
Wrapyfi: A Python Wrapper for Integrating Robots, Sensors, and
Applications across Multiple Middleware
Fares Abawi

fares.abawi@uni-hamburg.de
University of Hamburg
Hamburg, Germany

Di Fu
di.fu@uni-hamburg.de
University of Hamburg
Hamburg, Germany

Philipp Allgeuer
philipp.allgeuer@uni-hamburg.de

University of Hamburg
Hamburg, Germany

Stefan Wermter
stefan.wermter@uni-hamburg.de

University of Hamburg
Hamburg, Germany

FORWARDINGMIRRORING CHANNELING

IMAGE FRAMES AUDIO CHUNKS

SOUNDDEVICE

NATIVE OBJECTS, ARRAYS, AND TENSORS

REQUEST / REPLY PUBLISH / SUBSCRIBE

 ROBOTS SENSORS APPLICATIONS
* Chat client / server
* Head pose estimation
* Facial expression recognition
* Robot simulation
* ...

Pepper
iCub

Webcam

Eye tracker

Microphone

Nao

Figure 1: Overview of the Wrapyf framework. From top to bottom: 1) Data types are encoded or decoded depending on
the transmission mode; 2) Encoded objects are prepared for transmission using the Request/Reply or Publish/Subscribe
communication pattern; 3) Messages are transmitted through the selected middleware protocol; 4) Messages sequenced
according to the communication scheme; 5) Messages exchanged between robots, applications, and sensors.★
★ The “nine dots” ROS and ROS 2 logos are trademarks of Open Source Robotics Foundation. TensorFlow, the TensorFlow logo, and any related marks are trademarks of Google Inc. The OpenCV logo is a trademark of
https://opencv.org. The NumPy logo is used in accordance with the NumPy logo guidelines. The pandas logo is used in accordance with the brand and logo guidelines. PyTorch, the PyTorch logo and any related marks are
trademarks of The Linux Foundation. The name ZeroMQ and the “ØMQ” logo are used in compliance with creative commons license Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). The logos for Dask, Apache MXNet,
paddlepaddle, PIL (Pillow), JAX, and YARP are included with respect to their trademark policies; we acknowledge that these are subject to copyrights, trademarks, or registered trademarks of their respective holders. We do not
claim ownership of these copyrights or trademarks. The use of these logos does not indicate endorsement by the trademark or copyright holders, nor does it suggest any afliation or endorsement by the authors of this work.

ABSTRACT
Message oriented and robotics middleware play an important role
in facilitating robot control, abstracting complex functionality, and
unifying communication patterns between sensors and devices.
However, using multiple middleware frameworks presents a chal-
lenge in integrating diferent robots within a single system. To
address this challenge, we present Wrapyf, a Python wrapper sup-
porting multiple message oriented and robotics middleware, in-
cluding ZeroMQ, YARP, ROS, and ROS 2. Wrapyf also provides
plugins for exchanging deep learning framework data, without

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HRI ’24, March 11–14, 2024, Boulder, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0322-5/24/03.
https://doi.org/10.1145/3610977.3634943

additional encoding or preprocessing steps. Using Wrapyf eases
the development of scripts that run on multiple machines, thereby
enabling cross-platform communication and workload distribution.
We fnally present the three communication schemes that form
the cornerstone of Wrapyf’s communication model, along with
examples that demonstrate their applicability.
http://software.knowledge-technology.info#wrapyf.

CCS CONCEPTS
• Software and its engineering → Message oriented middle-
ware; • Computer systems organization → External interfaces
for robotics; • Theory of computation → Distributed computing
models.

KEYWORDS
Message oriented middleware, robotics middleware, distributed
computing, deep learning frameworks, human-robot interaction

860

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3610977.3634943
http://software.knowledge-technology.info#wrapyfi
https://opencv.org
mailto:stefan.wermter@uni-hamburg.de
mailto:philipp.allgeuer@uni-hamburg.de
mailto:di.fu@uni-hamburg.de
mailto:fares.abawi@uni-hamburg.de
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610977.3637471&domain=pdf&date_stamp=2024-03-11

HRI ’24, March 11–14, 2024, Boulder, CO, USA Fares Abawi, Philipp Allgeuer, Di Fu, and Stefan Wermter

ACM Reference Format:
Fares Abawi, Philipp Allgeuer, Di Fu, and Stefan Wermter. 2024. Wrapyf: A
Python Wrapper for Integrating Robots, Sensors, and Applications across
Multiple Middleware. In Proceedings of the 2024 ACM/IEEE International
Conference on Human-Robot Interaction (HRI ’24), March 11–14, 2024, Boulder,
CO, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3610977.
3634943

1 INTRODUCTION
Real-time robotic applications require exchanging multimodal data
arriving from a variety of sensors. A framework that distributes
sensory information across processes is necessary, especially for
robot-robot and human-robot interaction [17]. Multiprocess and
multithread instances are used to parallelize independent methods.
However, such parallelization approaches are limited to single ma-
chines and may not be sufcient for applications with a large num-
ber of sensors or computationally expensive processing methods.
Eventually, this leads to performance bottlenecks on consumer-
grade computers. Message oriented and robotics middleware, such
as ZeroMQ [10], YARP [16], ROS [21], and ROS 2 [13], were de-
veloped to tackle such challenges. Middleware frameworks use
communication protocols to exchange data and distribute opera-
tions across several machines and nodes [7].

ROS [21] is a middleware commonly used in the robotics com-
munity. ROS provides control hardware interfaces, visualization
tools, and communication models for many robotic platforms [2].
Its widespread use is a direct result of its early adoption of open
source and the vast amount of robotic tools provided by its devel-
opers and contributors. However, ROS is scheduled for depreca-
tion in favor of ROS 2 [13]. Many robotic platforms and packages,
nonetheless, have not been updated to support this transition yet.
Although bridges were developed to enable communication be-
tween ROS, ROS 2, and WebSocket, integrating such bridges into
working pipelines requires major modifcations to the underlying
code and its structure. This demands following certain naming con-
ventions and limiting the message types supported, resulting in
additional efort. Other middleware designed specifcally for certain
robotic platforms such as YARP [16] used by the iCub [15] robot,
provide interfaces for communicating with ROS [18] as well. How-
ever, their usage dictates modifying scripts to accommodate specifc
message types. This poses a major hurdle for developers wanting
to integrate diferent robots and middleware, as a result, restricting
the cross-compatibility of their applications with existing systems.

To improve interoperability between diferent robotic platforms
and reduce reliance on a particular middleware, we have developed
the open source Wrapyf1 (illustrated in Figure 1) framework, a
Python wrapper supporting multiple middleware bindings. Wrapyf
is a simpler alternative to GenoM3 [14]. GenoM3 adopts a model-
driven approach and uses templates to defne the components and
data exchanges across middleware. Since it is specifcally devel-
oped for Python scripting, Wrapyf eliminates the need for having
to learn another language or to defne templates, unlike GenoM3.
REMS [26] is a middleware built in Python with simplistic inter-
faces for educational purposes. Although REMS supports a large
set of robots and simulation environments, it does not address
interoperability between diferent middleware operating on them.
1https://github.com/fabawi/wrapyf

Wrapyf’s decorator-based design integrates easily with existing
workfows, prioritizing minimal modifcations for improved multi-
robot communication. Beyond robotic applications, its adaptability
is observed in supporting message oriented middleware, facilitating
communication with interfaces that do not necessarily require the
additional packages and tools provided by robotics middleware.
Deep learning frameworks like JAX [4] and PyTorch [20], support
multi-machine parallelization mainly through remote procedure
calls. The approaches adopted in distributing models and data dif-
fer greatly, including the communication patterns used and the
orchestration of communication, having either a single or several
controllers. By ofering a standard approach for multiple frame-
works, and supporting two of the most common communication
patterns, namely publish-subscribe and request-reply—also known
as the request-response or client-server pattern—Wrapyf ofers
greater control over communication dynamics in comparison to
each framework’s parallelization protocol.

Open Neural Network Exchange(ONNX) [3] is a framework de-
signed to standardize machine learning model representations, of-
fering compatibility with a wide range of deep learning frameworks.
However, using ONNX with any framework requires converting
the model formats. In contrast, Wrapyf does not impose such a con-
straint or bind developers to a specifc protocol. Wrapyf does not
only allow for native Python object exchanges but also transports
data structures such as arrays and tensors, which are relied upon
in deep learning applications. This integration makes Wrapyf a
useful tool for developers, allowing them to take advantage of both
robotics and deep learning ecosystems.

2 DATA TYPES
Wrapyf employs a type-aware serialization method that automat-
ically transforms the objects exchanged between script mirrors
into a format compatible with the selected middleware. Wrapyf
supports the following data types:

Native objects, arrays, and tensors. Wrapyf allows for the trans-
mission of a variety of data types used in Python. Prior to trans-
mission, these data types are converted into JSON strings to ensure
compatibility across diferent middleware platforms. Wrapyf sup-
ports using NumPy [8] arrays and enables their sharing across
mirrored scripts. Moreover, Wrapyf ofers a plugin interface that
developers may use to customize the transmission of other types of
objects. This feature allows encoding objects as strings, which can
eventually be decoded back into their original structure. Wrapyf
comes with built-in plugins for exchanging Arrow [22] vectors,
pandas2 [19] data frames, and Pillow3 images. It also supports ten-
sors from major deep learning frameworks such as TensorFlow [1],
PyTorch [20], MXNet [6], JAX [4], PaddlePaddle [12], and Dask [23].
These plugins make it possible to exchange data between diferent
frameworks and to integrate deep learning models into robotic
systems. When specifed, the tensors transmitted using Wrapyf
can be mapped to GPUs or CPUs diferent from the ones speci-
fed on a publishing script’s end, allowing for the distribution of
computationally demanding deep learning models.

2pandas version 1 with NumPy as a backend
3https://github.com/python-pillow/Pillow

861

https://doi.org/10.1145/3610977.3634943
https://doi.org/10.1145/3610977.3634943
https://github.com/fabawi/wrapyfi
https://github.com/python-pillow/Pillow

Wrapyfi: A Python Wrapper for Integrating Robots, Sensors, and Applications across Multiple Middleware HRI ’24, March 11–14, 2024, Boulder, CO, USA

Images. ROS, ROS 2, and YARP provide specialized message types
for transmitting images. We use image messages to stream raw
monochrome, RGB, and JPEG-encoded images. ZeroMQ does not
provide such specialized message structures. Therefore, we make
use of the multipart message structure to create an image interface,
allowing us to standardize middleware behavior and transmit the
image properties to a specifed topic.

Audio chunks. ROS and ROS 2 do not provide messages structured
for audio transmission, so we create custom messages and services
to transmit audio along with its properties. The number of audio
channels transmitted can vary in size, as long as the audio chunk
structure follows the python-sounddevice format4. For YARP, we
use the existing sound port and transmit the audio as a sequence.
Whereas, for ZeroMQ, we transmit a string, encoding the auditory
signal along with its properties as a single multipart message.

3 COMMUNICATION SCHEMES
Wrapyf manages script interactions using three communication
schemes—Mirroring, Forwarding, and Channeling. Mirroring en-
ables concurrent execution of multiple scripts with synchronized
actions. Forwarding creates chains of methods to tunnel arguments
and return values across diferent middleware confgurations. Chan-
neling allows for the broadcasting of multiple return values via one
method, each using potentially diferent middleware. Each scheme
addresses diferent challenges in distributed systems.

Listing 1: Decorated method registering the data type, mid-
dleware, topic, connection protocol, and blocking behavior.
'$0' passes the frst argument (mware) from the method to the
decorator. Similarly, '$blocking' passes the keyword argument.
1
2
3
4
5
6
7
8

c l a s s M i r r o r C l s (MiddlewareCommunicator) :
@MiddlewareCommunicator . r e g i s t e r (' N a t i v e O b j e c t ' ,
' $0 ' , ' M i r r o r C l s ' , ' / example / read_msg ' ,
c a r r i e r = ' t c p ' , s h o u l d _ w a i t = ' $ b l o c k i n g ')

def read_msg (s e l f , mware , msg= ' ' , b l o c k i n g =True) :
msg_ip = input (' t y p e message : ')
o b j = { ' msg ' : msg , ' msg_ip ' : msg_ip }
return obj ,� �

The MiddlewareCommunicator is a Wrapyf class for establish-
ing communication methods. It implements the register decorator
for setting the middleware types, topics, and various communica-
tion parameters. Each method set to publish, subscribe, request, or
reply should be encapsulated with this decorator. Listing 1 illus-
trates the use of the register decorator to register a method for
YARP middleware communication, specifying object type, middle-
ware, name of the class, YARP port (topic), communication protocol,
and whether the method should await a response, which results
in blocking the subscribing method until the publisher transmits a
message. The read_msg method obtains user input from one pro-
cess, allowing all other subscribing processes to acquire user input
from a single process invocation.

4https://github.com/spatialaudio/python-sounddevice

Listing 2: Activating a method in 'publish' mode. When the
method is called, its results are returned to the caller and
transmitted to the listener.
1 mir ro r = Mir ro rC l s ()
2 mir ro r . a c t i v a t e _commun i c a t i on (
3 ' read_msg ' , mode= ' pub l i s h ')� �

In Listing 2, setting the mode to 'publish' triggers read_msg
upon method call, whereas 'listen' returns the message received
over the middleware. These modes enable the establishment of
communication following the publish/subscribe pattern. Alterna-
tively, setting the activate_communication mode to 'request'
or 'reply' triggers the request/reply pattern.

Mirroring. Mirrors are multiple scripts running concurrently. The
scripts share arguments and return values using a predefned com-
munication pattern. The behaviors of all mirrored scripts are iden-
tical. However, their methods could either execute functionality
in place or acquire their return values from another publisher. By
calling read_msg in Listing 1 using a single publishing script, all
subscribing mirrors receive the same return object when invoked as
well. Regardless of the communication pattern or blocking behavior,
all scripts follow the same pipeline with similar method returns.

Forwarding. The forwarding scheme in Wrapyf enables passing
arguments to multiple methods, each with a diferent middleware
setting. This forms a chain of methods, transferring arguments and
return values across middleware and topics. Forwarding employs
multiple scripts with unique functions, connected by register dec-
orators, making it suitable for creating multi-step processes with
several scripts having partial component support. In Listing 3, we
demonstrate data transmission between a system without ZeroMQ
support and another without Yarp support, using an intermediary
system that supports both. The frst system dispatches the message
using Yarp by invoking send_yarp. The intermediary system then
forwards it using ZeroMQ to send_zmq. The fnal system, with
Yarp disabled, receives the message via ZeroMQ by listening to
send_zmq. This scheme is needed when strict specifcations are
required regarding compatibility of software and middleware be-
tween systems, as in the case of robots.

Listing 3: Demonstration of forwarding with two methods
each using a diferent middleware.
1 c l a s s ForwardCls (MiddlewareCommunicator) :
2 @MiddlewareCommunicator . r e g i s t e r (' Na t i v eOb j e c t ' ,
3 ' yarp ' , ' ForwardCls ' , ' / example / na t ive _yarp _msg ' ,
4 c a r r i e r = ' mcast ' , shou ld _wa i t =True)
5 def send _yarp (s e l f , msg) :
6 return msg ,
7
8 @MiddlewareCommunicator . r e g i s t e r (' Na t i v eOb j e c t ' ,
9 ' zeromq ' , ' ForwardCls ' , ' / example / native_zmq_msg ' ,
10 c a r r i e r = ' t c p ')
11 def send_zmq (s e l f , msg) :
12 return msg , � �

Channeling. In the channeling scheme, Wrapyf enables broad-
casting to multiple middleware by encapsulating a method with

862

https://github.com/spatialaudio/python-sounddevice

HRI ’24, March 11–14, 2024, Boulder, CO, USA Fares Abawi, Philipp Allgeuer, Di Fu, and Stefan Wermter

numerous decorators, each corresponding to a return value with its
own data type and middleware. This is illustrated in Listing 4, where
a method transmits three diferent data types over varied middle-
ware, such as a Yarp native object message comprising a NumPy
image and an audio chunk, a ROS image (OpenCV [5] compatible),
and a ZeroMQ audio chunk. This scheme supports the simultaneous
reception of diferent data types. If the environment lacks support
for a specifed middleware, a None type object is returned. Chan-
neling is especially useful for handling multiple sensory inputs
from diferent sources, allowing selective acquisition and disregard
of unnecessary sensory input. This provides a balanced approach
between mirroring and forwarding, altering the pipeline based on
the returns received from the supported middleware.

Listing 4: Demonstration of Channeling with one method
reading multiple returns of diferent data types through mul-
tiple middleware.
1 c l a s s Channe lCls (MiddlewareCommunicator) :
2 @MiddlewareCommunicator . r e g i s t e r (' Na t i v eOb j e c t ' ,
3 ' yarp ' , ' Channe lCls ' , ' / example / na t ive _yarp _msg ' ,
4 c a r r i e r = ' mcast ' , shou ld _wa i t =True)
5 @MiddlewareCommunicator . r e g i s t e r (' Image ' ,
6 ' r o s ' , ' Channe lCls ' , ' / example / image_ros_msg ' ,
7 c a r r i e r = ' t c p ' , width = ' $img_width ' ,
8 he i gh t = ' $ img _he igh t ' , rgb =True , queue _ s i z e =10)
9 @MiddlewareCommunicator . r e g i s t e r ('AudioChunk ' ,
10 ' zeromq ' , ' Channe lCls ' , ' / example / audio_zmq_msg ' ,
11 c a r r i e r = ' t c p ' , r a t e = ' $aud _ r a t e ' ,
12 chunk= ' $aud_chunk ' , channe l s = ' $aud_chann ')
13 def read_mulret_mulmware (s e l f ,
14 img_width =200 , img _he igh t =200 ,
15 aud _ r a t e =44100 , aud_chunk =8820 , aud_chann =1) :
16 ros _img = np . random . r a n d i n t (2 5 6 ,
17 s i z e =(img_height , img_width , 3) , dtype =np . u i n t 8)
18 zeromq_aud = (np . random . un i form (−1 , 1 , aud_chunk) ,
19 aud _ra te ,)
20 ya r p _na t i v e = [ros_img , zeromq_aud]
21 return ya rp _na t i v e , ros_img , zeromq_aud � �

4 USE CASES
Facial expression imitation. Participants exhibit eight facial ex-
pressions while sitting in front of two robots, Pepper [25] and
iCub [15] as depicted in Figure 2. The robots then imitate the par-
ticipants’ expressions. Pepper represents emotions through color
changes, while iCub displays robotic facial expressions. The for-
warding scheme in Wrapyf tunnels interactions between the difer-
ent system components and middleware confgurations, enabling
the exchange of visual and facial expression data between the robots
and the recognition model [24]. Forwarding manages image acqui-
sition across robots and synchronizes the transfer of facial expres-
sions to and from the model by sequentially invoking each robot’s
acquisition and action methods.

Head orientation imitation. In this example, we imitate a par-
ticipant’s head orientation and eye movements on a simulated
iCub [27] as shown in Figure 3. The input coordinates arrive either
from a wearable eye tracker [11] ftted with an IMU or a vision-
based head pose estimation model [9]. The channeling scheme
allows switching between the input sources by specifying the re-
turn element propagated to the robot.

Figure 2: Facial expression imitation on the Pepper and iCub.

Figure 3: Head and eye movement imitation using either an
IMU-ftted eye tracker or a head pose estimation model.

5 CODE AND USAGE
To install Wrapyf, compatible middleware, and required interfaces:
https://wrapyf.readthedocs.io/.
We additionally provide instructions on running Wrapyf examples:
https://wrapyf.readthedocs.io/en/latest/examples.html.
Tutorials detail the steps needed to run the Wrapyf use case scripts:
https://wrapyf.readthedocs.io/en/latest/tutorials.html.
We also evaluate transmission latency of the Wrapyf plugins:
https://wrapyf.readthedocs.io/en/latest/evaluation.html.

6 CONCLUSIONS
Wrapyf is a framework that simplifes data transfer across diferent
middleware platforms. Two of Wrapyf’s key strengths are the trans-
mission of custom data types and support for multiple middleware.
We introduced three communication schemes—mirroring, forward-
ing, and channeling—each serving a diferent set of applications.
The framework currently supports two common communication
patterns: publish-subscribe and request-reply. In future work, we
plan to extend Wrapyf to support more communication patterns
that are available in some middleware platforms, such as actions in
ROS 2, which are similar to asynchronous request-reply. We also
aim to provide interfaces for custom messages and middleware-
specifc data types. Wrapyf’s modular design permits integrating
further middleware, expanding the array of potential applications.

ACKNOWLEDGMENTS
The authors gratefully acknowledge partial support from the Ger-
man Research Foundation DFG under project CML (TRR 169).

863

https://wrapyfi.readthedocs.io/
https://wrapyfi.readthedocs.io/en/latest/examples.html
https://wrapyfi.readthedocs.io/en/latest/tutorials.html
https://wrapyfi.readthedocs.io/en/latest/evaluation.html

Wrapyfi: A Python Wrapper for Integrating Robots, Sensors, and Applications across Multiple Middleware HRI ’24, March 11–14, 2024, Boulder, CO, USA

REFERENCES
[1] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Distributed Systems. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation (OSDI). 265–283. https://www.tensorfow.org/

[2] ABi (Ed.). 2019. Open-Source Robotics Projects. ABi Research.
[3] Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. ONNX: Open Neural Network Exchange.

http://github.com/onnx/onnx
[4] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: Composable transformations of
Python+NumPy programs. http://github.com/google/jax

[5] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efcient Machine Learning Library for Heterogeneous Distributed Systems.
ArXiv abs/1512.01274 (2015). https://mxnet.apache.org/

[7] Ayssam Elkady and Tarek Sobh. 2012. Robotics Middleware: A Comprehensive
Literature Survey and Attribute-Based Bibliography. Journal of Robotics 2012
(2012). https://doi.org/10.1155/2012/959013

[8] Charles R. Harris et al. 2020. Array programming with NumPy. Nature 585, 7825
(2020), 357–362. https://doi.org/10.1038/s41586-020-2649-2

[9] Thorsten Hempel, Ahmed A. Abdelrahman, and Ayoub Al-Hamadi. 2022. 6D
Rotation Representation For Unconstrained Head Pose Estimation. In IEEE In-
ternational Conference on Image Processing (ICIP). IEEE, 2496–2500. https:
//doi.org/10.1109/ICIP46576.2022.9897219

[10] Pieter Hintjens. 2013. ZeroMQ: Messaging for Many Applications. "O’Reilly Media,
Inc.". https://zeromq.org/

[11] Moritz Kassner, William Patera, and Andreas Bulling. 2014. Pupil: An Open
Source Platform for Pervasive Eye Tracking and Mobile Gaze-based Interaction.
In Adjunct Proceedings of the ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UBICOMP). ACM, 1151–1160. https://doi.org/10.1145/
2638728.2641695

[12] Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang. 2019. PaddlePaddle: An
Open-Source Deep Learning Platform from Industrial Practice. Frontiers of Data
and Computing 1, 1 (2019), 105–115. https://doi.org/10.11871/JFDC.ISSN.2096.
742X.2019.01.011

[13] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. 2022. Robot Operating System 2: Design, architecture, and uses in the
wild. Science Robotics 7, 66 (2022). https://doi.org/10.1126/scirobotics.abm6074

[14] Anthony Mallet, Cédric Pasteur, Matthieu Herrb, Séverin Lemaignan, and Félix
Ingrand. 2010. GenoM3: Building middleware-independent robotic components.

In IEEE International Conference on Robotics and Automation (ICRA). IEEE, 4627–
4632. https://doi.org/10.1109/ROBOT.2010.5509539

[15] Giorgio Metta et al. 2010. The iCub humanoid robot: An open-systems platform
for research in cognitive development. Neural Networks 23, 8-9 (2010), 1125–1134.
https://doi.org/10.1016/j.neunet.2010.08.010

[16] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. 2006. YARP: Yet Another
Robot Platform. International Journal of Advanced Robotic Systems 3, 1 (2006), 8.
https://doi.org/10.5772/5761

[17] Youssef Mohamed and Séverin Lemaignan. 2021. ROS for Human-Robot Interac-
tion. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 3020–3027. https://doi.org/10.1109/IROS51168.2021.9636816

[18] Lorenzo Natale, Ali Paikan, Marco Randazzo, and Daniele E Domenichelli. 2016.
The iCub Software Architecture: Evolution and Lessons Learned. Frontiers in
Robotics and AI 3 (2016), 24. https://doi.org/10.3389/frobt.2016.00024

[19] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.
org/10.5281/zenodo.3509134

[20] Adam Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32
(NeurIPS). Curran Associates, Inc., 8024–8035. https://www.pytorch.org/

[21] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: An open-source Robot Operating
System. In IEEE International Conference on Robotics and Automation Workshop
on Open Source Software (ICRAOSS), Vol. 3.2. IEEE, 5.

[22] Neal Richardson, Ian Cook, Nic Crane, Dewey Dunnington, Romain François,
Jonathan Keane, Dragos, Moldovan-Grünfeld, Jeroen Ooms, and Apache Arrow.
2023. arrow: Integration to ’Apache’ ’Arrow’. https://github.com/apache/arrow/.

[23] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn
Huf and James Bergstra (Eds.). 130–136.

[24] Henrique Siqueira, Sven Magg, and Stefan Wermter. 2020. Efcient Facial Feature
Learning with Wide Ensemble-based Convolutional Neural Networks. In The
Thirty-Fourth AAAI Conference on Artifcial Intelligence. AAAI, 5800–5809. https:
//doi.org/10.1609/aaai.v34i04.6037

[25] SoftBank Robotics Group. [n. d.]. Pepper the humanoid and programmable robot.
https://www.aldebaran.com/en/pepper

[26] Yusuke Tanaka and Ankur Mehta. 2022. REMS: Middleware for Robotics Educa-
tion and Development. ArXiv abs/2210.05784 (2022).

[27] Vadim Tikhanof, Angelo Cangelosi, Paul M. Fitzpatrick, Giorgio Metta, Lorenzo
Natale, and Francesco Nori. 2008. An Open-Source Simulator for Cognitive
Robotics Research: The Prototype of the ICub Humanoid Robot Simulator. In
Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems
(PerMIS ’08). ACM, 57–61. https://doi.org/10.1145/1774674.1774684

864

https://www.tensorflow.org/
http://github.com/onnx/onnx
http://github.com/google/jax
https://mxnet.apache.org/
https://doi.org/10.1155/2012/959013
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/ICIP46576.2022.9897219
https://doi.org/10.1109/ICIP46576.2022.9897219
https://zeromq.org/
https://doi.org/10.1145/2638728.2641695
https://doi.org/10.1145/2638728.2641695
https://doi.org/10.11871/JFDC.ISSN.2096.742X.2019.01.011
https://doi.org/10.11871/JFDC.ISSN.2096.742X.2019.01.011
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/ROBOT.2010.5509539
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.5772/5761
https://doi.org/10.1109/IROS51168.2021.9636816
https://doi.org/10.3389/frobt.2016.00024
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://www.pytorch.org/
https://doi.org/10.1609/aaai.v34i04.6037
https://doi.org/10.1609/aaai.v34i04.6037
https://www.aldebaran.com/en/pepper
https://doi.org/10.1145/1774674.1774684
https://github.com/apache/arrow

	Abstract
	1 Introduction
	2 Data types
	3 Communication schemes
	4 Use Cases
	5 Code and Usage
	6 Conclusions
	Acknowledgments
	References

