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Abstract— Large Language Models (LLMs) have been re-
cently used in robot applications for grounding LLM common-
sense reasoning with the robot’s perception and physical abil-
ities. In humanoid robots, memory also plays a critical role
in fostering real-world embodiment and facilitating long-term
interactive capabilities, especially in multi-task setups where the
robot must remember previous task states, environment states,
and executed actions. In this paper, we address incorporating
memory processes with LLMs for generating cross-task robot
actions, while the robot effectively switches between tasks.
Our proposed dual-layered architecture features two LLMs,
utilizing their complementary skills of reasoning and following
instructions, combined with a memory model inspired by
human cognition. Our results show a significant improvement in
performance over a baseline of five robotic tasks, demonstrating
the potential of integrating memory with LLMs for combining
the robot’s action and perception for adaptive task execution.

I. INTRODUCTION

Despite the physical limitations due to their embodiment,

humanoid robots are particularly effective tools because of

their anthropomorphic shape, which can significantly im-

prove the versatility and effectiveness of robots, especially in

environments designed for human interaction [1]. Moreover,

the humanoid physical shape of the robot supports collabo-

ration with humans by making its actions more legible and

predictable, which positively impacts safety and trust during

interactions [2]. Inspired by the effectiveness and adaptability

of human cognitive abilities, cognitive robotics aims to

draw from more than embodiment when designing robotic

platforms. Key attributes like human perception, selective

attention, different types of memory, and other facets of

human cognition are essential to improve the autonomy,

flexibility, and capabilities of robots [3].

The development and utilization of foundational mod-

els in robotic platforms have been fundamental in driving

advancement toward building autonomous artificial agents.

Large Language Models (LLMs) have been used as sym-

bolic reasoning instruments in various robotic applications

such as reasoning about user’s intentions in human-robot
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3Lukáš Gajdošech is with the Faculty of Mathematics, Physics and
Informatics, Comenius University, Slovakia.

Fig. 1. Our setup with the semi-humanoid NICOL robot.

collaboration [4], generating robot action plans in grounded

environments [5], and task planning in environment-sensitive

robot agents [6]. Nevertheless, LLM reasoning alone is

not yet sufficient for implementing the cognitive system

of embodied artificial agents, capable of solving complex

tasks and interacting with humans. Therefore, integrating

LLMs with other cognitive abilities is essential for achieving

this aim. Memory, in particular, is a capability that has

been proven to contribute to the effectiveness of information

processing in LLMs (for a survey, see [7]).

Taking inspiration from human cognition, several memory-

related processes and mechanisms can be identified based

on their specific roles and functionality, which can be

implemented accordingly. In humans, although the precise

taxonomy remains debated, short-term and long-term mem-

ory distinctively vary in the duration and capacity to retain

information [8]. While declarative memory stores events and

information, procedural memory has been conceptualized as

the memory storing conditional instructions detailing actions

based on circumstances [9]. On the other hand, working

memory integrates both representations from declarative and

procedural memory [9], enabling the retention of essential

information for an ongoing cognitive task, a process that is

deeply connected with selective attention mechanisms [10].

Starting from this classification, in this work, we develop

a hierarchical modular architecture to support the semi-

humanoid NICOL collaborative robot (see Fig. 1) in rea-
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soning with different kinds of memory functions. Thus, we

enable the robot to solve the requests of a human agent

by connecting 1) sensory information from the environment

(perception), 2) LLM agent prompting (reasoning), and 3)

task-appropriate robot actions produced as output. Although

simply linking these three pillars might be sufficient for

simple distinct tasks, the effectiveness might not be as high

for more complex situations, like the multi-tasking required

for natural interaction with humans. Therefore, we evaluate

the impact of memory on multi-task execution and test our

architecture with two different families of LLMs (OpenAI’s

GPT-3.5 and Meta’s open-weight Llama 3). Our framework

aligns and combines the environment data with task-specific

memory cues, effectively bridging the gap between the

robot’s perception and action and laying solid ground for

efficient task execution in contextually based interactions.

II. RELATED WORK

Integrating sensory input with memory is essential in arti-

ficial systems as it enables them to retain sensory information

for environment recognition and adaptive responses [11].

Moreover, memory plays a vital role in humanoid robots

since it brings together conceptual knowledge gained through

experience with the robot’s behavior, enabling adjustment

to complex interactive scenarios and tasks [12]. Memory-

based architectures have various applications such as trans-

ferring robot manipulation skills across different human en-

vironments [13], memory-powered incremental learning with

human-in-the-loop corrections [14], and supporting tasks like

action-planning for localizing a target and navigating towards

it [15]. Existing work incorporates models of memory into

robot tasks like planning with occluded objects [16], rea-

soning about object permanence [17], and learning human

personal attributes like voices and faces [18]. However, such

approaches model memory representations and reasoning as

distinct components or separate processes while embedding

memory directly within a reasoning backbone, like an LLM,

is beneficial for context-aware decision-making.

LLMs have recently been used to support robots’ reason-

ing and decision-making. However, relying solely on LLM’s

own internal memory is insufficient for handling complex

multi-task reasoning demands of dynamic robotic environ-

ments. Some approaches address the limitation in LLM

memory by injecting curated memory cues as contextual in-

formation into the LLM’s prompts [19], using previous struc-

turally stored dialogues to enrich current LLM input [20],

or caching previous conversations in a long-term memory

storage [21]. Other methods rely on retraining or fine-

tuning LLMs with contextual memory information [22][23].

However, relying on LLM context memory is constrained by

context length and can lead to reasoning instability, while

updating LLM parametric memory requires retraining and

fine-tuning, causing cost and robustness concerns [7]. The

limitations of LLM’s own memory are also underscored in

our experiments, highlighting the need for combining LLMs

with efficient and up-to-date robust memory systems.

ObjectsActionsLLMMemory
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Fig. 2. A simplified overview of our system’s workflow. The workflow
starts when the NICOL robot receives a given task. The robot’s sensory and
task inputs are then fed to our proposed LLM-powered architecture.

Our work addresses these limitations by incorporating

LLMs for reasoning and action generation in a hierarchical

framework. The idea of leveraging a hierarchy of LLMs

to support reasoning and task specialization exists in the

literature. For example, some approaches use multi-level

LLMs to mitigate the latency issues of OpenAI APIs for

real-time performance [24], combine LLM vision and textual

processing capabilities [25], and support efficiency in chatbot

applications with levels of user-centered queries [26]. How-

ever, our LLM hierarchy differs from these approaches by

utilizing a coordinator/worker LLM architecture, each with

a different scope of the interaction context. Our structure

also combines general LLM reasoning with specialized-task

memory action execution, supporting multi-task reasoning

and cognitive load reduction on each individual model.

III. METHODOLOGY

We take inspiration from human cognition to integrate a

memory framework with the robot’s reasoning and action

generation. In Fig. 2, we show a simplified overview of

our system’s workflow. The robot continuously observes

the objects in its proximate environment through its visual

perception and has specifications for pre-defined tasks. Upon

a new task command, the system triggers the LLM to store

and recall relevant memory components. Consequently, a

suitable robot action is generated, applicable to the objects,

and suitable to the task. Every time an action is performed,

the memory records are updated, creating and maintaining a

live memory repository and forming a continuous and adap-

tive feedback loop between the robot’s actions, its memory,

and the environment. We utilize two LLMs for managing

the memory models, each optimized with prompts designed

to achieve specific stages of the memory pipeline. In this

section, we introduce our robot, its visual perception module,

and present our proposed architecture and memory models.

A. Robotic Platform: NICOL

Our system runs on the Neuro-Inspired COLlaborator

(NICOL) [27] built in the Knowledge Technology group

at the University of Hamburg. NICOL is a tabletop robotic

platform with a humanoid head and two 8 DoF robotic arms.

The robot features social cues like facial expressions as well
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Fig. 3. Our proposed system architecture consisting of two layers: level 0
and level 1, utilizing the worker and coordinator LLM, respectively.

as object and arm manipulation capabilities like grasping and

neuro-genetic inverse kinematics [28]. The NICOL platform

is based on the Robot Operating System (ROS), facilitating

integration with various sensory modules and deep learning

models. It also supports open communication and collabo-

ration with human users through an LLM-powered modular

architecture [29] that combines sensory input like visually

grounded open-vocabulary object detection (ViLD [30]) and

speech recognition (Whisper [31]) with actions like arm and

head manipulation. Thus, it equips the robot with social and

cognitive skills via its grounded LLM. In our approach, we

extend NICOL’s skills, but unlike previous work, we focus

on adaptive action generation in robot multi-task scenarios.

B. NICOL’s Visual Perception and Action Parsing

We use NICOL’s 4K camera located inside the robot’s left

eye to capture the environment visually and the objects on the

table. We use the ViLD [30] object detector, enabling zero-

shot object detection and recognition without pre-training.

The NICOL’s ViLD object detector has been optimized to

work in real-time on continuous camera streams with high

efficiency and reliability [29]. The detector generates bound-

ing boxes for the objects on the table and their locations. All

objects detected outside the area of interest, i.e., the robot’s

table, are removed. The objects detected are expressed by text

so all object labels can be streamlined within the system’s

pipeline, making it compatible with an LLM application.

NICOL can also parse textual LLM-generated actions and

translate them into robot physical actions [29]. The robot can

perform arm manipulations like pointing to objects on the

table, grasping objects, and pushing objects to the user. For

example, “point to the banana” can be parsed and translated

into corresponding physical actions performed by the robot’s

arm, i.e., an extended arm and extended index finger gesture

to indicate the location of the banana on the table. The

robot also has other head manipulation and facial expression

capabilities. However, our system utilizes only the robot’s

arm manipulation skills in its action and task specifications.

Prompt 1: Task specifications as given to the coordinator LLM in the base prompt.

Separating task: Your task is to sort objects in different boxes based on their prop-
erties. Fruits should go to box 1 while kitchenware and containers should go to box
2. For this task, you can place objects in the corresponding boxes using appropriate
actions from the list of functions, for example: <move to box 1(banana)>.

Arrangement task: Your task is to place only the fruits inside the bowl. Do not
put other objects inside the bowl. Use the <place in bowl> action function to put
the fruits one by one inside the bowl, for example, <place in bowl(banana)>.

Pointing task: Your task is to point at objects in the following specific order, point
at each yellow object then only when you have pointed at all the yellow objects,
point at each red object on the table. Objects can be fruits, containers, or any other
sort of object. Do not point at any object that is neither red nor yellow. Do not
point at any object that is not on the table. At each step, check the remaining
objects on the table to choose an object that fits the criteria. For example, to point
at the banana, you can use <point(banana)>. Similarly, repeat for all objects.

Recipe task: Your task is to give all the ingredients for making a jello recipe with
banana topping. The required objects are a bowl, jello, and banana. Do not give
any other objects besides the required ingredients. Use the <give> action function
to give the objects one by one. Generate an action function for each object, for
example <give(banana)>.

Tower task: your task is to build a tower using colored cubes. Use the appropriate
action function to stack cube objects on top of each other one by one. The order
of the colored cubes does not matter. Generate an action function for each cube
object, for example, <put on tower(red cube)>. But only use colored cubes for
building the tower. Never use other objects for building the tower.

When asked to perform this task, generate a set of actions to achieve it using the
current objects. You should generate one action for each individual object.

C. Proposed Architecture

Our architectural design comprises a stack of two layers

(cf. Fig. 3), which work collaboratively to achieve adaptive

task execution. Each layer features an LLM corresponding

to a specialized level of reasoning and memory capabilities

but works in tandem with the other LLM to generate a set of

robotic actions and achieve task-oriented goals. In the lower

level (level 0), a worker LLM is dedicated to creating and

maintaining two memory variants (working and declarative
memory) based on real-time inputs from the environment and

interaction history, and supplying foundational information

for the subsequent decision-making processes within the

system. The worker LLM represents our instruction-based

LLM which receives structured commands triggered by the

coordinator LLM, resulting in structured and precise outputs.

The coordinator LLM in level 1 of the stack represents

our reasoning LLM backbone which triggers the different

functions of the worker LLM, integrates its output with the

task’s context, while focusing on complex task reasoning and

decision-making. The coordinator LLM integrates input from

the environment like the objects on the table and task-specific

memory cues received from the worker LLM to generate

robot-actionable commands and instructions, suitable to the

robotic task at hand. For example, the output of the coordi-

nator LLM in a tower building task might be an action like

“put the yellow cube on top of the cube tower” that requires

reasoning and understanding of the task at hand, objects on

the table, and overall context of previous interactions (which

objects should be stacked in the tower, remaining cubes on

the table, cubes already stacked in the tower, etc.).

Collectively, the two layers (level 0 and level 1) enable

the system to adapt to the changing environment as the

objects on the table and task requirements are continuously

changing, i.e., smoothly and seamlessly switching between

tasks. Since both LLMs use text for input and output,
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Prompt 2: Action specifications as given to the coordinator LLM.

<point(object)>: Given a string of an object name, use your arms to point to
that object on the table.

<give(object)>: Given a string of an object name, use your arms to push that
object on the table and give it to the user. You can hand objects to the user with
this function.

<move to box 1(object)>: Given a string of an object name, use your arms to
grasp that object on the table, lift it and drop it inside box 1 on the table. You can
move objects to box 1 with this function.

<move to box 2(object)>: Given a string of an object name, use your arms to
grasp that object on the table, lift it and drop it inside box 2 on the table. You can
move objects to box 2 with this function.

<put on tower(object)>: Given a string of an object name, use your arms to
grasp that object on the table, lift it, and drop it on top of the cube tower. You
can build a tower of cubes using this function.

<place in bowl(object)>: Given a string of an object name, use your arms to
grasp that object on the table, lift it, and drop it inside the bowl on the table. You
can place objects in the bowl with this function.

Prompt 3: Memory functions for triggering the worker LLM.

<retrieve working memory(task)>: Given a string of a task name, use the
following action format <retrieve working memory(task name)> to retrieve the
working memory. For instance, if you want to retrieve the working memory for
separating, use <retrieve working memory(separating)>. Ensure that the output
follows this format exactly.

<retrieve declarative memory(task)>: Given a string of a task name, use the
following action format <retrieve declarative memory(task name)> to retrieve the
declarative memory. For instance, if you want to retrieve the declarative memory
for separating, use <retrieve declarative memory(separating)>. Ensure that the
output follows this format exactly.

the communication of information across the two layers

can be easily standardized and unified, thus, providing a

robust framework for task execution that is responsive to the

environment and also adaptive in terms of decision-making.

D. LLMs for Instructions and Reasoning

We distinguish between the coordinator and worker LLMs

optimized for reasoning and following instructions, respec-

tively. The role of the coordinator LLM is to orchestrate

the task execution process. At the system start, it receives

a base prompt with specifications that ground the robot’s

knowledge of the possible tasks and their respective actions.

This information represents the system’s procedural memory,

informing the agent about the steps needed to achieve each

task goal (see Prompt 1 and Prompt 2). These specifications

are modular and can be easily swapped or extended. The

coordinator LLM receives the objects on the table from

the open-vocabulary object detector and can then call two

unique actions to invoke the worker LLM (see Prompt 3) for

triggering the rest of the memory process. After retrieving

the output from the worker LLM, the knowledge can be

injected within the existing specifications in order to prompt

the coordinator LLM to generate a suitable robot action.

At level 0, the worker LLM is responsible for parsing

and interpreting the environment input (passed from the

coordinator LLM), and thus, dynamically managing the real-

time sensory perception of the robot. Upon receiving the

instruction from the coordinator LLM, it creates the working

memory, which represents the selective attention of the robot.

Additionally, it maintains the declarative memory, which

represents facts about the history of interaction over a time

period. Unlike the coordinator LLM which has an overview

Prompt 4: An example prompt to extract the working memory (separating task).

Prompt Input:
Separating Task: the task is to move fruits to box 1, containers and kitchenware
objects to box 2. −→ Task Description
Name the objects that are relevant to the given task from the following: −→ LLM
Instruction
apple, banana, cup, bowl, baseball, pear −→ Visual Input
Output a list of object names separated by a comma and without any extra text.
If order is important to the task then output the object names in the correct order.
−→Output Format

Prompt Output:
apple, banana, cup, bowl, pear

Prompt 5: An example prompt to extract the declarative memory (separating task).

Prompt Input:
Log Entry:
Action: <move to box 1(pear)>
Box 1: 1. pear
Remaining Objects: 1. apple 2. banana 3. cup 4. bowl 5. baseball
Log Entry:
Action: <move to box 1(apple)>
Box 1: 1. pear 2. apple
Remaining Objects: 1. banana 2. cup 3. bowl 4. baseball
Log Entry:
Action: <move to box 2(bowl)>
Box 2: 1. bowl
Remaining Objects: 1. banana 2. cup 3. baseball
−→Log File
Given the sequence of log entries, extract the final list of objects in box 1 from
the last log entry. −→LLM Instruction
Output a list of object names separated by a comma and without any extra text.
−→Output Format

Prompt Output:
pear, apple

of all the interactions, i.e., its conversations include all the

previous dialogues, the worker LLM receives only a single

prompt at a time without any previous dialogue or context.

E. Working Memory

The worker LLM extracts and refines the working mem-

ory, which is a compact representation of crucial information

to task completion. Each working memory is specialized for

a specific task without knowledge of other tasks, and consists

of several task- and environment-related cues. Task-related

cues are: 1) Task Reminders: additional short descriptions of

the task actions and desired goal, and 2) Task State: which

tracks the current state of the objects in relevance to the

current task progress. For example, in a fruit arrangement

task (the fruits must be placed in the bowl), it might include

information such as “the banana and apple are in the bowl”.

The working memory also includes a selective object state

extracted by combining the information of the declarative and

procedural memory. Specifically, it receives all the objects on

the table and outputs only the task-relevant ones, representing

the robot’s visual selective attention. In Prompt 4, we high-

light an example of the separating task (fruits and dishware

items must be placed in different bins). The first part of the

prompt is the task description, which is then combined with

the visual input identifying the objects: apple, banana, cup,

bowl, baseball, pear. The prompt’s final part sets rules for the

worker LLM on output formulation, ensuring the working

memory remains consistent before passing it back to the

coordinator LLM. As a result, only necessary objects are

retained, i.e., objects not task-relevant are removed from the

working memory (the baseball in the given example).
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TABLE I

SUMMARY OF THE REQUIRED REASONING AND ACTIONS PER TASK

Task Input Objects Reasoning Action (s)

Separate apple, banana, cup,
bowl, baseball, pear

fruits → box 1,
kitchenware→box 2
others → table

move to box 1
move to box 2

Arrange apple, banana, can,
lemon, orange, pear

fruits → bowl
others → table place in bowl

Point
apple, can
lemon, banana
orange, pear

order of pointing:
yellow → red
others → table

point

Recipe apple, banana, can
bowl, jello, pear

recipe objects:
bowl, jello, banana

give

Tower
cube 1, cube 2
cube 3, cube 4 (b)
cube 5 (w), cube 6

colored → Tower
black/white→table put on tower

F. Declarative Memory

When the robot modifies the environment with object

manipulation actions, these changes are logged into the sys-

tem’s declarative memory, ensuring that the robot’s internal

state through its memory is precisely synchronous with the

external world. Since all the robot actions are recorded, the

system always has knowledge of the interaction history over

any duration of time. We store this memory persistently

as log files, one file per task. Similar to working memory,

declarative memory is specialized to one task and does not

contain information about other tasks. As a task newly starts,

the interaction history is empty and data is accumulated

as the task progresses. Although the memory is extended

dynamically, since the robot generates one action per object,

the memory size (number of entries) can be at most equal

to the number of objects. If the task gets interrupted, i.e.,

the robot is asked to switch to another one, the interaction

history is kept safe. When the robot continues the interrupted

task, it retrieves essential information like previous actions,

environment state, and task state at the interruption point.

The worker LLM is responsible for creating and maintain-

ing the logs of the declarative memory. An example using the

separating task is shown in Prompt 5 (for simplicity, we only

show the information extraction of box 1). The worker LLM

is given the persistent task logs and prompted to extract the

remaining objects on the table (environment state) and the

objects in box 1 and box 2 (task state). Similar to the working

memory, the prompt has a clearly defined output structure

for consistency of the information in the system across the

two LLMs. The log file is structured by entries ordered by

the executed actions, which allows the LLM to efficiently

identify the most recent environment and task states.

IV. EXPERIMENTS AND EVALUATION

We evaluate our system using five robotic tasks, each re-

quiring a set of objects as input and an appropriate sequence

of robot actions as output to achieve the task expected goal.

Each task involves both a cognitive aspect, where the robot

must analyze the objects and reason about the task definition

to identify the ones required to achieve it, and a physical

Task 3Task 1 Task 2 Task n

Task 3Task 1 Task 2 Task n Chat Reset

Task 1 Chat Reset Consecutive TasksTask 2 Task 3 Task n

Intervened Tasks

Task nTask 1 Chat Reset Chat Reset Standalone Tasks

Fig. 4. Our model evaluation scheme has three different task execution
modes, each resetting the LLM chat at a different interaction point.

aspect, in which the robot performs the appropriate object

manipulation function. The objects necessary to perform

tasks vary per task, however, we limit the total input to six

objects since our early experiments showed that an input size

of six objects is most reasonable given the limited number of

tokens the LLM can process within its context window. We

use YCB objects for the tasks in addition to colored cubes

for the tower task. An overview of the tasks is as follows: 1)

Separating Task: the robot places fruits and dishwasher items

in different containers, 2) Arrangement Task: the fruits must

be arranged by placing them inside a bowl, 3) Pointing Task:
the robot points to all the yellow objects on the table and

then to all the red objects, 4) Recipe Task: objects for making

a jello recipe with banana topping are given to the user, and

5) Tower Task: the robot builds a tower by stacking only

colored cubes on top of each other. A summary of the tasks

is provided in Table I. Our system runs on the NICOL robot,

but for evaluation, we disable the robot’s physical control

since we focus on evaluating our system’s action-generating

aspect and not the NICOL platform components.

We conducted a total of 50 trials for each experiment using

two LLMs: ChatGPT-3.5-Turbo-0125 and Llama 3. The

GPT-3.5 model has 175B parameters and a context window

length of approximately 16k tokens. We opted for GPT-3.5

over the GPT-4.0 models since it is more efficient in terms of

cost and speed. Experiments with this model were conducted

using the API services of OpenAI. In contrast, Llama 3 has

70B parameters and a context window size of 8k tokens.

An advantage of open-weight models is that they allow

potentially controlling the seed values, supporting result

reproducibility. All the Llama experiments were conducted

using a single NVIDIA A100 GPU with 80 GB of VRAM.

Due to the GPU’s capacity constraints, we utilized the 8-bit

quantized version of Llama 3, requiring approximately 72

GB of VRAM. This model is provided by Ollama1 and com-

patible with Langchain2. We used identical parameters for

both LLMs to ensure a fair comparison. The temperature
was set to 0.2 for controlled results. Given that consistency

is already regulated by the temperature value, we set top p
to 1 to avoid eliminating any potential candidate responses.

1https://ollama.com/
2https://python.langchain.com/v0.2/docs/

integrations/llms/ollama/
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Both the frequency penalty and presence penalty were

set to 0, acknowledging that the same tokens may recur due

to the defined scope of objects and actions in the experiment.

A. Single and Multi-task Scenarios

Our evaluation scheme consists of three modes (as

sketched in Fig. 4). Standalone mode refers to running each

task independently, followed by a complete LLM chat history

reset. This experiment represents the baseline performance

for each of the defined tasks. In consecutive mode, we run

the tasks back to back in a sequence and reset the chat

only after executing the last task. In the intervened mode,

the system performs a multi-task scenario, in which each

task is interrupted at an intervention point (defined at a

50% task completion based on the total number of required

actions). After each intervention point, the system switches

to the next task and back to Task 1 after the completion

of the last task. A chat reset follows a 100% completion

of the last task. The consecutive and intervened scenarios

require memory components, and thus, we evaluate them

with and without memory for comparison. We present the

results of our experiments in the next subsections, using the

following metrics: 1) Success Rate: the ratio of the correctly

completed tasks to the total trials. For a task to be considered

complete, the system must generate all the required actions

correctly, 2) Task Retention: assesses whether the system can

correctly identify and recall the state of the task after its

completion, e.g., which objects are in box 1 and box 2 and,

3) Environment Retention: verifies whether the system can

correctly recognize the state of the environment after the

task completion, i.e., which objects remain on the table.

B. Results for Standalone Tasks

This experiment is our single-task scenario, meaning the

system is configured to execute one task at a time with

knowledge limited to the task at hand and its actions.

Therefore, the system does not require memory of previous

interactions and runs with the memory components disabled.

As shown in Table II, the system completes the tasks with

a high success rate as they are presented individually, and

with comparable performance across both LLMs. Further-

more, the system maintains task- and environment-related

information with high accuracy when evaluated at the end of

each task, even reaching a perfect score for some tasks. The

Llama 3 success rate slightly dropped for the arrangement

and recipe tasks. In the arrangement task, Llama 3 occasion-

ally generated a batch of actions instead of a single action per

prompt. Despite the soundness of the generated actions, gen-

erating multiple actions at a time violates our strictly defined

evaluation scripts. In the recipe task, Llama 3 occasionally

generated actions for giving the wrong toppings, likely due to

the model’s training containing real data of recipes with jello

and fruits. However, this setup demonstrates that the tasks

are inherently manageable for the LLM hierarchy to handle

when presented in a standalone manner. Thus, this scenario

represents our baseline of task performance compared to the

more complex evaluation modes: consecutive and intervened.

TABLE II

RESULTS OF THE STANDALONE TASKS EXPERIMENTS

Task Model Success
Rate

Task
Retention

Environment
Retention

Separate GPT 3.5 0.98 0.99 1.00
Llama 3 0.98 0.98 1.00

Arrange GPT 3.5 0.92 0.94 0.96
Llama 3 0.86 0.98 0.96

Point GPT 3.5 1.00 1.00 1.00
Llama 3 0.98 0.98 0.98

Recipe GPT 3.5 0.96 1.00 1.00
Llama 3 0.86 0.96 0.96

Tower GPT 3.5 1.00 1.00 1.00
Llama 3 0.98 0.98 1.00

C. Results for Consecutive Tasks

In this setup, the system has knowledge of all the defined

tasks and possible actions through its declarative memory.

Hence, the LLM must not only reason about the task

requirements but also choose the appropriate actions. In this

experiment, we observe that running the tasks consequently

presents a considerable challenge to the LLMs when tuned

without the working memory (cf. Table III). The system

achieves average performance for some of the tasks (sep-

arating and recipe), however, the success rate and retention

drop significantly for most tasks compared to the standalone

experiment. The pointing task is particularly challenging

since the LLM must reason about the order of objects, not

only their type, as well as the appropriate pointing action.

Similarly, the tower task is challenging to the system, and we

observe failures in correctly reasoning that black and white

cubes (not colored) must not be stacked in the tower.

In contrast, we report a noticeable boost in the success

rate and retention metrics when running the experiment with
the working memory enabled (see Table III). Both LLM

variants perform comparably and even reach a perfect score

for some of the tasks, e.g., arrangement. Noticeably, Llama 3

outperforms ChatGPT 3.5 on the separating task due to

errors in the coordinator bypassing the worker LLM output

and generating redundant unnecessary actions, negatively

influencing its overall success and retention values. Over-

all, both LLMs achieve success rates that approximate the

baseline (standalone setup) and even surpass it for tasks like

arrangement and recipe (see Fig. 5). This experiment shows a

significant improvement in performance due to the utilization

of the worker LLM and working memory, thus, suggesting

that the coordinator LLM becomes a bottleneck in action

generation over a longer period of interaction time.

D. Results for Intervened Tasks

We evaluate the declarative and working memory by

creating intervention points, i.e., interruptions, in which the

execution of a task is paused, and the system must switch

to the next task. Each trial in this experiment involves two

execution rounds. In the first round, only 50% progress of

each task is accomplished, and in the second, the system
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TABLE III

RESULTS OF THE CONSECUTIVE TASKS EXPERIMENT WITHOUT AND

WITH MEMORY (HIGHLIGHTED)

Task Model Success
Rate

Task
Retention

Environment
Retention

Separate GPT 3.5 0.70 0.84 0.61 0.92 0.22 0.92
Llama 3 0.66 1.00 0.78 1.00 0.20 1.00

Arrange GPT 3.5 0.14 1.00 0.14 1.00 0.72 1.00
Llama 3 0.50 1.00 0.50 1.00 0.50 1.00

Point GPT 3.5 0.40 1.00 0.40 1.00 0.40 1.00
Llama 3 0.30 0.98 0.40 1.00 0.28 1.00

Recipe GPT 3.5 0.77 1.00 0.68 1.00 0.68 1.00
Llama 3 0.42 1.00 0.82 1.00 0.18 1.00

Tower GPT 3.5 0.29 1.00 0.28 1.00 0.32 1.00
Llama 3 0.58 0.92 0.68 0.98 0.36 0.94

resumes every paused task from the interruption points until

full completion. The 50% intervention is chosen for simplic-

ity; however, the system behaves similarly at any interruption

point. For consistency, we run the tasks by their definition

order: separating, arrangement, pointing, recipe, and tower.

However, the task order does not influence the experiment

since each task has its own input and runs independently,

i.e., one task success or failure does not impact other tasks’

performance. We run the intervention mode twice: without

memory and with declarative and working memory. Similar

to the consecutive mode, the tasks are challenging to both

LLMs without memory (cf. Table IV). Noticeably, the recipe

task performance drops for GPT 3.5 due to errors in the

coordinator LLM, generating noisy actions on wrong objects.

Moreover, the performance of Llama 3 is below average for

all tasks. The main error source is the LLM “forgetting”

the task specifications due to the longer interaction duration,

and thus, generating false actions or no actions. Also, the

logical task reasoning was challenging, and the coordinator

LLM generated incorrect actions, e.g., pointing to an object

neither yellow nor red, placing a non-fruit object in the bowl,

or giving the wrong object in the recipe task.

Here again, our experiment demonstrates noticeable im-

provement in the success rate, task retention, and en-

vironment retention scores across both LLMs (see Ta-

ble IV). The scores for the pointing, recipe, and tower

tasks are comparable for both models and approximate

the baseline (see Fig. 6). Interestingly, Llama 3 scored

higher success and retention values in the separating

Fig. 5. Success rate with both LLMs in the consecutive setup (with and
without memory) in comparison to the baseline (standalone setup).

TABLE IV

RESULTS OF THE INTERVENED TASKS EXPERIMENT WITHOUT AND

WITH MEMORY (HIGHLIGHTED)

Task Model Success
Rate

Task
Retention

Environment
Retention

Separate GPT 3.5 0.78 0.80 0.58 0.75 0.60 0.98
Llama 3 0.19 0.96 0.15 0.99 0.66 0.98

Arrange GPT 3.5 0.62 1.00 0.44 1.00 0.74 1.00
Llama 3 0.19 0.82 0.50 0.82 0.12 0.82

Point GPT 3.5 0.60 0.98 0.70 0.98 0.72 0.98
Llama 3 0.28 0.98 0.24 0.98 0.16 0.98

Recipe GPT 3.5 0.14 0.92 0.12 0.92 0.12 0.92
Llama 3 0.18 0.88 0.42 0.92 0.32 0.98

Tower GPT 3.5 0.42 0.98 0.46 0.98 0.44 0.98
Llama 3 0.15 0.98 0.16 0.98 0.48 0.98

task due to the task grounding of GPT 3.5 leading to

faulty commonsense reasoning, thus, occasionally generating

wrong actions such as <move to box 2(pear)> instead of

<move to box 1(pear)>. We also observed Lama 3 gener-

ating a wrong list of objects in the working memory of

the arrangement task, which explains the slight drop in its

performance. However, when comparing against the previous

experiment (consecutive with memory), this seems to be a

challenge only when the system must provide this informa-

tion in the second round of task execution. We hypothesize

this to be due to the context size of Llama 3 being roughly

half the size of this ChatGPT model (8k vs 16k) since

this mode requires multiple rounds. We also observed high

variability in the output with these answers, hinting that the

parameters chosen for Llama 3 could be further optimized for

more stable output (ex: we used top p of 1 for both models).

V. DISCUSSION AND CONCLUSION

In this work, we proposed an architecture for combining

cognitively inspired memory processes with a hierarchical

LLM-powered framework for enabling the robot to smoothly

and effectively switch between tasks. Our layered approach

leverages the efficiency and accuracy of LLMs at executing

instructions and their more advanced reasoning skills, result-

ing in the ability to maintain contextually rich interactions

across multiple tasks. Our system has been applied to the

physical NICOL robot but generally has various applications

for increasing the productivity of human-robot collaboration,

e.g., enabling the robot to simultaneously perform multiple

Fig. 6. Success rate with both LLMs in the intervened setup (with and
without memory) in comparison to the baseline (standalone setup).
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tasks and manage various high-level goals in parallel. Our

system can be extended with more task and action speci-

fications and can be used for adaptive task execution that

considers the interaction context at runtime. Thanks to our

modular architecture, the system can integrate different LLM

types, e.g., a powerful LLM for reasoning and a smaller

lower-cost LLM for executing instructions, supporting cost

and time efficiency while maintaining effective task handling.

Our experiments showed a challenge for the current LLMs

(ChatGPT and Llama) to manage different tasks and goals at

the same time by relying on the LLM’s own internal memory

or the context of previous dialogues in the prompt. However,

our implemented memory process (declarative, procedural,

and working memory) demonstrated a significant boost in

the performance of both models compared to our baseline.

Although LLMs enable the flexibility of task definition and

reasoning without explicit programming, their fixed context

size can restrict the number of tasks and objects that can be

managed simultaneously. Also, our experiments showed that

LLMs are still prone to errors like occasionally generating

redundant or incorrect actions. However, in future work,

memory-based architectures like our proposed one can be

expected to be beneficial for human-robot collaboration

besides action generation. For example, we plan research on

managing high-level goals in multi-party robotic scenarios,

where humans are interacting with the robot, each having

their own goal. As LLMs with larger context windows

become more available and accessible, we will also evaluate

our system with a larger number of tasks and input objects.
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