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A B S T R A C T

Natural language processing and vision tasks have recently seen large improvements through the rise of
Transformer architectures. The high-performing large language models (LLMs) benefit from large textual
datasets that are numerously available online. However, action and bidirectional action-language tasks are
less developed, as these require more specific and labeled data. Therefore, we aim at enabling these robotic
action capabilities for a pretrained LLM, while maintaining high efficiency with regards to the required training
time and data size. To achieve this, we split up a Transformer-based LLM and insert a multimodal architecture
into it. Specifically, we split a pretrained T5 LLM between its encoder and decoder parts, to insert a crossmodal
Transformer component of a Paired Transformed Autoencoders (PTAE) bidirectional action-language model.
The experiments are conducted on a new dataset, consisting of unimodal language translation and crossmodal
bidirectional action-language translation. The natural language capabilities of the original T5 are re-established
efficiently by training the crossmodal Transformer, which requires only one 5.7 millionth of the T5 model’s
original training data. Furthermore, the new model, called CrossT5, achieves high accuracy for the vision- and
language-guided robotic action tasks. By design, the CrossT5 agent acts robustly when tested with language
commands not included in the dataset. The results demonstrate that this novel approach is successful in
combining the advanced linguistic capabilities of LLMs with the low-level robotic control skills of vision-action
models. The code is available at this URL: https://github.com/samsoneko/CrossT5.
. Introduction

Recently, large language models (LLMs) have gained popularity
s versatile and powerful approaches to general purpose language
rocessing. Being merely trained on large text corpora, they are capable
f a wide range of tasks, including text generation, translation, classifi-
ation and analysis as well as holding natural conversations, answering
uestions and generating action plans for robotic tasks. Popular imple-
entations include PaLM 2 (Anil et al., 2023), LLaMA (Touvron et al.,
023) and GPT-4 (OpenAI, 2023), with the latter reaching a size of
pproximately 1 trillion parameters, as well as publicly available appli-
ations like ChatGPT (OpenAI, 2023), Bard (Anil et al., 2023) and Bing
hat (OpenAI, 2023) and open-source models such as BLOOM (Scao
t al., 2023) and T5 (Raffel et al., 2020).

LLMs are based on the Transformer model (Vaswani et al., 2017),
n encoder–decoder architecture incorporating self-attention (Lin et al.,
017). At its core, the Transformer converts one sequence of tokens
o another, making it ideal for handling natural language. Bringing
hese capabilities of LLMs into the robotics domain to allow people
ommunicate with a robot is not a trivial task. Through additional
nput processing, the architecture can also be adapted or extended for
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other modalities as well as crossmodal applications to translate between
different modalities. Most of the popular multimodal implementations
focus on adding visual capabilities such as image captioning, object
recognition and visual information extraction to the Transformer archi-
tecture (Li et al., 2023; Zhu et al., 2023; Chen et al., 2023). Also, many
implementations only deal with either image recognition/description
(vision to language) or image generation (language to vision). Ap-
proaches that handle both directions rely on separate models trained
for their respective tasks sharing their parameters (Zhang et al., 2021).
Furthermore, they often require large-scale image–text datasets and
only cover tasks on static images rather than image sequences or
features extracted from them (Lee et al., 2023).

LLMs have a great potential for human–robot interaction (HRI)
(Billing et al., 2023), while requiring more modalities than just vision
and language to be combined. A robot perceives its physical environ-
ment via image sequences, proprioception or tactile input to carry out
coordinated action. Through language, a robot can understand human
commands and describe information on its own, hence, a robot should
be able to translate between language and action in both directions,
showing the same crossmodal behavior as expressed by humans. A
common way to augment LLMs for robotic multimodality is via early
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Fig. 1. Multimodal integration architectures combining LLMs with robotic behavior. (a) Integration in many conventional architectures is via the LLM’s input and output tokens.
(b) Our concept uses a crossmodal transformer (CMT) for intra-LLM integration.
fusion, where the robotic sensory input is converted into a textual
format and is passed to the LLM as tokens of a uniform language
prompt, as shown in Fig. 1a. Also the LLM’s outputs are tokens, which
may not be optimal to encode a robot’s actions. Due to the novel
tokens, fine-tuning of the LLM is highly advised (Brohan et al., 2023b).
However, high-quality large datasets for multiple robotic modalities are
scarce (Awais et al., 2023). Therefore, LLMs are being augmented with
external tools (Mialon et al., 2023), and for human–robot collabora-
tion it has been suggested to combine a nearly modality-independent
physical task model with a dedicated dialogue model (Kleer et al.,
2023).

Apart from the architecture, the most important factor influencing
the performance of a model is the dataset. For language tasks, such
as translation and summarization, there is an abundance of large-scale
datasets.1 For crossmodal vision and language processing on static
images, datasets are also ready for use (Lin et al., 2015; Antol et al.,
2015). However, for mixed datasets of robotic action (including vision
and proprioception modalities) and language, data is harder to collect
and requires more expense in labeling (Heinrich et al., 2018; Vuong
et al., 2023).

To achieve multi- and crossmodal functionality on robotic action
and natural language without the need for aligned large-scale datasets
and expensive training, we propose a new approach, shown in Fig. 1b.
We integrate a crossmodal architecture built for action-language tasks
deeply into a pretrained LLM. This allows using the pretrained weights
of the LLM while using the training procedure of the crossmodal archi-
tecture. The training of the new model, which is called CrossT5, uses
a combination of two different datasets, one for the training of robotic
action through the crossmodal architecture, the other for retraining the
original LLM’s features. This follows the assumption that the natural
language capabilities of the LLM can deal with the addition of the
new modality, and the resulting model can be used for both natural
language processing as well as crossmodal action.

We use an HRI setup with the NICO robot (Kerzel et al., 2017) in
the CoppeliaSim simulator (Rohmer et al., 2013), as visualized in Fig. 2.
The robot perceives its environment through cameras in both eyes, and
can interact with it by controlling its arms.

After conducting experiments with different dataset splits and loss
calculations, we arrive at a final version of CrossT5 that satisfies our
demands. The key advantages of our proposed approach include:

• The training does not need a large-scale language-action dataset
to produce a working crossmodal model. The natural language
capabilities are inherited from the LLM, and the action dataset
can be simplistic.

• A tiny portion of a matching dataset is sufficient to reestablish
the LLM’s features during training. Afterwards, the new CrossT5
performs comparably on natural language tasks as the pretrained
LLM before modification.

• The new architecture is flexible enough to allow for an easy
exchange of the used language model, making it scalable for
larger model variants or different LLMs.

1 https://commoncrawl.org/
2

• The training is very efficient. After only a short amount of train-
ing time, CrossT5 adapts to the LLM’s language encodings and
achieves high performance on both the natural language task and
the robotic action-language tasks.

• In addition to the good results for both the linguistic T5 tasks and
the multimodal Paired Transformed Autoencoders (PTAE) tasks
(Özdemir et al., 2023), CrossT5 demonstrates high robustness for
its language-to-action commands, having successfully adopted the
linguistic capabilities of the T5.

2. Related work

While there are numerous approaches on vision-language and action-
language crossmodality, many of them focus on specific modalities and
can be divided into respective groups.

2.1. Vision-to-language with LLMs

Many approaches on multimodal crossmodality focus on adding
image processing and understanding capabilities for LLMs (Mialon
et al., 2023), which are either frozen or fine-tuned as part of the
new architecture. While these approaches are crossmodal, they are not
capable of bidirectional tasks.

For instance, BLIP-2 (Li et al., 2023) leverages the performance of
pretrained language models and image encoders to enable vision-to-
language generation without expensive training. For this, the image en-
coder and the language model are connected through a Querying Trans-
former (Q-Former), through which the vision and language Transform-
ers share some of their parameters. For the experiments, an OPT (Zhang
et al., 2022) model is used for the decoder-only LLM variant, while
FLAN-T5 (Chung et al., 2022) is used for the encoder–decoder variant.
Despite having fewer trainable parameters than its competitors, BLIP-2
achieves state-of-the-art performance, even outperforming much larger
models in zero-shot VQA.

Similarly, the Flamingo model (Alayrac et al., 2022) incorporates
pretrained and frozen LLMs and vision encoders. It accepts visual
and text data as an input, and can perform tasks such as captioning,
VQA and visual dialogue. Similar to our model, it combines the two
modalities using gated cross-attention layers, where the keys and values
are obtained from the visual features and the queries from the text
language input. In few-shot learning, Flamingo sets a new state of the
art on all of the 16 considered benchmarks, and is often on par with
models specifically fine-tuned for a respective task.

MiniGPT-4 (Zhu et al., 2023) explores the advanced multimodal
vision-to-language capabilities of GPT-4. It incorporates a frozen LLM,
the Vicuna model (Chiang et al., 2023) built upon LLaMA, that is
connected to a frozen vision encoder through a linear projection layer.
This projection layer is trained on aligning the visual features with
the LLM, which are passed to the language model in a combined text
prompt. MiniGPT-4 expresses a variety of capabilities similar to those
of GPT-4, processing visual information through a correct alignment of
features.

PaLM-E (Driess et al., 2023) utilizes a similar method, but expands
the concept to further input modalities, each with their respective
encoder. After being embedded by the encoders, the input is fed to an
LLM, which is a decoder-only PaLM (Chowdhery et al., 2023). PaLM-E

https://commoncrawl.org/
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Fig. 2. NICO robot setup. NICO is supposed to converse with the human, execute commands, and comment on the scene, which is captured by its left and right eye cameras.
performs well on VQA tasks as well as robotic manipulation planning.
However, the performance on NLG tasks drops significantly when using
a smaller PaLM variant as an LLM.

VisionLLM (Wang et al., 2023) treats images as foreign languages,
enabling the LLM to comprehend and execute vision-centric tasks.
Other projects leaning more towards action execution show that, al-
though still limited to language output, LLMs can generate action
plans (Huang et al., 2022) and interact with multiple sensory modal-
ities (Zhao et al., 2023) in a variety of different tasks in a virtual
environment, even without being trained on them.

2.2. Action execution through multimodal input

Another category of approaches is not built for language produc-
tion, but instead deals with the execution of robotic action based
on multimodal input (Shridhar et al., 2023), in most cases language
and vision/proprioception. Many of these approaches also focus on
generalization (Guhur et al., 2023; Jang et al., 2022).

The VIMA model (Jiang et al., 2023) uses an encoder–decoder
architecture to translate from language and vision to robotic output.
The model accepts combined prompts consisting of language commands
and descriptions as well as visual information, using the pretrained T5
(Text-to-Text Transfer Transformer) (Raffel et al., 2020) as a language
encoder. VIMA outperforms state-of-the-art approaches on different
robotic tasks, including zero-shot generalization.

Improving on the problem of lacking adaption in action execu-
tion, the Language-Informed Latent Actions with Corrections (LILAC)
framework (Cui et al., 2023) corrects robotic action through language
commands in real time. The ATLA model (Ren et al., 2023) demon-
strates that language descriptions can help in the adaption to unseen
tools in robotic policies. ATLA uses LLMs to generate these descriptions
as well as obtain the respective feature representations. InstructRL (Liu
et al., 2023) uses one unified multimodal encoder to encode both
language and vision for robotic tasks in a virtual environment.

2.3. Action-centric crossmodality

Action-centric crossmodal approaches are able to reason and de-
scribe actions and visual information, but are not built for independent

language-only tasks.

3

The RT-2 model (Brohan et al., 2023b) has recently demonstrated
robotic action-language crossmodality for a large-scale pretrained LLM.
Its architecture treats the robotic action as an extension of language,
tokenizing it on the input level and de-tokenizing it for a robotic
output. While having a high computation cost, RT-2 performs much
better than earlier models like RT-1 (Brohan et al., 2023a), and gen-
eralizes to unseen objects and backgrounds while maintaining a high
accuracy. Trained on the Open X-Embodiment dataset, a consolidated
dataset with 22 robotic embodiments, the RT-X models show a further
improvement in success rate (Vuong et al., 2023).

Another approach, the Mani-GPT model (Zhang et al., 2023), in-
corporates an LLM and a network that generates output for grasping
objects. Its input consists of object labels from a visual module, the
past dialogue history and the human instructions. Based on the na-
ture of the input, the model classifies it into one of several response
categories and generates a corresponding output. A similar approach,
SayCan (Ichter et al., 2023), leverages the semantic knowledge of LLMs
for action execution of low-level skills. The model uses the PaLM LLM
and is connected to a robotic system that lets it navigate through and
manipulate its environment.

While these approaches demonstrate bidirectional crossmodality to
a certain extent, being able to generate both language and action, their
language output is limited to the context of the visual or robotic scene
the model is confronted with as they do not involve pretrained LLMs
for general-purpose dialogues.

2.4. Full crossmodality

A bidirectional approach to both language as well as visual/robotic
action tasks is the PTAE (Paired Transformed Autoencoder) model
(Özdemir et al., 2023), which connects two separate input and out-
put channels through a Crossmodal Transformer (CMT) (Irshad et al.,
2021) to enable action-to-language, language-to-action and unimodal
language and action skills. The action dataset that the model is trained
on focuses on moving three colored cubes positioned on a table in front
of the robot. For this, the model receives a textual description of the
action as well as visual features and the robotic joint sequence. The
PTAE model achieves high performance on the specified tasks, even
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Fig. 3. CrossT5 architecture. The T5 encoder and decoder are integrated with the PTAE architecture via a crossmodal transformer (CMT). j vectors represent joint angle values of
NICO’s arms, while v vectors are visual features extracted from images recorded by NICO’s eye cameras. Conc. denotes concatenation and FC is a fully connected layer.
with a small number of crossmodal training samples (vision/action with
language labels), given sufficient unimodal experience (vision/action
samples independent of language samples). However, the model is not
built for language tasks outside of its multimodal training data, such as
natural dialogue.

The multimodal Gato agent (Reed et al., 2022) is able to perform
many different tasks in various modalities, such as image captioning,
acting as a chatbot and playing Atari games, all on a single pretrained
model. It is trained on a wide variety of data involving visual, language
and action modalities. All of its modalities are fed to the model in a
batched, tokenized input. While Gato’s capabilities are numerous, it
requires extensive training on a large number of datasets to achieve
its crossmodal proficiency. In contrast, our approach uses a pretrained
LLM to obtain language proficiency without requiring LLM fine-tuning.

3. Proposed approach

Our proposed model integrates a pretrained LLM with the cross-
modal PTAE architecture. PTAE consists of two input encoders, one
for language and one for action, and two respective decoders. The
two input and output modalities are connected via the CMT in the
middle. For action encoding and decoding, PTAE uses LSTMs. Since
PTAE only features simple language processing, we extend it with an
LLM to enhance its linguistic capabilities.

To decide on the LLM used, a few factors were taken into consid-
eration. The model has to be pretrained, open source, and compact
enough to be run locally and be fine-tuned without major expense.
Furthermore, its architecture needs to be compatible with the PTAE
model to allow for a seamless combination of the two models. A
model that meets all these requirements is the Transformer architecture
T5 (Raffel et al., 2020). It has high performance in its largest variant,
but for our concept study, we utilize the T5-small variant with only 60
million parameters. A fine-tuned variant of T5, FLAN-T5, would also
be suitable, but evaluations by Google concluded that this fine-tuning
tends to result in worse performance for smaller model variants (Wei
et al., 2022). Another model compact enough would be the smallest
variant of BLOOM (Scao et al., 2023), featuring 560 million parameters.
BLOOM has no encoders but a stack of 70 decoder blocks, hence there
is no distinguished single point to integrate the PTAE. In contrast, T5
matches the encoder–decoder architecture of the PTAE model, making
the gap between encoder and decoder an obvious point of integration.
This yields the new CrossT5 model.

As presented before, most other vision-language approaches instead
make use of early fusion, combining the data at an initial part of the
model. These models also implement only a single multimodal direction
but are either not built for language-to-action capabilities (BLIP-2,
MiniGPT-4) or not for action-to-language capabilities (RT-2, VIMA).
4

3.1. Model architecture

CrossT5 follows the same schematic as the PTAE model. It retains
the CMT and the two encoders and decoders, of which the action
encoder and decoder remain unchanged from the PTAE, while the lan-
guage encoder and decoder are from T5. The CMT takes the language
encoding as query, while the action encoding is taken as key and value.
After applying scaled dot product attention, it outputs the crossmodal
hidden representation vector ℎ, which is passed onto the two decoders.
T5-small consists of 6 encoder and 6 decoder layers, which are split up
in the middle to connect it with the CMT (Fig. 3).

The hidden dimension of the CMT and therefore of the output vector
ℎ is set to 512 to match the encoding of the T5-small (as opposed to 256
in PTAE). In the PTAE model, the mean over the temporal dimension of
the vector ℎ was used as the input for the language and action decoders.
Since the tokens of the T5 language encoding are presented as one
sequence, this step is unnecessary for the T5 language decoder and only
done for the action decoder.

As part of the approach to the research question, we freeze the T5
weights. In contrast, we train the CMT and the action encoder and
decoder from scratch. The T5 decoder is still used for backpropagating
the language error during loss calculation, but its weights are not
modified.

3.2. CLANT dataset

Our dataset CLANT (Crossmodal Language-Action and Natural
Translation) combines two separate datasets: an action dataset is used
for adding the bidirectional action capabilities to the model, while a
language dataset is needed to reestablish the T5’s capabilities, since its
encoder and decoder are separated by the CMT.

Action dataset. We train the crossmodal tasks of the architecture using
the NICO Coppeliasim Dataset. A variant of this dataset was used for
training the PTAE model (Özdemir et al., 2023). The dataset consists
of 1440 samples in total, out of which 360 samples (25%) are used for
testing, while 1080 samples (75%) are used for training.

Each sample consists of a sequence of images and joint values, and
a description of an action carried out by the NICO robot (Kerzel et al.,
2017). NICO sits in front of a table, on which three colored cubes are
placed in three pre-configured positions. The entire scene is generated
on Coppeliasim (Rohmer et al., 2013) using inverse kinematics. NICO
has a camera in each eye, overseeing the table, its hands, arms and
their shadows.

In each sample, NICO moves one cube using either its right or
left arm. During this action, the camera records, depending on the
sample, a sequence of 𝑇 = 40, 60 or 85 images. From each image, a
30-dimensional feature vector is extracted using the channel-separated
convolutional autoencoder (Özdemir et al., 2021), resulting in a matrix
of 30 × 𝑇 features for each action. The joint angle values of both arms
are also recorded for each of the 𝑇 time steps, with 5 joint values for
each arm.
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Fig. 4. Setup of a CLANT dataset sample. The NICO Coppeliasim dataset provides a textual action description, joint values and the visual features extracted from the action image
sequence before training, while the Tilde RAPID 2019 dataset provides a natural language translation sample. These two datasets are combined into a single dataset, from which,
depending on the performed task, different parts are used or ignored on the input level.
R
o
s

Each textual description consist of two words, one describing the
desired action and the other describing the color of the target cube.
There are 6 different cube colors and 4 distinct actions, each of which
has an alternative name. In total, the action vocabulary consists of:

• 12 color words (6 original/6 alternative): ‘‘red/scarlet’’, ‘‘green/
harlequin’’, ‘‘blue/azure’’, ‘‘yellow/blonde’’, ‘‘cyan/greenish-
blue’’, ‘‘violet/purple’’

• 8 action words (4 original/4 alternative): ‘‘push/move-up’’,
‘‘pull/move-down’’, ‘‘slide-to-left/move-sideways-to-left’’, ‘‘slide-
to-right/move-sideways-to-right’’

This results in 12 × 8 = 96 distinct textual commands.
The dataset includes one sample for each distinct visual action. This

means that the alternative language descriptions do not increase the
number of possible situations. Also, as visible in the vocabulary above,
a language description does not specify the position of the cube, but its
color.

Since there are always exactly three cubes on the table, with four
possible actions, the total number of possible action sequences for a
scene is 3 × 4 = 12. The number of distinct cube configurations is the
number of subsets of 3 cubes from a set of 6 possible cube colors, which
is 120. This makes a total of 12 × 120 = 1440 samples contained in the
dataset.

Language dataset. The language dataset used for training the natural
language capabilities of CrossT5 is the Tilde RAPID 2019 German to
English dataset (WMT, 2019). It consists of more than a million sentence
pairs in German and English taken from the press release database of
the European Commission. As the original T5 model is already trained
on English to German translation, this dataset is well suited for training
the new model. We focus on language translation because it can be
evaluated more easily than text summary or information extraction,
and works well on shorter text samples.

For the new CLANT dataset, the first 1440 samples from RAPID
2019 are taken and added to the NICO Coppeliasim dataset as an
additional category. The contents of one CLANT dataset sample are
visualized in Fig. 4. As the content of RAPID 2019 is not ordered by
any specification, taking the samples from the beginning does not cause
the data to be restricted in vocabulary or versatility. 1440 translation
samples would be an insufficient amount of data to train from scratch
for a complex task like translation, but this is beyond the scope of
this work. The CMT in the center of CrossT5 only has to learn how
to identically reproduce the encoding from the T5 encoder to the T5

decoder for the language translation to still work. e

5

3.3. Training setup

The new architecture should allow for the user to specify whether
one is performing actions or having a conversation. To implement this
kind of control, we introduce different mode signals, so the model
can differentiate between the different operation modes. In the orig-
inal PTAE model, mode signals were also used during training and
inference. Following the same idea, the new signals now not only
distinguish between the unimodal and crossmodal tasks from the NICO
Coppeliasim dataset, but also the natural language translation task of
the integrated T5 model. The signals are:

• Translate: Unimodal natural language translation. This mode
trains the new model on natural language translation samples
taken from the Tilde RAPID dataset to keep T5’s capabilities
intact.

• Describe: Crossmodal action-to-language translation. This mode
trains the model to describe the perceived NICO action.

• Execute: Crossmodal language-to-action translation. This mode
trains the model to generate the correct sequence of joint values
corresponding to the NICO action description.

• Repeat Action: Unimodal action-to-action translation. This mode
trains the model to repeat the sequences of joint values from the
received NICO action.

• Repeat Language: Unimodal language-to-language translation.
This mode trains the model to repeat the language description
from the received NICO sample.

We refer to the last four signals as ‘‘PTAE signals’’. During training,
one of the signals is chosen at random to determine the mode according
to a varying probability distribution. In Translate mode, the model re-
ceives an English sentence sample from the Tilde RAPID 2019 dataset as
its language input, with the added prefix ‘‘Translate English to German:
’’. This prefix is needed for the pretrained T5 model to differentiate
the translation task from the rest of its skill set. In Translate mode, the
action input is set as the repeated initial joint configuration of the robot
concatenated with zeros for the visual features. The language target is
set as the equivalent output that the original T5 model produces, while
the action target is the initial joint for all time steps. This trains the
robot to not move during an unimodal language task by design.

For the PTAE signals, the action is given to the model in the
form of the joint value sequence of NICO’s arms concatenated to the
corresponding matrix of visual features. If the mode signal is Execute or
epeat Language, the action input is instead provided as the repetition
f the joint values and visual features at the first time step. In the
ame way, the language input is the two-word description of the action,

xcept for the Describe or Repeat Action mode, where the description
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is left out. In all cases, the desired mode signal term is appended as a
prefix to the language input.

In Execute and Repeat Action modes, the action target is the
orrect sequence of joint values for the action, while the language
arget is an empty string. In the Describe mode, the action target is
he repeated final time step joint configuration, while in the Repeat
anguagemode, the action target is the repeated initial joint configura-
ion. In both modes, the language target is the corresponding two-word
escription of the action.

The Translate mode can be seen as an indicator that the new model
reats the input in the same way the pretrained T5 would do. The
ranslate task was chosen because compared to its other tasks, T5-small
isplayed the best performance in English-to-German translation, and
t can be easily measured quantitatively.

Technically, T5 supports a maximum encoding length of up to 512
okens with positional encoding. By default, this number is capped at
0 tokens. Since the translation dataset includes sentences longer than
0 tokens, we set the maximum sequence length to 60 tokens.

During training, the T5 decoder uses teacher forcing. This means that
nstead of generating one token per time step, using the previously
enerated tokens as an input, the decoder uses the ground-truth token.
hen, the error is calculated between all generated tokens and the
round-truth tokens individually. Because this method does not rely
n the previous 𝑡 tokens for a token 𝑡 + 1 to be predicted, the entire
ncoding can be processed in parallel with only one decoder run. As
he T5 language encodings can be up to 60 tokens in length and would
ormally require the same number of decoder iterations, this makes
he training much more efficient. The LSTM action decoder inherited
rom the PTAE model uses teacher forcing as well but does not run in
arallel.

.4. Loss calculation

For the action loss of CrossT5, we keep the calculation imple-
entation of the PTAE model, as the action decoder and the general

raining process remain unchanged. This implementation takes the
ean squared error (MSE) of the produced joint sequence and the

arget joint sequence. For the calculation of the language loss, there
re two straightforward options, both at different points in the model
rchitecture. We train CrossT5 with these two loss calculations to
valuate their usability for the modified architecture.

-vector loss. In this calculation mode, the loss is defined as the MSE
etween the hidden vector ℎ of the CMT and the target hidden vector
̂ :

𝑙𝑎𝑛𝑔 = 1
𝑁

𝑁
∑

𝑡=1
(ℎ𝑡 − ℎ̂𝑡)2, (1)

where 𝑡 indexes the numerical values within an encoding of length 𝑁 .
This removes the need to run the T5 decoder and saves on compu-
tational expense. For the T5 translation, the target ℎ̂ is the encoding
generated by the T5 encoder. The idea behind this is that for transla-
tion, the T5 encoder already produces an encoding that, when passed
to the decoder without change, generates a good result. The CMT only
needs to learn not to modify the encoding. While this proves to be
true and works well for the T5 translation tasks, the targets for the
crossmodal tasks of the NICO Coppeliasim dataset have to be given
additional attention. Since not using the T5 decoder during training
means only comparing numerical encodings against each other, we
need T5 encodings that evidently produce correct sentences such as
‘‘push blue’’ or ‘‘pull red’’ in the decoder. The encodings of prompts
like ‘‘Translate English to English: NICO command’’ reliably decode to
‘‘NICO command’’ in about 90% of cases and enable us to evaluate this
training method. This means that during training, if, e.g. in Describe

ode, the model receives an encoded action ‘‘push blue’’, the generated
output vector ℎ is compared to the T5 encoding of ‘‘Translate English
to English: push blue’’. Since these two encodings differ in their token
6

count, varying between 2 and 10 tokens, which causes problems in the
loss calculation, we pad all language encodings of the PTAE signals to
20 tokens. Unfortunately, this method shows to be insufficient, which
can be seen in the bar plot in Fig. 5. The language performance for
Describe and Repeat Language is 0% and 1.36% respectively. Even
for Execute, where the model is trained to give an empty output, the
score is just 0.56%. We believe that this outcome is due to the use
of padding tokens. The only PTAE signal that CrossT5 learns to some
extent is Repeat Action. Here, the target is also an empty output, but
unlike for Execute, the language input for Repeat Action is just ‘‘repeat
action:’’, and the action input is a joint sequence. This results in the T5
decoder not receiving a usable encoding, and giving an empty output
in 53.89% of the cases.

T5 decoder loss. This method uses the loss calculation implemented in
T5. All language output is decoded through T5 with teacher forcing, the
loss calculated as the cross-entropy loss between target 𝑥 and prediction
𝑦:

𝐿𝑙𝑎𝑛𝑔 = 1
𝑀

𝑀
∑

𝑡=1

(

−
𝑉
∑

𝑖=1
𝑥[𝑖]𝑡 log 𝑦[𝑖]𝑡

)

, (2)

where 𝑡 indexes the tokens within a sequence of length 𝑀 , and 𝑉
is the vocabulary size. The error is then backpropagated through the
decoder into the CMT. This increases the accuracy for the PTAE signals
dramatically, because calculating the loss at the actual output layer
teaches the model to generate encodings directly corresponding to, for
example, ‘‘push blue’’ and not ‘‘Translate English to English: push blue’’.
Unfortunately, as displayed in Fig. 5 in the middle, this training method
does not work well for the T5 Translation. When training only with
the T5 decoder loss calculation, the Translation performance drops to
5.86% on the test data (Fig. 5). Though the dataset used for training the
Translate mode aligns with what the pretrained T5 model can already
do, for the same input prompt, the pretrained model often generates
an output completely different from the target. Although most dataset
targets and the respective T5 predictions are identical in terms of
information and grammatical correctness, the flexible syntax of the
German language means that they can be completely different in their
word order and sentence structure. For this reason, the cross-entropy
loss calculates a large error for an acceptable translation. This interferes
with the CMT, which then tries to learn to change the translation
encodings in accordance with the dataset targets instead of learning
to identically map them to the decoder.

To solve this problem, we propose a new way of calculating the loss.
Since training the translation using the ℎ-vector loss already proved to
be sufficient, we keep it only for the Translate mode. In each training
iteration, the current mode signal is checked in the loss function. If it
is Translate, the function calculates the MSE loss between the ℎ-vector
and the T5 encoder output. If it is any of the PTAE signals, the function
instead runs the T5 decoder and calculates the cross-entropy loss of
its output compared to the target of the NICO sample. This is possible
because of the way the T5 model is integrated in the new architecture,
making it optional during training. We name this dynamic way of
switching the loss calculation mixed loss. The total loss combines the
corresponding language loss 𝐿𝑙𝑎𝑛𝑔 and the MSE-defined action loss 𝐿𝑎𝑐𝑡
(see Özdemir et al., 2023):

𝐿𝑡𝑜𝑡 = 𝛼𝐿𝑙𝑎𝑛𝑔 + 𝛽𝐿𝑎𝑐𝑡, (3)

where, for our experiments, 𝛼 = 𝛽 = 1. The results shown in Fig. 5
on the right confirm the success of this method, as the mixed loss
calculation results in a good accuracy for all mode signals.

4. Experiment results

We train the CrossT5 model for up to 10,000 epochs as a trade-
off between good performance and training time. To give both the
translation training and the NICO training the necessary attention, we
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Fig. 5. Language test performance in the three loss modes ‘‘ℎ-vector‘‘, ‘‘T5 decoder’’ and ‘‘Mixed’’, trained for 10,000 epochs.
Table 1
Language test performance with different shares of the Translate signal, trained for
5,000 epochs.

Signal 10% 25% 50% 75% 90%

Translate 57.48 71.33 91.48 92.67 92.04
Describe 96.94 99.17 99.17 93.33 94.44
Execute 100 100 100 100 100
Repeat Language 100 99.44 99.17 99.37 99.27
Repeat Action 100 100 100 100 100

set a split of 3/4 for Translate and 1/4 for the PTAE signals for training.
he PTAE signals are further split into 1/3 for Describe, 1/3 for
xecute and 1/6 for Repeat Action and Repeat Language each. It is

difficult to determine whether this is an optimal split because the model
performs well with different splits as well. Both 1/2 for Translate and
1/2 for the PTAE signals and also 9/10 for Translate and 1/10 for the
PTAE signals only affect the accuracy by 1%–2%, shown in the results
in Table 1. Also apparent is the consistently good performance for all
NICO signals, where only the performance for Describe drops slightly
at a 75% or higher share of the Translate signal.

Training CrossT5 on a system equipped with an RTX 3080 Ti, a run
with 1000 epochs requires around 35 min. The entire 10,000 epochs
therefore take just under 6 h to complete.

Evaluating the translation performance is difficult. As explained in
the introduction of themixed loss calculation, T5 and therefore also the
new CrossT5 often give a grammatically and factually correct output
that only differs from the dataset target in terms of syntax structure
or choice of words. In addition to that, because we used T5-small, the
T5 variant with only 60 million parameters, for the training, not all
translations are accurate even for the pure T5 model. When evaluating
the translation performance based on the dataset targets, the calculated
BLEU2 accuracy only reaches about 10% at 10,000 epochs. This is
a poor score for the translation performance, but even more a score
not representative of the spirit of our proposed architecture. Because
we train CrossT5 on identically reproducing the language encodings in
the CMT, its translation performance can never exceed and most likely
not fully reach the level of T5. With that in mind, the fairest way of
estimating the translation performance of CrossT5 is not to compare its

output with the dataset target, but instead with the output of the pure

7

T5 model. This gives us an estimate of how much of the original T5
performance is retained in the new model.

For evaluating the NICO performance, the output is compared with
the actual dataset targets, not the PTAE output, because CrossT5 is
trained from scratch on these tasks. The language accuracy for the
PTAE signals Describe and Repeat Language is calculated as the
BLEU2 score compared to the target sentences, while the action accu-
racy for Execute and Repeat Action is the deviation from the correct
joint sequence, calculated as the normalized root-mean-squared error
(NRMSE).

Figs. 6 and 7 show the language and action results of CrossT5 over
10,000 epochs, evaluated on the test data. At 10,000 epochs, the model
achieves a BLEU2 score of 97% for the Translate signal and 99%–100%
for the PTAE signals. This demonstrates that almost all of the initial
language translation capabilities of T5 stay intact, while the added
crossmodal skills also achieve high performance. This is confirmed by
the fact that most of the PTAE signals have already reached over 90%
accuracy after only 3000 epochs. Furthermore, as the CMT quickly
learns that the language output for Execute and Repeat Action should
always be empty, these signals even reach 100% accuracy after only
1000 epochs.

Also in terms of action accuracy, CrossT5 performs well, with an
NRMSE of 0.85% at maximum and an average of 0.4% at 10,000
epochs. It is noticeable that for the PTAE signals, the crossmodal signals
Describe and Execute always have a higher error than the unimodal
signals Repeat Language and Repeat Action. In addition to that, the
action performance of the Translate signal is much better than all PTAE
signals, having an NRMSE of only 0.025%.

As the weights of the CMT are initialized randomly, the language
performance at 0 epochs displayed in Fig. 6 is at chance level. For the
action performance in Fig. 7, the NRMSE score of around 18% for the
action output is worse than the average distance of any dataset joint
sequence from the initial joint values (around 6%) and worse than the
average distance of all joint sequences to each other (around 11%) in
the dataset. For the language accuracy in Fig. 6, the BLEU2 score of
the output is 0% for all signals, except for the Execute signal, where it
is about 90%. This comes from the fact that by chance, some random
initialization seeds cause the T5 decoder to always generate an empty
output for a certain input, which is the target for Execute and Repeat
Action. For instance, another run with a different seed instead resulted
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Fig. 6. CrossT5 language test performance over training, calculated as the BLEU2 score of the language output compared to the target.
Fig. 7. CrossT5 action test performance over training, calculated as the NRMSE between the action output and the target joint sequence.
n an 80% accuracy for the Repeat Action signal, and 0% for all others
including Execute.

4.1. Practical action evaluation

To better assess the actual performance of the action execution, the
synthetic accuracy calculated as the NRMSE is not sufficient. Therefore,
we conduct an additional practical evaluation, in which the joint
values generated by CrossT5 for the Execute signal are executed in a
simulated 3D environment, the CoppeliaSim Edu V4.3.0 (Rohmer et al.,
2013). For this, the same setup as in the dataset is used, consisting of
the NICO robot in front of a table with three cubes on it. For each
generated action, the respective cube configuration is loaded in the
simulator.
8

To evaluate whether an action is actually successful, three factors
are taken into consideration:

• whether the correct cube is being pushed in the right direction,
and farther than a minimum threshold

• whether the correct cube is being pushed in the right direction,
and farther or equal than the dataset threshold

• whether no other cubes are being touched or accidentally moved

Based on these factors, an automatic score is calculated for each gen-
erated joint sequence for the Execute prompts in the test dataset.

To determine how the threshold for successful actions should look
like, the joint sequences as contained in the dataset are also executed
and used as a benchmark. To reach this threshold, the execution has to
be of at least the same quality as in the corresponding dataset sample,
meaning a movement by roughly the same magnitude and no other
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Table 2
Quality of the action execution for the checkpoints ranging from 1,000 to 10,000 epochs, given as the share of ‘‘successful‘‘ and ‘‘perfect’’
executions of all the evaluated test dataset samples.
Quality Epochs

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Successful 53.17 95.00 96.39 98.06 98.61 98.61 97.78 98.33 93.61 95.83
Perfect 34.17 75.56 75.00 79.17 77.22 81.67 83.33 82.50 59.44 81.11
o
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cubes touched. Even if an executed action does not reach the same
quality as the dataset sample, it could still be considered a success if
the magnitude of the cube movement is above a minimum threshold.
This distinction is necessary as many of the generated movements are
just below the magnitude of the dataset example, but are de facto still
successful (no other cubes are touched, and the correct cube is very
clearly moved in the right direction with a coordinated movement).

To appropriately represent this fact, we distinguish between a ‘‘per-
fect‘‘ action, indicating an execution quality equal to the dataset, and a
‘‘successful’’ action, indicating an execution quality that would still be
seen as a success, i.e. the correct cube is moved in the correct direction
but not reaching the threshold set for perfect actions. The checkpoints
from 1000 to 10,000 epochs are evaluated on the test dataset, and the
results can be seen in Table 2.

As the results show, CrossT5 achieves high quality in the practical
evaluation of the generated joint sequences. In the best case, the model
manages to execute 98.61% of the actions successfully, while 83.33%
are of almost identical quality to the corresponding dataset samples.
Interestingly, these scores are valid for the checkpoints at 6000 and
7000 epochs, while the 10,000 epoch checkpoint reaches 95.83% and
81.11%. Also, the checkpoint at 9000 iterations is an outlier again,
scoring worse than even the one at 2000 in both metrics.

4.2. Language robustness

As explained in Section 1, another intention of the project is
to explore how the combination of a crossmodal architecture better
suited for simple language input with an LLM could enable additional
language robustness even without a more complex language-action
dataset. To determine whether this assumption would prove true,
we conduct an additional robustness evaluation on the final CrossT5
model.

In the NICO Coppeliasim Dataset used for training CrossT5, each
sample contains a language description of the respective action that
can both serve as an input command in the language-to-action Execute
ignal (e.g. ‘‘execute: push red‘‘) or a target output in the action-to-
anguage Describe signal. These language descriptions are built from a
imited vocabulary, only containing words for the color of the intended
ube and the direction it should be pushed in. Although the dataset
lready includes alternative descriptions for both color and direction
e.g. ‘‘scarlet’’ instead of ‘‘red‘‘ and ‘‘move-up’’ instead of ‘‘push’’),
hese variations are also hardcoded and do not teach the model any
ctual semantic understanding. In the original PTAE architecture, the
escriptions were one-hot encoded, further limiting the actual language
rocessed by the model.

In the new CrossT5 architecture, the language descriptions are
ncoded and processed through T5, but still, only the simple language
ommands like ‘‘push red’’ are used for the training. To evaluate
hether the model can handle more complex language, 9 alternative

ommand patterns are used, testing different aspects of more natural
anguage such as varying vocabulary, word order, and additional phras-
ngs such as politeness and adverbs. By applying these 9 command
atterns, more complex language input is constructed from the simple
escriptions used during training, as visualized in Table 3.

We reevaluate the 10,000 epoch checkpoint on these 9 robustness
odes and afterwards test its practical action performance in the same
ay as in Section 4.1. The results can be seen in Table 4.
9

The results show a small to medium performance drop in some
f the robustness modes, which is expected for the more complex
ommands as in mode 2 and 6. However, the overall performance,
specially for the ‘‘successful’’ actions, remains almost unchanged in
any cases, even exceeding the accuracy of the simple dataset com-
ands in modes 7 and 8. Even in mode 6, which produces the worst

esults, the accuracy of 84.72% is still respectable. Not reflected in
able 4 but still important to mention is the fact that even for the failed
ction executions, in none of the cases did the model confuse colors or
ommands and move the wrong cube.

Overall, CrossT5 demonstrates a good performance on more natural
nput, in many cases reaching or even exceeding the performance on
he original dataset samples. It should be mentioned that the robustness
pplies to the language-to-action Execute signal only; as the language

output has been specifically trained to align to the dataset descriptions,
the action-to-language Describe or language-to-language Repeat Lan-
guage signals still produce simple language outputs. For example, a
command like ‘‘repeat language: would you please push red‘‘ will still
output ‘‘push red’’ in the majority of cases.

5. Discussion

With the performance of CrossT5 being close to 100% in both the
translation tasks from the pretrained T5 as well as the crossmodal
language-action tasks from the NICO dataset, CrossT5 shows promising
initial results. The experiments are only conducted with one dataset
and one language model. Extending the model with larger T5 variants
would be straightforward, but more adjustments would be necessary for
different LLM architectures. While the bottleneck between the encoder
and decoder of T5 is an obvious place to insert the PTAE via CMT, many
LLMs use decoder-only architectures. Finding an optimal pair of layers
for CMT insertion in such models will require experimental exploration.
Alternative architectures, e.g. those that add small trainable matrices
between a frozen network’s layers, as done for fine-tuning for multi-task
learning (Hu et al., 2022; Rusu et al., 2022), could also be investigated
for a multimodal enhancement of LLMs.

An advantage of integrating a pretrained language model and only
training the crossmodal architecture to keep its capabilities is that it
saves a lot of computational resources during training. Given the frozen
language model, the dataset can be much smaller than the datasets
used for training state-of-the-art LLMs. With only 1080 training and
360 test samples, CrossT5 successfully re-established the T5’s original
translation abilities. Moreover, the model calculates the loss for the
LLM tasks on the hidden representation vector ℎ, which is outputted by
the CMT and does not have to use the language model decoder output.
For this reason, the English-to-German training does not require targets.
Even for the integration of LLMs with different skills, a small collection
of suitable inference prompts suffices to reliably retain their capabilities
during the training of the new CrossT5 model.

The number of parameters in the CMT is 2,629,120 (the action
model has an additional 3,021,322 parameters) as opposed to the 60
million frozen parameters of T5-small. This is in the order of 22.8 times
fewer parameters. The language dataset used to retrain T5’s original
abilities has a size of 131 KB, as opposed to the 745 GB of the C4 dataset
the original T5 was trained on. This is about 5.7 million times less data.
The training time of CrossT5 was 6 h on an RTX 3080 Ti GPU. While
there is no official information about the training time of T5, similar
projects using the T5 architecture (Sarti and Nissim, 2022; Ulčar and



A. Caesar, O. Özdemir, C. Weber et al. Natural Language Processing Journal 7 (2024) 100072

t
s
‘
O
o
p
f
c

g
l
p
w
i
p
t
s
a
C
F
b
A
i
r

6

a
s
i
a
w
d

a
m
h
b

Table 3
The 9 different robustness patterns. ‘‘direction‘‘ and ‘‘color’’ refer to the corresponding word from the dataset sample.
Nr. Robustness pattern Example for ‘‘push red"

1 Please + direction + color Please push red
2 Would you please + direction + color Would you please push red
3 direction + the + color + cube Push the red cube
4 direction + the + color + cube now Push the red cube now
5 Please + direction + the + color + cube Please push the red cube
6 Would you please + direction + the + color + cube Would you please push the red cube
7 color + direction Red push
8 The + color + cube + direction The red cube push
9 Alternative direction word + color Shove red
Table 4
Quality of the action execution for the 10,000 epoch checkpoint, evaluated on the 9 different robustness modes.
Quality Robustness mode

1 2 3 4 5 6 7 8 9

Successful 95.28 88.61 95.28 93.89 94.17 84.72 96.67 96.39 95.56
Perfect 79.17 68.06 76.67 75.83 74.44 64.17 80.00 78.89 78.61
Robnik-Šikonja, 2023) give estimates of multiple days to over a week
even for the smallest checkpoint, while being trained on four 40 GB
A100 GPUs. With only these little resources spent, CrossT5 achieves
over 97% of the performance of the original T5 after retraining.

In addition to the surprisingly good results for both the crossmodal
PTAE tasks as well as the translation from T5, CrossT5 also displays
impressive performance when tested with more complex language com-
mands on the Execute signal. Even though the model has only been
rained on the simple descriptions from the NICO Coppeliasim dataset,
uch as ‘‘push red‘‘, it is able to execute complex commands like
‘Would you please push the red cube’’ in more than 84% of cases.
ther command variations, like switching the word order (‘‘red push‘‘)
r using alternative descriptions (‘‘shove red’’) do not deteriorate the
ractical performance. This shows that CrossT5 not only retains the
eatures of T5, but can furthermore leverage its advanced linguistic
apabilities for the crossmodal PTAE tasks as well.

Currently, the CrossT5 model has not been tested on its ability to
eneralize to new scenes and actions, as the CLANT dataset comes with
imited actions and pre-configured object positions. As we wanted to
rove the feasibility of our approach with limited resources available,
e did not extend our testing to larger datasets with more variety

n their setups and/or continuous object positioning. Based on the
romising test results, we are confident that the model will also be able
o perform well on more complex datasets. As the architecture is easily
calable, it can be used with different and even larger variants of T5
nd other LLMs by merely adjusting the hidden dimension size of the
MT. As a first experiment in that direction, we tested the model with
LAN-T5, which features the same size variants and architecture as T5,
ut an extended skill set, and the model achieved good performance.
lso, we are currently working on integrating reinforcement learning

nto the model to train it to reach continuous object positions without
equiring more teacher trajectories.

. Conclusion

Towards bringing together an LLM’s conversation capabilities with
robot’s sense and action capabilities, we have proposed a model that

trongly combines a robotic model with an LLM, i.e. where both share
nternal representations within a CMT with mutual reading and writing
ccess. The CMT, inserted between the T5 encoder and decoder, adapts
ell to T5’s internal representation, while requiring only little training
ata and effort. This leaves the performance of T5 intact.

In the evaluation, the new CrossT5 model achieves close to 100%
ccuracy in the added crossmodal action tasks and retains the perfor-
ance of a representative task of its T5 LLM. Furthermore, it shows
igh performance in both the practical action evaluation and the ro-

ustness for more complex language-to-action input. This demonstrates

10
that the approach of splitting up a frozen LLM and combining it
with a crossmodal architecture delivers on its premise. The result-
ing model displays good language-action performance while staying
flexible enough not to damage the skill set of the language model.
By its design, it also requires little computational cost in training
and is robust to more complex language-to-action commands even
without dedicated training. Hence, the procedure is efficient to enable
crossmodal capabilities for an LLM.
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