speaking activity in challenging scenarios; and

(3) quantification of FabuLight-ASD’s efficiency in terms

of model size and computational load.

The structure of the paper is outlined as follows: Sect. 2

provides an overview of the datasets and existing approa-

ches to the active speaker detection task, highlighting their

limitations and discussing their potential for extension to

incorporate skeleton-based pose information as an addi-

tional input modality. In Sect. 3, we examine in detail the

architecture of Light-ASD. In Sect. 4, we introduce Fabu-

Light-ASD, our proposed approach, detailing how it inte-

grates human body pose information into the architecture

inherited from Light-ASD, and the necessary architectural

adjustments for this integration. Section 5 presents the

experiments and subsequent analyses conducted to assess

the impact of pose information on ASD performance.

Section 6 summarises the paper’s contributions and sug-

gests directions for future research.

2 Active speaker detection

The task of active speaker detection (ASD) traces back to

the pioneering work of Cutler and Davis [12], who employ

a time-delayed network to learn audiovisual correlations

from speech activity. Historically, ASD solutions relied on

small, handcrafted, and task-specific datasets. To address

the lack of an in the wild dataset for ASD, Roth et al. [31]

introduce AVA-ActiveSpeaker (Atomic Visual Action –

ActiveSpeaker), the first large-scale, task-agnostic dataset

for active speaker detection. This dataset comprises video

footage in various languages and resolutions, depicting

individual faces from different angles. It was initially

released for the ActivityNet Challenge 2019,1 where

competing models were ranked based on their mean aver-

age precision (mAP). Since then, mAP has become the

standard metric for comparing ASD models. Each record in

AVA-ActiveSpeaker representing an individual in a video

frame, assigned a label indicating whether the person is

(i) not speaking, (ii) speaking with their voice audible, or

(iii) speaking with other audio overlaying their voice.

Fig. 1 The architecture of FabuLight-ASD. The model determines

whether a target individual is actively speaking or silent in each video

frame based on the face crops and body poses of that individual across

all frames, along with the corresponding audio information. The

overall architecture builds on Light-ASD, with the body feature

encoder being a newly added component that improves performance

1 http://activity-net.org/challenges/2019/tasks/guest_ava.html.
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Since the release of AVA-ActiveSpeaker, numerous

approaches have been proposed to tackle in the wild

ASD [2–5, 9, 13, 19, 22, 23, 25, 30, 33, 38, 41, 42, 44–47].

However, all of these models have shown significant per-

formance decrease when dealing with small face crops

(face width smaller than 64 pixels). In scenarios where face

information is unreliable, such as low resolution, occlusion,

or when containing non-talking lip movements, body pose

information can provide additional cues to disambiguate

these cases [32], owing to the correlation between upper-

body limb movements and speech activity [16].

Despite being the first large-scale task-agnostic dataset

published for active speaker detection, AVA-ActiveS-

peaker has several drawbacks. These include a relative

scarcity of records featuring speaking activity, several

dubbed videos, a lack of support for pose-based active

speaker detection, and unreliable face boundary coordinate

information. While, AVA-ActiveSpeaker provides anno-

tations for the bounding coordinates of the face crop of a

target individual, it lacks corresponding coordinates for the

person’s body location. Although the body position can be

inferred from the scene context and head position infor-

mation, the reliability of the face bounding box coordinates

of AVA-ActiveSpeaker is problematic, posing challenges

for accurate body localisation. Specifically, the bounding

box coordinates in AVA-ActiveSpeaker are normalised to

the scene dimensions, ranging from 0 to 1, based on video

dimensions that do not correspond to the actual resolution

of the video files in the dataset. Consequently, denormal-

ising the face crop position information can result in

bounding boxes that either exclude the target person’s face

entirely or include it only partially. Figure 3 provides

examples of inaccuracies in the head bounding box

positions, including cases where the bounding box sur-

rounds something that is not the head of a person, mis-

placements due to incorrect normalisation or other reasons,

and additional bounding boxes nested within each other for

the same person.

To address the limitations of AVA-ActiveSpeaker, other

datasets have been published, such as Active Speakers in

the Wild (ASW) [21] and Wilder Active Speaker Detection

(WASD) [32]. WASD, in particular, offers a larger number

of records with speaking activity and reliable annotations

of both face and body boundary coordinates. Unlike AVA-

ActiveSpeaker, both ASW and WASD distinguish only

between cases of presence of speaking activity and absence

thereof. The correlation between body motion and speech

activity has long been studied [39] and has been exploited

for active speaker detection in well-controlled

datasets [7, 33].

2.1 WASD dataset overview

WASD stands out as the first published dataset for active

speaker detection in the wild that contains reliable pose

information. In this paper, we employ WASD as our

benchmark due to its high diversity and the availability of

reliable body boundary coordinate information.

WASD was compiled from 164 YouTube videos from

real-world interactions, each capped at a maximum length

of 15 min, following a similar practice established during

the creation of AVA-ActiveSpeaker. These videos were

segmented into clips of up to 30 s, triple the length of the

longest clip in AVA-ActiveSpeaker. The dataset comprises

a total of 30 h of video annotations, divided into training

Fig. 2 Examples of WASD videos of various categories
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and validation sets in an 80/20 proportion, as established by

Roxo et al. [32].

The WASD video selection aimed to ensure demo-

graphic balance across language, ethnicity, and gender.

Additionally, to maintain similar demographic representa-

tion, the video quality and face resolution across both

training and validation sets, the same clip can be shared by

both splits. This approach allows individuals in a scene to

be assigned to either split, often resulting in individuals

from the same scene being assigned to different splits,

which raises a notable concern for models that learn rela-

tionships between the target individual and other context

individuals present in the scene. For instance, a target

individual might be evaluated for their speaking activity in

the validation set; however, that same individual could

have already been introduced as a context individual during

the training of another target individual from the same

scene. This overlap can compromise the evaluation, as part

of the input for validation may resemble information the

model encountered during training. Nevertheless, this

aspect of the dataset does not adversely affect models that

focus solely on detecting the speaking activity of a target

individual without considering context individuals, which

is the case for the model proposed in this paper.

WASD videos are categorised into five groups based on

the challenge levels of visual and acoustic modalities (cf.

Fig. 2). These categories include ‘Optimal Conditions’

(OC), where there is minimal speech overlap and all

speakers are fully visible without occlusion, ‘Speech

Impairment’ (SI), characterised by frequent speech over-

lap, ‘Face Occlusion’ (FO), with prevalent cases of mouth

occlusion, ‘Human Voice Noise’ (HVN), featuring fre-

quent overlap of target individuals’ voices with

background human noise, and ‘Surveillance Settings’ (SS),

comprising camera footage with uncertain face visibility,

speech quality, or subject cooperation. Each category is

balanced in terms of annotation hours and demographic

representation. Roxo et al. [32] propose this categorisation

as a means to assess both the adaptability of ASD models

to different scenarios and the factors that are more relevant

to ASD. We leverage this categorisation to evaluate sce-

narios where human pose information is most beneficial

and those where its utilisation may not yield significant

benefits.

2.2 ASD solutions

The publication of the AVA-ActiveSpeaker dataset marked

the beginning of research on active speaker detection in the

wild. Since then, various approaches have been proposed,

including a baseline introduced by the authors of the

dataset [31], consisting of a two-stream end-to-end neural

network based on the MobileNet architecture [17].

Chung [9] and Zhang et al. [44] devise approaches that

surpass this baseline by employing two-stream end-to-end

neural networks with 3D convolutions in their visual

streams. However, these approaches are limited to short-

term windows, roughly 0.5 s long, and rely on large-scale

pre-training on lip synchronisation datasets.

To overcome these issues, Alcázar et al. [2] introduce

Active Speakers in Context (ASC), an ASD model that

employs self-attention to infer inter-speaker relations,

allowing for the consideration of long-term contexts, where

whole words could be pronounced, approximately 2.25 s.

This approach addresses the limitations of large-scale pre-

training on lip synchronisation datasets. However, ASC’s

Fig. 3 Examples of bounding

box inaccuracies in the AVA-

ActiveSpeaker dataset.

Correctly placed bounding

boxes are indicated in blue and

mistake cases in red bounding

boxes
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architecture is not end-to-end; each speaker’s visual and

acoustic embeddings have to be provided by a previously

trained short-term encoder to capture inter-speaker rela-

tionships accurately. After obtaining the embeddings, ASC

stacks them as a tensor and passes them through a self-

attention layer, which inferred pairwise inter-speaker

relations. Subsequently, the tensor output by that layer

serves as input to a temporal refinement layer, consisting of

a long short-term memory (LSTM). The LSTM acts as a

long-term pooling layer, refining the weighted features in

the tensor by directly attending to their temporal structure.

Notably, ASC was the first openly published ASD model,

driving research in the area forward and inspiring direct

extensions of the model [5, 22, 34, 46].

Three major enhancements to ASC have greatly

improved the performance of ASD models: firstly, the

utilisation of graph neural networks for more accurate

inference of inter-speaker relations [3, 4, 25]; secondly, the

incorporation of self-attention (or transformer-based) lay-

ers to enhance the temporal modelling capabilities of the

models [19, 38, 45, 47]; thirdly, the adoption of cross-at-

tention mechanisms to capture intermodal signals, thus

enhancing the audiovisual synchronisation capabilities of

the ASD models and enabling them to correlate the facial

movements of a target individual with the scene audio

without relying on facial information from other people in

the scene [13, 19, 20, 30, 38, 40–42].

It is worth noting that extending these models to include

human pose as an additional modality input would have

prohibitive impacts for a couple of reasons. Firstly, many

models rely on inferring inter-speaker relations for accurate

localisation of speaking activity. However, in WASD,

individuals in the same scene may be split between training

and validation sets. Therefore, to accurately learn inter-

speaker relations, data from the validation split could be

included as part of the model input during training, con-

taminating the evaluation process. Secondly, models that

leverage visual information exclusively from the target

individual utilise cross-attention mechanisms to enhance

the correlation between facial movements and scene audio.

However, the size of these cross-attention matrices grows

quadratically with the length of the scene. Since these

matrices correlate modalities pairwise, the number of

matrices also increases proportionally to the square of the

number of modalities. Given that WASD video blocks can

be more than three times longer than the longest video

block in AVA-ActiveSpeaker, employing architectures

with cross-attention mechanisms becomes impractical,

especially for embedded applications. Given these con-

straints, we chose to build upon Light-ASD [23], the only

high-performing ASD model at the time of writing that

does not employ cross-attention mechanisms and relies

exclusively on visual information from the target speaker

to detect speech activity.

3 Light-ASD model architecture

Instead of relying on complex models with high memory

and computational requirements, Light-ASD prioritises

resource efficiency while maintaining competitive perfor-

mance. This is accomplished through various strategies,

including simplified feature extraction, employing bidi-

rectional gated recurrent units (BiGRUs) [8] for cross-

modal modelling, and optimising the model architecture

for efficiency [23]. Notably, Light-ASD achieves compa-

rable results to state-of-the-art methods while significantly

reducing model parameters and floating-point operations

(FLOPs). Its modular design and reduced resource

requirements make it easily extendable to incorporate

additional modalities and well suited for deployment in

resource-constrained environments.

To minimise computational burden, Light-ASD does not

leverage the relational contextual information between

speakers. Instead, it relies solely on the information of a

single target candidate to accurately detect instances of

speech activity. Additionally, it is an end-to-end model that

does not require pre-training on external training data,

resulting in reduced processing time. The model receives a

sequence of facial crops of the target individual and the

corresponding audio from the video clip as input. The face

and audio inputs undergo separate processing by feature

encoders specific to each modality, with each encoder

producing a feature tensor. These tensors are then fed into a

detection module, which assigns a score to each frame,

indicating the likelihood of the target individual being

actively speaking.

3.1 Feature encoders

Light-ASD’s face feature encoder2 processes 3D stacks of

greyscale face images, each with uniform height and width

dimensions denoted by Nf . In contrast, the audio feature

encoder handles 2D maps consisting of sequences of vec-

tors containing Na ¼ 13 mel-frequency cepstrum coeffi-

cients (MFCCs). The length of the image stack represents

the number of frames and is denoted by Tf , while that of

the MFCC sequence is given by Ta ¼ 4 Tf . To ensure

alignment, the raw audio of the video clip is converted to

2 Liao et al. [23] use the term ‘‘visual feature encoder.’’ Here, we

replace it with ‘‘face feature encoder’’ to distinguish the processing of

facial information from other visual cues, such as body pose. Further

terminologies associated with facial information are adjusted

accordingly.
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MFCCs, and the sequence of MFCC vectors is padded or

truncated to match exactly four times the number of

frames. Additionally, both face and audio inputs have a

channel dimension, denoted as Cin, set to 1 for each

modality due to the greyscale nature of the images and the

single-channel representation of MFCCs. Consequently,

the input to the face feature encoder is a tensor of dimen-

sions 1 � Nf � Nf � Tf , whereas the input to the audio

feature encoder is a tensor of dimensions 1 � Na � Ta. For

simplicity, the image height and width dimensions as well

as the MFCC vector dimension are hereafter referred to as

spatial dimensions, while those associated with the image

stack and the MFCC sequence are termed temporal

dimensions.

Both feature encoders of Light-ASD share similar

architectures, as shown in Figs. 4a and 4b. Each encoder

comprises three modality-specific blocks followed by

pooling layers. Due to the relation between Ta and Tv, and

to ensure identical dimensions for both face and audio

features, the first two pooling layers of the audio feature

encoder perform a 1D max pool dimensionality reduction

on the temporal dimension, while the corresponding layers

of the face feature encoder perform a 2D max pool

dimensionality reduction operation on the spatial dimen-

sions. Furthermore, in both encoders, the last pooling layer

operates on the spatial dimensions; however, a global max

pool is performed in the face feature encoder, while a

global average pool is utilised in the audio feature encoder.

The architectural similarity also extends to the block

level, as shown in Figs. 4c and 4d. Each modality-specific

block includes two paths of feature extraction with con-

volutions of distinct kernel sizes (j ¼ 3 and j ¼ 5).

Instead of using a single high-dimensional convolution that

covers all tensor dimensions, the convolution is split into

two sequential convolutions, with the first one operating

along the spatial dimensions and the next along the tem-

poral dimension. This split in the convolution process

significantly reduces the number of parameters in the

model. Both spatial and temporal convolutions in either

path have the same kernel size. The tensors are padded

accordingly to maintain their dimensions after a convolu-

tion operation. Batch normalisation [18] and ReLU acti-

vation are performed after each convolution. The presence

of multiple feature extraction paths ensures a variety of

representations, which are then integrated by summing the

representations and applying a convolution with a kernel

size of 1. All convolutions have a stride of 1 except for the

spatial convolutions in both paths of the first block of the

face feature encoder, which has a stride of 2. Finally, the

number of input and output channels of each block are

aligned, with both feature encoders having 1 in-channel

and 32 out-channels in their first block, 32 in-channels and

64 out-channels in their second block, and 64 in-channels

and 128 out-channels in their last block. The aligned

architectures of the feature encoders allow them to output

face and audio features Uf and Ua with identical dimen-

sions, namely 128 � Tf .

3.2 Modality fusion and prediction

The fusion of the face and audio features Uf and Ua is

achieved through an element-wise sum. Subsequently, a

BiGRU is employed to capture the temporal context

inherent in the resulting multimodal representation Ufa.

Leveraging this temporal context, a fully connected (FC)

layer provides two scores for every frame of the video clip,

indicating the likelihood of the target individual actively

speaking or not in that frame. From these scores, Light-

ASD performs the prediction using a softmax function.

Auxiliary classification heads are also utilised for

training purposes in Light-ASD. These heads share a

similar structure, comprising a BiGRU and a fully con-

nected layer. However, unlike the main classification head,

which integrates all modalities, each auxiliary classifica-

tion head operates within a purely unimodal framework.

Therefore, in each auxiliary classification head, the features

output by the feature encoders are directly fed into the

corresponding BiGRU.

Light-ASD includes one auxiliary classification head for

each auxiliary loss. Notably, while the face auxiliary

classifier can determine if a target individual is speaking

solely based on facial information, the audio auxiliary

classifier can only determine if someone is speaking overall

when no facial cues are provided, resulting in high losses.

To address this issue, Light-ASD incorporates both the

main and face auxiliary losses in its training, excluding the

audio auxiliary loss.

For the computation of the loss function, a temperature

parameter s is utilised to adjust the calculation of the

probability of the target individual being actively speaking.

The probability of the target individual being actively

speaking at the tth frame is determined by

ptM ¼
exp rtM;spk=s

� �

exp rtM;spk=s
� �

þ exp rtM;sil=s
� � ; ð1Þ

where M represents the modalities used in the classification

head, and riM;spk and riM;sil are the scores assigned by that

classification head to the likelihood of the target individual

being actively speaking or silent, respectively. The tem-

perature s progressively decreases with each epoch,

inversely correlating with the epoch number, following the

formula
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s ¼ 1:3 � 0:02n; ð2Þ

where n is the epoch number. The temperature adjustment

facilitates the model’s exploration of the solution space,

aiding in the avoidance of local optima and guiding the

model towards a more refined solution.

Given a video clip with T frames or a batch thereof, one

loss LM is calculated for each classification head. Light-

ASD utilises the main multimodal loss Lfa and the face

auxiliary loss Lf . The loss LM is a cross-entropy loss,

calculated as follows

LM ¼ 1

T

XT
t¼1

gtlog ptM
� �

þ 1 � gtð Þlog 1 � ptM
� �� �

; ð3Þ

where gt is the ground truth about the status of the target

individual as an active speaker at the tth frame, with gt ¼ 1

indicating presence of active speech and gt ¼ 0 indicating

absence thereof. The total loss is given by

Ltotal ¼ Lfa þ 0:5Lf : ð4Þ

For evaluation purposes, the temperature is set to a fixed

value of s ¼ 1, and only the probability provided by the

multimodal classification is used to determine the presence

or absence of active speech. The variation in the value of s
and the probabilities output by the auxiliary classification

heads are utilised exclusively during training.

4 FabuLight-ASD model architecture

FabuLight-ASD harnesses body pose information to

enhance the inference of whether a target individual is

actively speaking. This capability proves particularly

valuable in scenarios where the person is distant from the

camera, resulting in a low resolution of their facial features.

4.1 Body pose stream

Alongside the face and audio feature encoders, FabuLight-

ASD incorporates a body feature encoder. The body pose

information is represented as a set of Nb body joints in the

COCO format [24].3 Given the body bounding box coor-

dinates provided in WASD, the HRNet [37] implementa-

tion within MMPose [26] is utilised to infer the set of joints

corresponding to the person’s body delimited by the

bounding box coordinates. Each joint is characterised by

three values: the horizontal position, the vertical position,

and a confidence score in the range 0; 1½ � indicating

HRNet’s confidence in the provided positions.

4.1.1 Body feature encoder

Drawing parallels with the architecture of Light-ASD,

FabuLight-ASD’s body feature encoder incorporates three

modality-processing blocks, as shown in Fig. 5. To match

the configurations of the face and audio feature encoders

inherited from Light-ASD, the number of in-channels and

out-channels of each body block in FabuLight-ASD cor-

responds to those in the other feature encoders, except the

in-channels of the first block, which must align with the

number of channels of the model input. This input com-

prises three channels representing each body joint’s hori-

zontal position, vertical position, and the confidence of the

pose estimation model regarding those coordinates.

Accordingly, FabuLight-ASD’s body blocks, from the first

to the last, have 3 in-channels and 32 out-channels, 32 in-

channels and 64 out-channels, and 64 in-channels and 128

out-channels.

To condense the feature representations of each skele-

ton, a global average pooling operation is applied across

the spatial dimension, thus reducing the initial 128 � Nb

feature representation to a single 128-dimensional feature

vector for each skeleton. Consequently, the body feature

encoder processes a sequence of human body pose skele-

tons with dimensions 3 � Nb � Tf as input, generating a

body feature representation Ub whose dimensions align to

those of Uf and Ua, specifically 128 � Tf .

4.1.2 Body block architecture

The body blocks within the encoder are based on the

spatial-temporal graph convolutional networks (ST-GCNs)

proposed by Yan et al. [43]. This choice is motivated by

three key factors. Firstly, ST-GCNs excel at capturing

dynamic patterns and interactions among body parts during

actions. By utilising them as the backbone of its body

feature encoder, FabuLight-ASD can discern relationships

between body joints, extracting relevant cues about a target

individual’s speaking activity. Secondly, although initially

bFig. 4 Architectures of Light-ASD feature encoders and their inner

blocks. Blocks are given by their number of in-channels Cin and out-

channels Cout, and in the face feature encoder, the stride s in both

spatial dimensions. Pooling layer parameters are the kernel size,

stride, and padding size. In the face feature encoder, pooling is

applied on both spatial dimensions, while in the audio feature

encoder, it is applied on the temporal dimension. The parameters of

the convolution layers within the blocks are the number of in-

channels, number of out-channels, kernel size, stride, and padding

size. The labels beside each convolution layer indicate whether the

convolution is applied on the spatial or temporal dimensions

3 We consider two possible ways of feeding the encoder with the

information of the body pose of a target individual: (i) the set of body

joints of the whole body, which encompasses Nb ¼ 17 joints in the

COCO format; or (ii) the set of body joints of the upper body,

comprising Nb ¼ 11 joints.
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designed for action recognition, ST-GCNs have proven

versatile and their core concept has been applied in other

tasks, such as active speaker detection [3, 4], where

dynamic relationships among individuals are represented

using graph convolutional networks (GCNs). In these

scenarios, individuals are depicted as graph nodes, with

edges illustrating their dynamic interactions. Thirdly, ST-

GCNs inherently leverage both spatial and temporal

information to model the relations between body joints.

This aligns with the architecture of the convolutional net-

works used in the modality-specific blocks of Light-ASD

feature encoders, indicating the feasibility of adapting ST-

GCNs to maintain the lightweight nature of the architecture

while effectively capturing the dynamics of body pose

information.

The poses of a person across a sequence of frames are

represented as a sequence of skeletons, each with consis-

tently numbered joints. This sequence of skeletons is rep-

resented as a graph G ¼ V ;Eð Þ, where V denotes the joints

of the skeleton sequence, with vt;i 2 V representing the ith

joint at the tth frame. The edge set E comprises two subsets:

ES, depicting joint connections within each frame follow-

ing the COCO format, and EF , linking each joint in a frame

to corresponding joints in adjacent frames. Formally, vt;i is

connected to both vt�1;i and vtþ1;i. Figure 6 illustrates the

spatial-temporal graph of a skeleton sequence.

The body blocks generate increasingly higher-level

feature maps on the graph. The convolutions employed in

these blocks consider the neighbourhood of each graph

node, encompassing intra-body connections and self-con-

nections represented through an adjacency matrix. The

concept of node neighbourhood is extended to include

nodes connected not only within the same frame, denoted

ES, but also across adjacent frames, denoted EF . Addi-

tionally, the spatial configuration partition strategy divides

the spatial neighbour set based on the distance between

nodes and their distances to the skeleton’s central node vt;c
at frame t. This partition distinguishes between concentric

and eccentric body part motions. It is represented by 2Rþ
1 adjacency matrices A�R; � � � ;AR, where R is the maxi-

mum distance threshold for considering node connections.

Specifically, nodes are included in an adjacency matrix if

they lie within at most R units from each other. Each

adjacency matrix Ar ¼ Ar
ij

h i
Nb�Nb

is defined as

Ar
ij ¼

1; if r ¼ 0 and i ¼ j

1; if r\0; d vt;i; vt;j
� �

¼ r;

and d vt;i; vt;c
� �

6 d vt;j; vt;c
� �

1; if r[ 0; d vt;i; vt;j
� �

¼ r;

and d vt;i; vt;c
� �

[ d vt;j; vt;c
� �

0; otherwise

8>>>>>>>><
>>>>>>>>:

: ð5Þ

Here, dð�; �Þ represents the smallest distance between two

nodes. Figure 7 illustrates the labelling of the skeleton

graph nodes according to the spatial configuration partition.

Each body block takes as input a tensor X 2 RCin�Nb�Tin

and produces a tensor Y 2 RCout�Nb�Tout . Each block is

associated with a spatial kernel size jS and a temporal

kernel size jT . The former is set at jS ¼ 2Rþ 1, repre-

senting the number of spatial configuration partitions,

while the latter, although unrelated to the adjacency

matrices, is set to be identical to jS. Akin to Light-ASD’s

modality-specific blocks, FabuLight-ASD’s body blocks

incorporate two paths of feature extraction: one utilising

kernel sizes jS ¼ jT ¼ 3, and the other with jS ¼ jT ¼ 5.

The determination of jS for each path involves setting R ¼
1 for the former and R ¼ 2 for the latter, guided by the

relation jS ¼ 2Rþ 1, which defines the spatial kernel size

based on the number of spatial configuration partitions.

Both paths comprise a graph convolution followed by a

temporal convolution, as shown in Fig. 8. The graph con-

volution over an input X 2 RCin�Nb�Tin occurs in two

stages: Firstly, a 2D convolution yields M 2 RjS�Cout�Nb�Tin

using a learnable weight tensor W with a kernel of size 1.

Next, via a tensor contraction operation, the spatial-tem-

poral graph convolution generates a feature tensor Z 2
RCout�Nb�Tin whose channel-wise slices Zc 2 RNb�Tin are

given by

Zc ¼
XR
r¼�R

Brð Þ>Mr
c; ð6Þ

where Mr
c 2 RNb�Tin represents a slice of M, and Br 2

Fig. 5 FabuLight-ASD’s body

encoder. The parameters of each

body block indicate the number

of in- and out-channels
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RNb�Nb is a learnable matrix, which is initialised according

to

Br ¼ Drð Þ�
1
2Ar Drð Þ�

1
2; ; ð7Þ

where Ar is the adjacency matrix defined by Eq. 5, and Dr

is a diagonal normalisation matrix, with

Dr
ii ¼

P
k Ar

ik

� �
þ e. Here, e is set to 0.001 to prevent empty

rows in Dr. Subsequently, the temporal convolution entails

a 2D convolution with kernel dimension jT � 1 over Z,

resulting in a feature representation Y 2 RCout�Nb�Tout . The

feature representations produced by both paths are then

integrated via summation followed by a convolution with a

kernel size of 1. Notice that each learnable parameter

described in this paragraph has a copy in every path of all

body blocks of FabuLight-ASD, which are initialised

identically but fine-tuned differently.

Batch normalisation is applied after each convolution

operation and as the initial operation on the input data,

before it passes through the first body block. The ReLU

activation function is applied after the batch normalisation

following the graph convolution and at the end of each

block.

4.2 Modality fusion and prediction

Similarly to Light-ASD, FabuLight-ASD features one main

classification head and some auxiliary classification heads,

which are exclusively used for training purposes. In Light-

ASD, the main classification head generates scores based

on the multimodal representation obtained by fusing the

features produced by both feature encoders, namely Uf and

Ua. Additionally, Light-ASD has a single auxiliary classi-

fication head, responsible for generating scores solely

based on the face feature Uf . In contrast, FabuLight-ASD

processes three input modalities: face (as a sequence of

face crops of the target individual), audio (as an MFCC

tensor derived from the audio clip), and body pose (as a

spatio-temporal graph of the body joints of the target

individual), allowing fusion by combining them. The main

classification head of FabuLight-ASD generates scores

based on the multimodal representation provided by fusing

all modality features, namely Uf , Ua, and Ub. Furthermore,

FabuLight-ASD includes two auxiliary classification heads

that utilise unimodal features, specifically face and body.

FabuLight-ASD lacks an audio auxiliary classification head

for the same reason as Light-ASD, as discussed in

Sect. 3.2.

Given a set of modalities M, a classification head pro-

vides two scores, rtM;spk and rtM;sil, for every frame t of an

Fig. 6 Spatial-temporal graph representing a sequence of body poses.

Body joints are marked in blue. Edges indicating joint connections

within the same frame are coloured in orange. Temporal connections,

which link each joint in a given frame to the corresponding joints in

adjacent frames, are represented in green. Differing alpha channels

are used to indicate body pose skeletons in different frames and for

visualisation purposes

Fig. 7 Spatial-configuration-based node partition of the body pose

skeleton graph using the COCO pose template. The left side illustrates

the partitioning for the whole body, while the right side focuses on the

upper body. For the COCO template, ST-GCN treats the nose node as

the central node vt;c for determining the spatial configuration. The

spatial configuration is the same for every time frame t. In this

example, the right shoulder node is taken as the root node vt;q. Nodes

vt;i are marked based on their distance from the root node and whether

they lie closer or further from vt;c than the root node. This example

represents the case in which R ¼ 2 and the spatial kernel size is

jS ¼ 5. Given this configuration, the adjacency matrix is determined

according to Eq. 5
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input video footage, indicating the likelihood of a target

individual being actively speaking or not in each frame

respectively. Akin to Light-ASD’s classification procedure,

unimodal features are summed element-wise. Subse-

quently, a BiGRU is applied to the resulting sum, followed

by an FC layer that outputs the scores. Both the main

classification head and the auxiliary ones can predict the

speaking activity of an individual across a sequence of

frames using Eq. 1. The predictions of all classification

heads and the temperature parameter s are used exclusively

during training. However, during evaluation, only the

prediction obtained from the main classification head is

employed, and no temperature adjustment is applied.

Given the probabilities ptfab, ptf , and ptb, computed from

the scores output by the classification heads, the corre-

sponding cross-entropy losses are calculated using Eq. 3.

The total loss of the model is then determined by

Ltotal ¼ Lfab þ 0:25Lf þ 0:25Lb: ð8Þ

5 Experiments and analyses

In this section, we present a detailed account of the

experiments conducted to evaluate the performance of

FabuLight-ASD. We first outline the implementation

details and then compare FabuLight-ASD to the baseline

Light-ASD model using the WASD dataset. Next, we

provide a detailed performance breakdown to understand

the impact of various factors such as face resolution, pose

estimation confidence, and the number of speakers on the

model’s performance. Finally, we analyse the efficiency of

the models in terms of parameter count and multiply-ac-

cumulate (MAC) operations, demonstrating that the addi-

tional computational cost is negligible.

5.1 Implementation details

For the following experiments, we utilised the default

parameters of Light-ASD. Namely, batches were built by

combining videos with the same number of frames as long

as the total number of their frames did not surpass 2000,

training was performed until a maximum of 30 epochs,

FabuLight-ASD was optimised with ADAM with an initial

learning rate of 10�3 and learning decay rate of 0.05 per

epoch.

5.2 Evaluation of fabuLight-ASD

The results shown in Table 1 provide a comparative anal-

ysis between the performances of two variants of Fabu-

Light-ASD – one that utilises information from the

whole body of a target individual and one that employs

information only from their upper body – and ASD models

evaluated by Roxo et al. [32] on the WASD dataset.

Among these models, Roxo et al. [32] include two adap-

tations of TalkNet, denoted as TalkNet (body ? audio) and

TalkNet (face ? body ? audio). The former adaptation

receives as input a stack of greyscale body crop images and

the audio of the video clip but no face crops, whereas the

latter uses input data from all three modalities. It is worth

noting that Roxo et al. [32] do not provide the overall mean

average precision (mAP) performance of those adaptations

in their paper.

We evaluated the performance of both FabuLight-ASD

variants on the WASD dataset in terms of mAP across

different categories. Notably, both variants achieved higher

overall performance than every other model, indicating the

benefit of incorporating body pose information into the task

of determining whether a given person is the source of

some perceived speech activity. Furthermore, the upper-

Fig. 8 Architecture of FabuLight-ASD’s body block. The parameters

of each component follow the description given in Fig. 4. Ten-

sorContr stands for tensor contraction, representing the operation

described by Eq. 6

Neural Computing and Applications

123



body variant presents a slight enhancement in overall

performance compared to the whole-body variant. Fabu-

Light-ASD outperforms every other model in each video

category, except for surveillance settings (SS), which are

the most challenging scenarios in WASD. In this category,

TalkNet (face ? body ? audio) achieves the highest per-

formance with 81.5% mAP, compared to 77.3% and 77.1%

for the upper-body and whole-body variants of FabuLight-

ASD, respectively. This high performance in surveillance

settings, however, occurs at the expense of the model’s

performance in the remaining categories. Additionally,

both TalkNet adaptations are very inefficient compared to

FabuLight-ASD, as they include additional cross-attention

modules that considerably increase the number of multiply-

accumulate (MAC) operations and the models’ number of

parameters.

Overall, results indicate the benefit of body pose infor-

mation across all video categories. The noticeable

improvements shown by FabuLight-ASD in conditions

with speech impairment (SI), face occlusion (FO), and

human voice noise (HVN) suggest that the inclusion of

body pose information as a spatial-temporal body pose

graph is particularly useful in these scenarios. While stacks

of greyscale body crop images improve performance in

surveillance settings, they do so at the expense of perfor-

mance in other video categories. Moreover, the use of

spatial-temporal body pose graphs not only enhances per-

formance in most scenarios but also keeps the model

lightweight, highlighting the advantages of FabuLight-

ASD.

5.3 Performance breakdown

To gain deeper insights into FabuLight-ASD’s perfor-

mance compared to Light-ASD,4 we divided the validation

set of WASD into mutually exclusive groups based on key

factors: face resolution, pose estimation confidence, the

number of individuals in a scene, and the temporal span of

the inputs. By examining the mAP across these divisions,

we aim to identify how variations in these conditions

impact active speaker detection. This approach allows us to

better understand the strengths and limitations of Fabu-

Light-ASD in comparison to Light-ASD, and to evaluate

the effectiveness of incorporating body pose information.

Table 2 summarises the performance of Light-ASD and

FabuLight-ASD across various subsets of WASD accord-

ing to the specific ablation criteria detailed in Sects. 5.3.1

to 5.3.4.

It is important to note that the ablation criteria might

affect videos from different categories in varied ways.

Some categories might contain videos with a higher num-

ber of individuals that align more with one criterion than

another. This results in a different number of samples being

evaluated category-wise, which in turn can lead to the

overall mAP metric becoming more biased towards videos

from the category more represented by a given ablation

criterion. Additionally, some ablation criteria may not

apply to certain categories. For example, there are no

samples in the subset of ‘‘speech impairment’’ videos,

where an individual received a high average confidence

Table 1 Comparison of performance on the WASD dataset for

various ASD models, as obtained by Roxo et al. [32], and for two

variants of FabuLight-ASD. Values represent the mean average

precision (mAP) of each model across WASD categories: OC

(optimal conditions), SI (speech impairment), FO (face occlusion),

HVN (human voice noise), and SS (surveillance settings). Citations

beside model names refer to the papers, where the models were

introduced. All results were obtained by Roxo et al. [32]. The highest

mAPs within each category are marked in bold. Italicised values

indicate mAPs higher than those of both FabuLight-ASD variants

Model OC SI FO HVN SS Overall

ASC [2] 91.2 92.3 87.1 66.8 72.2 85.7

MAAS [3] 90.7 92.6 87.0 67.0 76.5 86.4

ASDNet [22] 96.5 97.4 92.1 77.4 77.8 92.0

TalkNet (face ? audio) [38] 95.8 97.5 93.1 81.4 77.5 92.3

TS-TalkNet [19] 96.8 97.9 94.4 84.0 79.3 93.1

Light-ASD [23] 97.8 98.3 95.4 84.7 77.9 93.7

TalkNet (body ? audio) [32] 91.1 95.5 88.4 73.1 75.0 —

TalkNet (face ? body ? audio) [32] 96.9 98.1 95.4 83.8 81.5 —

FabuLight-ASD (upper body) 97.7 98.6 96.1 86.4 77.3 94.3

FabuLight-ASD (whole body) 98.1 98.6 96.0 85.6 77.1 94.0

4 Despite TalkNet (face ? body ? audio) achieving superior

performance in surveillance settings, Light-ASD achieved the highest

overall mAP among the models evaluated by Roxo et al. [32]. Light-

ASD was deliberately included in this section due to its similar

architecture to FabuLight-ASD, facilitating a comparative analysis

and providing insights into the impact of body pose information

across different subsets of the WASD dataset.
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Table 2 Performance breakdown across various conditions, where ‘‘None’’ in the Body column corresponds to Light-ASD, and ‘‘Upper’’ and

‘‘Whole’’ correspond to the two variants of FabuLight-ASD. The bold indicates the highest mAP within each category for each performance

breakdown condition

Ablation Body OC SI FO HVN SS Overall

Face resolution

Small None 96.9 99.9 93.7 48.1 77.7 81.7

Upper 97.3 99.8 92.2 60.5 75.5 80.2

Whole 97.3 99.9 92.0 59.7 77.2 81.7

Medium None 97.9 96.7 93.4 86.8 78.4 93.0

Upper 98.0 97.2 95.2 88.0 79.7 93.7

Whole 98.0 97.4 95.5 88.6 77.6 93.9

Large None 97.8 98.9 97.5 84.4 77.3 97.2

Upper 98.3 99.3 97.3 84.6 73.2 97.4

Whole 97.6 99.2 97.3 85.5 72.2 97.3

Upper-body pose estimation confidence

Low None 88.3 97.5 97.0 79.6 64.1 82.8

Upper 87.9 96.4 96.4 76.0 68.8 83.8

Whole 86.5 96.5 95.4 77.6 56.6 80.3

Medium None 95.5 98.5 96.2 86.1 72.9 93.4

Upper 96.8 98.8 96.4 86.5 73.2 93.8

Whole 95.2 98.8 96.1 87.1 72.6 93.9

High None 98.5 97.2 94.8 83.2 84.5 94.3

Upper 98.6 97.9 95.7 85.1 82.1 94.6

Whole 98.5 97.9 96.1 86.0 83.8 95.2

Whole-body pose estimation confidence

Low None 95.5 98.7 97.6 84.4 71.4 95.6

Upper 96.9 98.9 97.9 85.0 74.2 96.1

Whole 94.7 98.9 97.4 85.0 71.3 95.8

Medium None 98.1 97.3 94.6 85.3 79.6 92.8

Upper 98.4 97.9 95.4 86.2 77.4 93.0

Whole 98.2 97.9 95.7 87.5 78.8 93.6

High None 98.1 — 95.5 80.0 77.5 92.4

Upper 97.4 — 95.0 81.7 79.7 92.4

Whole 97.7 — 95.4 82.5 77.4 92.8

Number of speakers

Two None 98.4 98.7 97.4 86.3 83.8 95.6

Upper 98.6 99.0 97.8 86.6 83.8 96.1

Whole 98.5 99.1 97.6 87.7 83.0 96.0

Three None 92.9 98.9 93.2 77.8 74.2 90.3

Upper 93.4 99.1 93.6 81.3 72.4 90.1

Whole 91.4 99.1 94.5 81.2 73.7 91.1

At least four None 98.2 96.8 89.4 85.0 51.8 92.7

Upper 98.8 97.6 90.9 86.1 53.3 93.7

Whole 98.2 97.5 92.1 87.4 54.4 93.9

Input temporal span

Short None 95.6 99.5 — 85.2 81.8 88.9

Upper 97.0 99.0 — 83.6 77.8 88.9

Whole 97.8 98.8 — 86.5 80.2 90.6
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score for the estimation of their whole-body joints (cf.

Table 2).

5.3.1 Face resolution

We divide the data into three groups based on face reso-

lution: large faces (widths greater than 128 pixels), middle

faces (widths between 64 and 128 pixels), and small faces

(widths smaller than 64 pixels). This division helps to

understand the impact of face image size on the model’s

performance. The category-wise mAP is evaluated for each

group, allowing us to see how the model handles different

face resolutions under varying conditions.

The results in Table 2 indicate a clear benefit in utilising

body pose information in scenarios with human voice

background noise, especially when the resolution of the

face of the target individual is rather small. Light-ASD

presents higher performance for videos with face occlusion

and in surveillance settings, yet this is somewhat erratic, as

its performance is higher when face resolutions are either

small or large. On the other hand, when the face of the

target individual presents a medium size, it seems that the

pose information has a positive impact, especially that of

the upper body. Moreover, in the less challenging scenarios

(OC and SI), the upper-body version of FabuLight-ASD

slightly outperforms Light-ASD regardless of the face

resolution.

In addition, when comparing the upper-body and whole-

body variants of FabuLight-ASD, specific trends emerge

regarding face resolution. For small face resolutions, both

variants perform similarly across most categories, except in

HVN, where the upper-body variant shows superior clas-

sification accuracy. However, in SS, the whole-body vari-

ant performs better, resulting in its overall superiority in

small-resolution samples.

For medium or large face resolutions, the trends shift.

The whole-body variant performs better in the HVN cate-

gory, while the upper-body variant excels in SS. In the OC

category, both variants perform similarly when the face

resolution is medium, but the upper-body variant gains an

advantage when the face resolution is large. Overall, both

variants perform comparably for medium and large face

resolutions.

5.3.2 Pose estimation confidence

For pose estimation confidence, we evaluate the model’s

performance using two sets of body joints: the upper-body

joints and the whole-body joints. Each set is divided based

on the average confidence score of the joints: high confi-

dence (average confidence score of the selected set of body

joints greater than 0.75), medium confidence (average

confidence score between 0.5 and 0.75), and low confi-

dence (average confidence score lower than 0.5). This

evaluation reveals how the reliability of pose information

affects detection accuracy in different WASD categories.

As expected, no significant positive impact has been

found by utilising human body pose information with a low

average confidence score. However, while this generally

leads to a lower performance for both variants of Fabu-

Light-ASD compared to Light-ASD, the upper-body vari-

ant performs comparatively better in surveillance settings

(cf. Table 2). This result may be influenced by the char-

acteristics of the videos in this category. It is also important

to note that the surveillance settings category contains a

disproportionately higher number of samples with low-

confidence body pose estimations compared to other cate-

gories. This higher sample size in surveillance settings

likely contributes to the upper-body variant’s overall

higher mAP. In other words, the better performance of the

upper-body variant in this category biases its overall

results. Thus, while low-confidence pose information does

not generally improve performance, its impact on the

upper-body variant seems less detrimental in specific

contexts like surveillance settings, where pose data might

still provide useful contextual cues despite lower confi-

dence scores.

Conversely, the results in Table 2 show that the utili-

sation of medium-confidence and high-confidence upper-

body poses is beneficial in determining whether a target

individual is the source of some speech activity. Further-

more, although the utilisation of whole-body pose infor-

mation is not promising when there is medium average

Table 2 (continued)

Ablation Body OC SI FO HVN SS Overall

Medium None 98.5 97.6 95.1 82.1 72.1 94.2

Upper 98.3 97.5 96.0 85.2 82.5 95.1

Whole 97.5 97.2 95.3 84.1 61.7 93.6

Long None 97.7 98.3 95.5 85.1 78.3 93.7

Upper 97.6 98.7 96.1 86.7 77.4 94.3

Whole 98.1 98.7 96.1 85.9 78.0 94.1
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confidence in the body joints of the upper body, the whole-

body pose information presents a positive impact in active

speaker detection if the upper-body joints of the target

individual present a high confidence score on average.

Counterintuitively, in surveillance settings, Light-ASD

outperforms both variants of FabuLight-ASD when there is

an average high confidence in the upper-body joints of the

target individual. However, this is not reflected in the

overall mAP, which indicates that this high performance of

Light-ASD might be due to an exceptional case.

Finally, no useful analysis can be derived from the

performance breakdown based on whole-body joint aver-

age confidence scores. Given how this criterion is calcu-

lated, several cases categorised as low average confidence

have been categorised as medium or high average confi-

dence according to the upper-body pose ablation criterion.

Consequently, the results for the low-confidence whole-

body pose criterion tend to be close to those of the med-

ium-confidence upper-body pose criterion, and to a lesser

extent to those of the high-confidence upper-body pose

criterion. Similarly, the results for the medium-confidence

whole-body pose criterion closely resemble those of the

cases that fit into the high-confidence upper-body pose

criterion. Furthermore, the number of dataset samples that

fit the high-confidence whole-body pose criterion is rather

small (cf. the lack of SI samples that fit this criterion),

leading to less informative results.

When comparing the FabuLight-ASD variants based on

pose estimation confidence, a few key patterns emerge. For

samples with low upper-body confidence, both variants

underperform relative to Light-ASD, though the upper-

body variant excels in SS and generally outperforms the

whole-body variant across most categories, except in HVN.

At medium confidence levels, both variants perform simi-

larly overall. Still, the upper-body variant shows clear

advantages in OC, FO, and SS. In contrast, the whole-body

variant performs better in HVN when whole-body confi-

dence is low.

The whole-body variant proves more effective at high

upper-body confidence, especially in challenging cate-

gories like FO, HVN, and SS, consistently outperforming

the upper-body variant. While the whole-body variant also

performs better in the small subset of samples with high

whole-body confidence, particularly in HVN, the upper-

body variant remains superior in SS. Overall, the whole-

body variant tends to perform better as pose confidence

increases, particularly in more challenging scenarios.

5.3.3 Number of speakers

We divide the WASD validation set based on the number

of individuals present in a scene: two individuals, three

individuals, and four or more individuals. This analysis

reveals how the complexity of the scene, in terms of the

number of speakers, influences the model’s ability to detect

active speakers accurately. The category-wise mAP is

calculated for each group to understand the performance

variations across different scenarios.

Results in Table 2 reveal an improvement in active

speaker detection when either upper- or whole-body pose is

employed in non-surveillance videos. Specifically, there is

a slight improvement in less challenging scenarios (OC and

SI) and a much higher improvement in scenarios with face

occlusion and human voice background noise. Although

Light-ASD performs better in surveillance settings, this is

particularly true in videos with three speakers, but the

performance difference is noticeably small in videos with

only two speakers. Finally, in videos with four or more

speakers, both variants of FabuLight-ASD outperform

Light-ASD in every video category, especially in the most

challenging scenarios.

For scenes with two speakers, both FabuLight-ASD

variants perform similarly in OC, SI, and FO categories.

However, the whole-body variant outperforms in the HVN

category, while the upper-body variant excels in SS.

Overall, both variants perform comparably in two-speaker

scenes.

In scenes with three speakers, the upper-body variant

has an advantage in OC samples, but the whole-body

variant surpasses it in both FO and SS, leading to better

overall performance. In scenes with four or more speakers,

the whole-body variant consistently outperforms the upper-

body variant, particularly in more challenging categories

like FO, HVN, and SS, though the upper-body variant

retains an edge in OC samples.

5.3.4 Temporal span

To examine the effect of input temporal span on model

performance, we categorised the WASD validation set into

three groups: short (up to 300 frames), medium (301 to 600

frames), and long (more than 600 frames). The temporal

span, represented as Tf in Sect. 3.1, corresponds to the size

of the input modalities for both FabuLight-ASD and Light-

ASD. By evaluating the category-wise mAP for each

group, we can assess how varying input durations affect the

performance of both models.

The performance breakdown in Table 2 shows that for

short temporal spans, whole-body pose data provides

greater advantages than upper-body data, particularly in

OC and HVN, where the whole-body version of FabuLight-

ASD performs best. For medium temporal spans, the

upper-body version of FabuLight-ASD outperforms both

the whole-body variant and Light-ASD, especially in

challenging categories like FO, HVN, and SS. It achieves
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the highest performance overall across all temporal span

groups. For long temporal spans, both FabuLight-ASD

variants either outperform or remain competitive with

Light-ASD in every category except SS, where Light-ASD

holds a slight advantage. Nevertheless, the upper-body

version of FabuLight-ASD achieves the highest overall

performance for long temporal spans.

These findings indicate that whole-body pose data is

more effective for shorter sequences, while upper-body

pose data becomes increasingly valuable in medium and

long temporal spans, particularly in challenging categories

like FO, HVN, and SS. The upper-body version of Fabu-

Light-ASD performs best in medium temporal spans and

maintains strong performance in long spans, especially

when compared to Light-ASD.

For short temporal spans, the upper-body variant out-

performs the whole-body variant in key categories,

including OC, HVN, and SS, resulting in better overall

performance. For medium temporal spans, the upper-body

variant consistently surpasses the whole-body variant

across all categories and overall. In long temporal spans,

the upper-body variant continues to excel in HVN samples,

while the whole-body variant performs better in OC and

SS. Overall, both variants perform similarly for long tem-

poral spans.

5.4 Model efficiency

Light-ASD stands out as a high-performing ASD model

known for being efficient both spatially (retaining a small

number of parameters – 1,021 million) and temporally

(executing a low number of operations – 204 million

MACs5 per input frame). Table 3 demonstrates that the

inclusion of a pose feature encoder increases the parameter

count to 1,300 million, marking a 27.3% rise solely

attributable to the body feature encoder. Notably, the

substitution in the detector component has not altered the

parameter count. In other words, the addition of one input

modality showed no impact on the parameters of the

multimodal fusion mechanism, which comprises a bidi-

rectional GRU and a fully connected layer. The increase in

parameters is identical in both variants of FabuLight-ASD

due to identical architectures.

The efficiency of both FabuLight-ASD variants is

highlighted not only by the modest rise in parameter count

compared to Light-ASD but also by the negligible growth

in MAC operations. Table 3 indicates that incorporating

and processing a sequence of whole-body skeleton graphs

results in a 2.4% increase in MAC operations. Furthermore,

this increase diminishes to 1.5% when using information

solely from the upper body. These slight increments in

MAC operations primarily stem from the vast majority of

operations being performed in the convolutions within the

face feature encoder. This underscores the benefits of using

pose skeleton graphs as a representation of the body pose

modality instead of sequences of whole-body images of the

target individual, which would significantly increase the

number of MAC operations executed by the model. It is

important to note that these efficiency comparisons are

based solely on the model architecture as evaluated by Liao

et al. [23], and do not include additional preprocessing

steps such as body pose estimation or human face detec-

tion, which could impact overall computational efficiency

in real-world applications. Nevertheless, the inherently low

number of parameters and computational cost of Fabu-

Light-ASD may offset the effects of these additional steps.

6 Conclusion

This study underscores the potential of integrating multiple

modalities including body pose information to improve the

accuracy and robustness of active speaker detection (ASD)

models. We have introduced FabuLight-ASD, a light-

weight model that combines facial, audio, and body pose

data to achieve improved speaker detection performance.

Through extensive experiments on the WASD dataset, we

demonstrate the effectiveness of incorporating body pose

information, particularly in challenging scenarios like

multiple speakers or face occlusion. FabuLight-ASD out-

performs other ASD models, especially in categories such

as face occlusion and human voice background noise,

highlighting the significance of body pose data for handling

complex conditions, while maintaining computational

efficiency.

Our research paves the way for future investigations in

several promising directions. These include exploring real-

time developments of FabuLight-ASD in social robots to

validate its utility in diverse environments, particularly in

multiparty human-robot interaction (MHRI) scenarios,

where the system must identify active speakers among

multiple participants. The utilisation of datasets with ego-

centric perception videos that include active speaker

detection tasks [14, 15] would also be beneficial for further

Table 3 Impact of inclusion of body pose information as an input

modality on model efficiency

Model Params (M) MACs (M)

Light-ASD 1,021 204

FabuLight-ASD (upper) 1,300 207

FabuLight-ASD (whole) 1,300 209

5 This value was calculated with the ‘calflops’ Python package found

at https://pypi.org/project/calflops/.
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testing and enhancing the model’s performance. Further-

more, leveraging body pose information to reduce reliance

on face information could allow for smaller face dimen-

sions as inputs to the face feature encoder, thereby

decreasing the model’s MAC operations and improving

efficiency. Finally, implementing adaptive weighting

techniques to account for the varying contributions of each

modality based on their quality could further enhance the

model’s robustness. These avenues of future work will not

only refine FabuLight-ASD but also contribute to the

broader field of active speaker detection, ultimately

enabling more effective and adaptive human-robot

interactions.
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