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Abstract— Intention-based Human-Robot Interaction (HRI)
systems allow robots to perceive and interpret user actions to
proactively interact with humans and adapt to their behavior.
Therefore, intention prediction is pivotal in creating a natural
interactive collaboration between humans and robots. In this
paper, we examine the use of Large Language Models (LLMs)
for inferring human intention during a collaborative object
categorization task with a physical robot. We introduce a
hierarchical approach for interpreting user non-verbal cues,
like hand gestures, body poses, and facial expressions and
combining them with environment states and user verbal cues
captured using an existing Automatic Speech Recognition (ASR)
system. Our evaluation demonstrates the potential of LLMs
to interpret non-verbal cues and to combine them with their
context-understanding capabilities and real-world knowledge to
support intention prediction during human-robot interaction.

I. INTRODUCTION

With the rapid advancements in AI, humanoid robots are
set to play increasingly prominent roles in human societies,
spanning diverse sectors like manufacturing, healthcare, and
domestic environments. This technological shift is expected
to foster a natural and intuitive interaction between humans
and their robotic collaborators, hence resembling human-
human interaction rather than just relying on explicit com-
mands [1]. Intention prediction is fundamental in HRI and
involves perceiving subtle cues from human actions, gestures,
and speech to infer underlying goals [2]; therefore, intention
prediction is key for enabling effective and seamless com-
munication. Nevertheless, interpreting and predicting human
actions is challenging due to the multimodal nature of human
behavior, being complex and driven by situational context.
Also, human intentions are often conveyed with nuanced
non-verbal cues which are challenging to interpret.

Typically, intention-based systems require collecting a vast
amount of data, which is both impractical and restrictive,
limiting the systems’ applicability to specific use cases or
a particular set of modalities and/or setups [3]. Recent
research with LLMs in robotics have showcased their abstract
reasoning capabilities going beyond mere language applica-
tions. Besides their proficiency in text comprehension and
generation, LLMs have exhibited signs of notable inferential
skills, extensive real-world knowledge and robust reasoning
capabilities [4]. Additionally, they are performant at captur-
ing context, making them a candidate for advancing intention
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Fig. 1. An overview of our intention prediction system. After inferring both
verbal and non-verbal cues using an LLM, the robot generates appropriate
actions, e.g., giving the bowl to the user.

prediction in HRI. However, LLMs heavily depend on textual
input (user queries and prompts) to generate contextually
relevant responses. Thus, when used with robots, it remains
challenging for LLMs to replace human-aware models during
the interaction [5], even with the subsequent generation of
multimodal LLMs, which still face difficulties processing
and understanding visual information and basic visual pat-
terns [6]. Thus, a reliable approach for equipping LLMs with
awareness of human non-verbal cues is still missing.

In this work, we provide the Neuro-Inspired COLlabo-
rator [7] (NICOL) robot (see Fig. 1) with the capacity to
predict human intentions and anticipate actions by integrating
several verbal and non-verbal cues with an LLM-powered
intent reasoning framework. By following a two-layered
processing approach, referred to as perceptive reasoning and
task reasoning, we process user non-verbal cues, captured
with our machine learning vision models. Then, we use
a text-based LLM’s inferential skills to identify current
user actions relevant for the collaborative environment and
anticipate user goals behind the inferred actions. We evaluate
our system through a collaborative task for object catego-
rization. Our experiments confirm the potential of LLMs as
viable assets for building a competent intention prediction
system. Also, we showcase the importance of non-verbal
communication for an intuitive and natural collaboration with
the robot. Overall, our work contributes to both research in
LLMs and robotics as well as human intention prediction
in human-robot collaboration, effectively bridging the gap
between machine understanding and the subtleties of human
communication.

II. RELATED WORK

Predicting user intention in HRI is a considerable chal-
lenge, given the immense individual human differences and
the complexity of dynamic environments [3]. Also, efficient
prediction of human intention requires intensive comprehen-
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Prompt 1: Our system is based on a grounded LLM as the NICOL robot [20].

Input:
USER: Tell me about yourself.
Output:
SAY: Hello! I am NICOL, short for ”Neuro-Inspired Collaborator”. I am a
humanoid robot designed and built by the Knowledge Technology group of the
University of Hamburg, and I am here to collaborate with you!

Input:
USER: Give me the red object which is also a fruit.
Output:
SAY: I see that you’re referring to the apple. Sure I can give it to you.
ACTION: Give apple

sion of context and continuous awareness of the user [8].
Besides LLMs’ proficiency in language comprehension, they
have shown promising capabilities in contextual understand-
ing [9]. They also exhibit adaptability to user input and
requirements, while possessing potential for processing real-
world knowledge [10]. Thus, LLMs are potential assets
for tasks including real-time coordination between a human
and an AI agent [11], trust-based human-aware zero-shot
planning [5], belief-desire-intention driven planning [12], and
human-aware planning and action anticipation [13]. LLMs
have also been useful in anticipating human actions while
tuned in a few-shot learning fashion [14], and employed as
tools for solving ambiguity in human instructions through
multiple dialogue rounds for clarification of intentions [15].

While explaining intentions with verbal cues and con-
versation repair is beneficial, incorporating non-verbal com-
munication attributes to a seamless and intuitive interac-
tion, thereby increasing human awareness in AI systems.
Prior conducted work primarily utilized non-verbal cues for
providing robots with human-like capabilities for apparent
enhancement of the HRI experience. Some research included
grounding LLMs in humanoid robots to generate movements
and poses [16] and improving the embodiment of a conversa-
tional agent with a focus on engagement through features like
facial expressions [17]. Other approaches focused on improv-
ing the interaction liveliness by hand gestures [18]. Work was
also done on using the robot eye gaze for managing dialogue
while interacting with multiple users [19]. However, there
remains a notable gap in leveraging human non-verbal cues
for the exact purpose of improving intention prediction. In
our work, we demonstrate that integrating non-verbal cues
with LLMs contributes to accurate predictions of human
intentions, ultimately enriching the interaction quality.

III. METHODOLOGY

We base our system on a robustly grounded ChatGPT
LLM [20], mirroring the behavior and interaction style of a
physical robot, i.e., NICOL robot, rather than interacting with
users as an AI language model. This is achieved by equipping
the LLM with facts about the environment through the robot
sensors, and linking the LLM abstract reasoning with the
robot physical actions in a modular open architecture. An
example response by the said LLM is in Prompt 1. The
framework processes user queries and generates responses
in first person, encoding robot actions without explicit pro-
gramming. These LLM-generated responses are parsed into
tokens recognized by NICOL’s ROS-based API platform,
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Fig. 2. Our proposed system hierarchy for intention prediction.

then mapped into concrete actions (ex: SAY to generate
speech or ACTION to generate a robotic manipulation).

Our framework (see Fig. 2) utilizes the described con-
cept [20] to implement and operate through a dual pro-
cess for intention prediction: perceptive reasoning and task
reasoning. Perceptive reasoning refers to the robot’s ability
to collect and analyze information about the surrounding
environment and interacting user, thus formulating a set of
“beliefs” guiding its behavior. In contrast, task reasoning
involves incorporating user guidance, explicit commands,
and contextual factors to collaborate towards a mutual goal.
These inputs are integrated with the beliefs created with
perceptive reasoning to facilitate effective decision-making
and goal attainment. By seamlessly processing the informa-
tion through the described layered hierarchy, our framework
enhances the robot’s adaptability and responsiveness towards
various non-verbal user cues, while effectively interacting
with objects on the table and generating useful robot actions.

A. Non-verbal Cues

Building a human-aware robotic system requires perceiv-
ing not only user speech but also user non-verbal cues [21],
conveying human intentions. Therefore, it is essential to
enable our system to detect and interpret human gestures
and body language. To meet the real-time demands of
robotic systems, we leverage MediaPipe [22] to integrate
various perception components. MediaPipe offers a machine
learning pipeline that facilitates a GPU integration, thanks
to the recently released open-source Tasks API. Although it
was originally developed with a focus on mobile devices,
our experiments showcase its versatility and cross-platform
suitability for a Python integration with a robot in a tabletop
setup. Essentially, MediaPipe constructs a computer vision
pipeline consisting of directed graphs of modular compo-
nents. These graph nodes manage the data flow through
data streams, configured with increasing timestamps. Each



processing node performs a specific calculation like image
transformation, limb detection, limb tracking or a machine
learning inferential task using frameworks like Tensorflow
and Caffe, transforming the sensory input into meaningful
outputs like body landmarks. We construct three different
pipelines to extract various non-verbal cues:

a) Hand Pipeline: this pipeline is based on a single-
shot Convolutional Neural Network (CNN) for identifying
hand regions, and a regression-based hand tracker, which
predicts landmarks within a cropped area around the detected
hand. The model predicts 21 keypoints, derived from the
GHUM [23] model for human shape and poses, including
four for each finger and one for the wrist. We utilize these
landmarks to train a recognition model for hand gestures,
including pointing, holding an object, and resting. Although
the detector is capable of locating hands in various distances,
we distinguish between non-proximity and proximity hand
gestures, happening within a defined physical area around
the robot’s workstation. We use the hand 3D coordinates to
identify these hand gestures before LLM prompting.

b) Human-Pose Pipeline: an estimation of user poses
is done in a top-down way by first detecting the human in
the frame with an optimized MobileNetV2. Then, poses are
estimated with 33 landmarks representing the joints with a
light-weight CNN, called the BlazePose [24] model. The
extracted skeleton keypoints are mapped into 3D coordinates
of the torso, arms, legs, and head. We utilize the generated
3D keypoints to track the user’s location in real-time relative
to the robot. Thus, we enable our system to lively interact
with the user based on their location in the workspace.

c) Face Pipeline: a face detector outputs 478 keypoints
representing 3D face landmarks. The pipeline consists of
a BlazeFace model based on a Single Shot Detector [25]
(SSD), which identifies the main face region representing the
user’s eyes, mouth, nose, converted into a face mesh model.
Also, a Blendshape model predicts 52 scores representing
various facial features, used to recognize the user’s facial
expressions. Thus, we enable the system to identify basic
facial expressions, such as smiling, and consequently the
robot to react based on the given user emotional state.

B. Perceptive Reasoning

As previously mentioned, we base our intention under-
standing mechanism on a grounded LLM [20]. When such
a system is booted, a set of initial prompts are executed,
responsible for providing the LLM with information about
the robot, its capabilities, surrounding environment, and
purpose. The LLM is also provided with a real-time stream
of information about the objects on the robot’s table using
the ViLD [26] open-vocabulary object detector as well as
user utterances with an ASR system based on Whisper [27].
A set of robot actions are generated like object and head
manipulation based on the prompts output. We use this LLM
backbone for predicting the user’s intention by collecting
user verbal commands, non-verbal cues, and the environment
state and converting them into texts used to prompt the LLM.

"The user is indicating the apple
with their right hand."

"The user is standing in front of me."

Recognition Modules

Perceptive Reasoning

[right hand, point, apple]
[body pose, stand, infront]

[face, smile]

"The user is currently happy or amused"

Detection Modules

Fig. 3. Perceptive reasoning of user non-verbal cues with examples.

Essential to this reasoning step is the system’s ability to
perceive human actions and gestures, thus being constantly
“human aware”. For that, we develop a so-called perceptive
reasoning method, in which the system interprets non-verbal
cues, namely: hand gestures, body poses, and facial expres-
sions, and combine them with the environment state to make
an appropriate decision leading to a collaborative action. We
follow a hierarchical approach for parsing and interpreting
the cues before LLM prompting. First, the camera input
passes to the various detectors (ex: hand detector), where
joint keypoints are extracted and then passed into a recogni-
tion module (ex: gesture recognition). The recognition output
provides basic textual tokens about the non-verbal cues, e.g.,
the detected limb and recognized movement. Later, these
tokens pass into the LLM as internal prompts invisible to the
user to be converted into meaningful textual representations
of the user’s state. Fig. 3 highlights the steps with concrete
examples. For this step, we consider proximity gestures only.

C. Task Reasoning

During user-robot collaborations, the system considers the
user states extracted in the perceptive reasoning step while
acting to achieve a mutual goal. Since we evaluate our system
using object categorization, this task will be the ultimate goal
steering the interaction. Tasks are described in the form of
task prompts, which are exchangeable and expandable in a
modular way. In task reasoning, the system combines the user
states, user explicit commands, i.e., user queries, as well as
any given task prompts in order to prompt the LLM. If an
additional goal is defined by the user, then the system will
use the given information to achieve it. Otherwise, the system
will respond to the user based on the available information
as the user intentions and goals are often vague and require
multiple iterations to clarify (thus the dotted line in Fig. 2).

Prompt 2 displays an example of a defined task prompt for
categorizing objects. By following the proposed hierarchical
architecture, the system can infer user goals and intentions



Prompt 2: An example of a defined task prompt for categorizing objects.

SYSTEM: In this demo, you and the user should collaboratively split the objects
on the table into two categories. The location of the object on the table represents
its category. There are three different possibilities (right, centre, left).
Category 1 represents all the objects on the ride side of the table, and Category 2
represents all the objects on the left side of the table. Objects in the centre do not
belong to neither categories yet and are still uncategorized.
You will not be told the exact categories explicitly but you should try to infer that
from the actions of the user.
The categories will be based on known properties of the objects like shape, purpose,
material, and color. As you understand better the categories that the user is trying
to create, you should help the user decide in which category an object belongs.

Prompt 3: The robot infers the user’s goal when categorizing objects.

- the user placed the can on the right side of the table and apple on the opposite -
Input:
CUE: The user is pointing to the banana
USER: Considering the properties and usage of this object, which of category 1
or category 2 is more fitting?
Output:
Considering that the banana is a fruit, it would be more fitting in Category 2,
which currently contains other fruits.
ACTION: Move yellow banana to the left side of the table

Input:
What is your inference about the user intention from the previous interactions?
Output:
From our previous interactions, I infer that the user intended to categorize the
objects on the table into two groups: containers and fruits.

Prompt 4: The robot reads user intention and anticipates the next action.

Input:
CUE: The user holds the tomato soup can
USER: I am hungry
Output
ACTION: Give bowl to user
SAY: Would you like me to pour the tomato soup into the bowl for you?

in a categorization task (see Prompt 3) and during object
interactions (see Prompt 4). Nevertheless, our system exhibits
various additional useful features, such as establishing a
joint object attention between the user and robot, utilizing
the LLM’s language comprehension and generation skills to
perform conversation repairs, identify object ambiguities (see
Prompt 5), all while interacting naturally and intuitively with
hand gestures. The robot can also identify user proximity,
i.e., their location relative to the robot, thus initiating the
interaction and playing both active and passive roles, while
reacting socially to user facial expressions (cf. Prompt 6).

IV. EXPERIMENTS AND RESULTS

A. NICOL Robot & Environment Overview

We use NICOL [7], which is a semi-humanoid robot
developed at the Knowledge Technology Group of the Uni-
versity of Hamburg. NICOL is an adult-sized robot fixed
on a tabletop with two arms and a humanoid robotic head.
Each arm has a five-fingered hand, is capable of bio-inspired
motion planning [28], and can interact with adult-sized
objects. The design of the NICOL robot allows collaboration
with humans through precise physical interactions with the
environment. Nevertheless, it also features social interaction
with robot cues like facial expressions, gestures, and gaze.

B. Object Categorization Task

In our task, the user and robot collaboratively categorize
objects on the table into two distinct groups. The robot
assists the user in finding the fit for each “uncategorized”

Prompt 5: Object disambiguation and intuitive interaction using pointing gestures.

Input:
CUE: The user points to the banana
Output:
ACTION: Look at banana
SAY: The banana is a fruit that is usually yellow when ripe. It is a good source
of potassium, vitamin C, and dietary fiber.

Input:
USER: Give me the yellow object
Output:
SAY: Sure, I’d be happy to help! Could you please clarify which object you’re
referring to as the yellow one? Is it the lemon or the banana?

Input:
USER: The user points to the banana
Output:
SAY: Ah, I see! You’re referring to the banana. Sure, I can give you the banana.
Here you go!
ACTION: Give banana to user

Input:
USER: Give me another object
Output:
SAY: Certainly, which object would you like me to give you? Just let me know
and I’ll be happy to assist you.

Input:
CUE: The user points to the lemon
Output:
SAY: Certainly, I can give you the lemon.
ACTION: Give lemon to user

Prompt 6: The robot detects user proximity and initiates an interaction accordingly.

Input:
CUE: The user has both hands rested on the table
Output:
ACTION: Look at user
SAY: Hello there! How can I assist you today?

Input:
CUE: The user is pointing to the table, The user is smiling
USER: Hi
Output
ACTION: Express happiness
SAY: Hello! How can I assist you today? Would you like me to look at or point
to a specific object on the table? Or perhaps you have a question for me?

Prompt 7: Prompts used for system evaluation in an object categorization task.

Phase 1 (Task Understanding Check):
USER: What are the objects in category 1?
USER: What are the objects in category 2?
USER: What do objects in category 1 have in common?
USER: What do objects in category 2 have in common?
USER: Which objects are currently uncategorized?
Phase 2 (Object Categorization Check):
the following prompt is repeated four times:
CUE: The user is pointing to the object name
USER: Considering the properties of this object, which of category 1 or category
2 is more fitting?
Phase 3 (Intention Understanding Check):
USER: What do you infer about the user intention from the previous interactions?
USER: Can you explain in detail all the choices you made for categorization?

object based on common properties and characteristics, like
shape, color, and purpose. Unlike typical autonomous object
categorization tasks [29][30][31], the robot is not given an
explicit definition of the categories but should infer the goal
based on user actions. The task starts as the user places one
object on each side of the table, i.e., representing Category 1
and Category 2. Then, the robot responds to user queries
regarding where to place a specific uncategorized object. An
explanatory example of the categorization task is in Fig. 4.

We evaluate the task using six objects: red apple, yellow
banana, red can, yellow lemon, red bowl, and red cup. We
select the objects due to their various purposes (ex: fruit
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Fig. 4. A concrete workflow example of the object categorization task generated by our system.

TABLE I
RESULTS OF THE OBJECT CATEGORIZATION TASK.

Model Fruit
container

Fruit
fruit

Container
fruit

Container
container

Phase 1 gpt-3.5 0.99 0.68 0.91 0.88
gpt-3.5-16k 0.62 0.74 0.89 0.81
gpt-4 0.95 0.84 0.9 0.98
vicuna 0.33 0.33 0.42 0.39
mistral 0.32 0.18 0.21 0.33

Phase 2 gpt-3.5 0.82 0.52 0.8 0.61
gpt-3.5-16k 0.7 0.73 0.98 0.78
gpt-4 0.96 0.93 0.97 0.99
vicuna 0.54 0.48 0.73 0.53
mistral 0.725 0.78 0.35 0.66

Phase 3 gpt-3.5 0.71 0.37 0.71 0.7
gpt-3.5-16k 0.75 0.53 0.89 0.63
gpt-4 0.92 0.75 0.92 0.93
vicuna 0.17 0.56 0.48 0.29
mistral 0.75 0.53 0.44 0.4

and containers), colors (ex: red and yellow), and shapes (ex:
round and cylindrical). For performance comparison, we start
the task with every possible pair of objects as category ini-
tiators. After category initialization, the robot is prompted to
categorize a randomly selected object. We conduct 150 trials
in the experiment with 10 for each possible object pair, each
with a reset chat history. Moreover, we evaluate the system
using OpenAI and open-source LLM backbones, namely:
ChatGPT gpt-3.5-turbo-0301, gpt-3.5-turbo-16k-0613, gpt-4-
0613, vicuna-1.3-33b, and mistral-7b-instruct-v0.2. We fol-
low a three-phase evaluation scheme, with a total of 11
prompts (see Prompt 7): 1) Task Understanding Check:
five prompts testing the LLM’s understanding of the task
and categories at hand, 2) Object Categorization Check:
for each “uncategorized” object, a prompt is given in the
form of a categorization request (four prompts in total),
and 3) Intention Understanding Check, in which the LLM’s
understanding of user intentions and goals is tested with
two prompts. The system is also expected to provide logical
explanations about its decisions and actions. A summary
of the results is in Table I with values representing model
accuracy, averaged by the number of trials and object pairs.

Our system exhibited proficiency in predicting user goals
and deriving intended categories of the various fruits and
containers, irrespective of the comparison order, especially
gpt-4, with highly consistent accuracy. The performance of
the gpt-3.5 models was comparable and dropped slightly

TABLE II
PEARSON CORRELATION OF CATEGORIZATION PHASES (WITH p-values).

Model Phase 1–Phase 2 Phase 2–Phase 3 Phase 1–Phase 3

gpt-3.5 0.8 (0.0003) 0.6 (0.018) 0.53 (0.044)
gpt-3.5-16k 0.53 (0.04) 0.51 (0.05) 0.4 (0.14)
gpt-4 0.44 (0.1) 0.79 (0.0005) 0.63 (0.012)
vicuna 0.53 (0.043) 0.75 (0.001) 0.49 (0.062)
mistral 0.56 (0.029) 0.21 (0.44) 0.26 (0.35)

when comparing objects with similar function (fruit vs. fruit
or container vs. container), indicating these models gave
more importance to “usage” over other attributes. Nonethe-
less, gpt-4 demonstrated competence and flexibility when the
categorizing criteria depended on subtle features like color
or shape. All OpenAI models showed good task realisation
in Phase 1 and the occasional accuracy drop is explained
by the accidental mixing of the category location (swapping
right and left), hinting that the LLM spatial reasoning and
orientation have not yet progressed to a performant level.

The open-source models came short in Phase 1 while
having near to above-average accuracy in Phases 2 and 3.
Mistral showed higher competence in Phase 2 than Vicuna
despite the smaller size (7B vs. 33B parameters), which we
hypothesize to be a result of its own training, i.e., Mistral is
fine-tuned on instructions data making it more flexible with
user commands, while Vicuna is fine-tuned on conversation
data. However, our results showed a positive correlation
between the model’s task understanding in Phase 1 and its
performance in subsequent phases (cf. Table II). This be-
comes clearer by observing the error rates (see Fig. 5), which
are lower for “Category Reasoning” than grounding factors
(category definition and uncategorized objects). Also, all
LLMs showed high success rates at interpreting non-verbal
cues through our perceptive reasoning. From the OpenAI
models, gpt-4 reached the best performance at Phase 3, while
the other OpenAI models, despite making correct decisions,
were less efficient at precise decision explaining. Although
ChatGPT models showed higher resilience in grounding to
a new task, the results showcased that the highest error rates
were related to not fully grasping some task-related concepts
rather than the categorization decision itself, suggesting that
the model’s reasoning aligns with the objectives of the task.
As the model develops a better understanding of the task over
time, its performance is expected to improve accordingly.
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Fig. 5. Sources of system errors in the object categorization task.

V. DISCUSSION AND CONCLUSION

We explored LLMs for predicting human intention, show-
ing their ability to infer user goals and generate discrete ac-
tions to fulfill them in a human-robot collaborative task. We
proposed a hierarchical process for intention prediction with
our perceptive and task reasoning modules. We illustrated the
high capacity of LLMs to interpret non-verbal cues through
our perceptive reasoning. Our system was also able to adapt
to a given task, i.e., object categorization, in a few-shot man-
ner, highlighting its potential for rapid task acquisition and
deployment in diverse settings, thus laying the groundwork
for effective intention prediction in a robotic collaborative
scenario. Future research endeavors will assess the LLM
scalability across a broader range of interactive scenarios to
ascertain the transferability of its intention prediction skills
across multiple tasks. Our future work will also examine the
applicability of multimodal LLMs for inferring user gestures
and poses in real-time interaction with the robot.
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