
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large
Language Models through Logic

Xufeng Zhao, Mengdi Li, Wenhao Lu, Cornelius Weber,
Jae Hee Lee, Kun Chu, and Stefan Wermter

University of Hamburg
{xufeng.zhao, wenhao.lu, cornelius.weber, jae.hee.lee, kun.chu,

stefan.wermter}@uni-hamburg.de, mengdi.li@studium.uni-hamburg.de
Abstract

Recent advancements in large language models have showcased their remarkable generalizability across various
domains. However, their reasoning abilities still have significant room for improvement, especially when confronted
with scenarios requiring multi-step reasoning. Although large language models possess extensive knowledge, their
behavior, particularly in terms of reasoning, often fails to effectively utilize this knowledge to establish a coherent
thinking paradigm. Generative language models sometimes show hallucinations as their reasoning procedures
are unconstrained by logical principles. Aiming to improve the zero-shot chain-of-thought reasoning ability of large
language models, we propose Logical Chain-of-Thought (LogiCoT), a neurosymbolic framework which leverages
principles from symbolic logic to verify and revise the reasoning processes accordingly. Experimental evaluations
conducted on language tasks in diverse domains, including arithmetic, commonsense, symbolic, causal inference,
and social problems, demonstrate the efficacy of the enhanced reasoning paradigm by logic.

Keywords: Large Language Models, Reasoning, Chain-of-Thought, Logic

1. Introduction
Large language models (LLMs) are expected to be
omniscient because of their extraordinary ability
to deal with tasks requiring knowledge of common
sense or even specialized field knowledge. The
success has been established in numerous fields
extending beyond the realm of language processing
(Bubeck et al., 2023; Yao et al., 2023b; Ahn et al.,
2022; Zhao et al., 2023).
However, one major problem residing in generative
LLMs yet to be solved is their tendency to halluci-
nate wrong statements in a confident style (Bang
et al., 2023). A quick example can be found by
asking a non-internet-based LLM about very re-
cent news – it will too easily make up facts without
hesitation.
An educated human with expertise in logical rea-
soning can systematically examine words before
coming to a conclusion. Unlike logical reasoning
by humans, the logical incompetence of the deduc-
tion by LLMs makes their decisions untrustworthy.
LLMs may have all the logical concepts and tricks
available but fail to actively utilize them in an or-
ganized manner, which brings the demand for ex-
pert guidance. Principles in logic well-adapted by
humans can also benefit the reasoning ability of
language models.
Take a simple logic question as an example: “If
Tom plays football outside, then John will also join
to play; if John plays football, then Mary won’t go
outside. Known Mary is outside. Is Tom playing
football?” Nine out of ten answers from ChatGPT1

1https://openai.com/blog/chatgpt

LogiCoT

CoT

Figure 1: An overview of CoT (chain-of-thought
prompting, Wei et al., 2022) and LogiCoT. In CoT,
the failure of entailment () makes the rest of the de-
duction untrustworthy (), consequently impeding
the overall success of the deduction. In contrast,
LogiCoT is designed to think-verify-revise: it adopts
those who pass the verification () and revise ()
those who do not, thereby effectively improving the
overall reasoning capability.

will conclude that “we cannot conclude whether Tom
is playing football or not”. However, with the help
of the knowledge in logic provided to ChatGPT that
the contrapositive holds the exact same truth value
with the original proposition, we may put it another
way to prompt ChatGPT to “use contrapositive”.
Then it deduces correctly: “ ... Using the contra-
positive of the first statement, if John does not join

ar
X

iv
:2

30
9.

13
33

9v
1

 [
cs

.C
L

]
 2

3
Se

p
20

23

https://openai.com/blog/chatgpt

to play (which we have deduced), then it implies
that Tom does not play football outside. Therefore,
based on the given information and the contrapos-
itives, it can be deduced that Tom is not playing
football.” There is no newly introduced knowledge
but a prompt of using contrapositive, a special varia-
tional expression of the original premise. While the
concepts of logic are not new to a large language
model, the model initially struggles to incorporate
them. Compared to randomly sampling for diverse
statements, the one derived from logical equiva-
lence works effectively as it could be expressed
quite differently in natural language and may result
in a totally different deduction.
Motivated by the reasoning process in logic, we
propose Logical Chain-of-Thought (LogiCoT) to
further expand the zero-shot reasoning ability of
LLMs, which not only lets the LLM think step by
step but also verify, step by step, according to the
guidance via the principle of Reductio ad Absur-
dum, and revise the reasoning chain if necessary
to guarantee a sound inference (see Fig. 1 for an
overview).

2. Related Work
In order to unleash the power of a pre-trained gen-
erative language model, the quality of the prompts
to interact plays an important role. Summarizing
known works, the reasoning procedure benefits
from a prompt that guides it to possess the follow-
ing properties:

• Relevance The generative model can be
easily distracted by irrelevant words in the
prompt. A pre-selection of context helps the
correctness of reasoning (Creswell et al., 2022;
Creswell and Shanahan, 2022; Ling et al.,
2023).

• Decomposition An automatic decomposition
of a tough question improves the reasoning
reliability, which has been evidenced by the
success of Least-to-Most (Zhou et al., 2023),
Zero-shot-CoT (Kojima et al., 2022) and many
prompting techniques (Yao et al., 2023a; Ko-
jima et al., 2022; Wei et al., 2022).

• Verification/Grounding External functions,
e.g. a third-party calculator for mathematical
problems (Schick et al., 2023), external infor-
mation acquisition from Wikipedia (Yao et al.,
2023b), or an affordance evaluation function
in robotics (Ahn et al., 2022), can ground the
generation to be meaningful. This verification
can be triggered under a specified condition or
be applied to the reasoning process (Lightman
et al., 2023; Ling et al., 2023; Li et al., 2023).

• Diversity The collective intelligence from a
set of reasoning paths (typically, sampling N

times) helps produce a final answer that is
consistent among these variants. Despite the
surging N -times cost, this ensemble approach
has been widely adopted to combine with other
techniques for higher accuracy (Li et al., 2023;
Ling et al., 2023; Yao et al., 2023a; Zheng et al.,
2023).

• Revision Revision (or refinement) can be re-
garded as a special diversity but is conditioned
on the previous generation as hints. It re-
examines the words with an extra focus on
the quality in terms of, for example, validity
and conciseness (Madaan et al., 2023; Zheng
et al., 2023; Welleck et al., 2022).

Chain-of-Thought Prompting. Prior works show
that LLMs have the corresponding power for com-
plex tasks but require a proper strategy to unleash,
e.g. human-in-the-loop (Ouyang et al., 2022) align-
ment tuning and Chain-of-Thought prompting (CoT)
(Wei et al., 2022). In order to generate a chain
of thoughts that decomposes the original problem
into several small parts which a language model
can easily handle, CoT creates few-shot exemplars
of a detailed reasoning path to let the model fol-
low. Least-to-most (Zhou et al., 2023) explicitly
prompts the LLM to divide complex questions into
sub-problems and conquer them one by one. More-
over, zero-shot-CoT (Kojima et al., 2022) show-
cases the impressive effectiveness of simply attach-
ing the sentence “Let’s think step by step.” before
any zero-shot reasoning trace starts. We build our
approach under a zero-shot setting and integrate
zero-shot-CoT as a baseline to improve with. While
existing CoT-based methods focus on encouraging
the reasoning step to be concrete but lack supervi-
sion of their faithfulness, we propose a step-by-step
verification mechanism. A very recent study of Ling
et al. (2023) also addresses this credential concern
with double-checking and has reached a positive
improvement, which also emphasizes the benefit
of per-step verification. However, while their work
anticipates autonomous detection of errors by just
prompting “Double-check the reasoning process...”,
our work is motivated from a logical perspective and
empowers the language model to argue different
possibilities. Moreover, our method not only sug-
gests verification but also introduces revision of the
suspected reasoning steps.
When posed with a question, the careful selec-
tion of relevant facts to ingest is equally critical
in preventing the language model from becoming
distracted or potentially misinformed, which might
result in hallucinations. This consideration of rele-
vance is even crucial when the context becomes
very long. Previous works typically resort to a lan-
guage model to evaluate the relevance of facts and
infer with the ones contributing to an intermediate

reasoning step (Creswell et al., 2022; Ling et al.,
2023). Our verification of each reasoning step is
conducted by prompting a language model to find
relevant premises to deduct from.
Variational Reasoning. A single reasoning trace
may be biased. In order to produce a set of reason-
ing candidates, previous works resort to generating
samples several times (Wang et al., 2023) with the
same prompt, or create diverse prompts in the be-
ginning for variants (Li et al., 2023). However, this
approach is costly and inefficient since many of the
reasoning steps are non-controversial so not requir-
ing duplicates. Our method avoids unnecessary
checking and only revises reasoning steps deemed
implausible, resulting in a reasoning chain growing
only when required. It costs more than generating
one chain because of the verification and possible
revision but is more efficient than a naive ensemble.
Besides, LogiCoT can be combined with an ensem-
ble approach to produce a set of verified chains,
further increasing the confidence for later majority
voting required by the ensemble.
Compared to the ensemble-based method that in-
dependently samples diverse variants, revision pro-
duces a special diversity. It is an iterative gen-
erating process conditioned on previous content.
Many previous works actually benefit from this
manner though not explicitly mentioned. For ex-
ample, Progressive-Hint Prompting (Zheng et al.,
2023) generates consistent answers by progres-
sively guiding the LLM with hints of accumulated
possible answers. It repeats generation again and
again until the answer is deemed consistent with
the previous. Other works generate content con-
ditioned not only on the previous content but also
on extra feedback (Madaan et al., 2023). To obtain
a revision with high quality, this guiding feedback
should be specific and actionable. Our work takes
advantage of this property and revises for those
reasoning steps that fail to pass the verification,
during which the post hoc explanation (Jung et al.,
2022) will act as a constructive revision suggestion.
Neurosymbolic AI. Neurosymbolic AI combines
neural networks with symbolic representations and
reasoning techniques. Its success stems from the
ability to leverage symbolic (structured) knowledge
to enhance learning or reasoning (Sarker et al.,
2021; d’Avila Garcez and Lamb, 2020; Nye et al.,
2021). Unlike the end-to-end black-box framework,
it is more interpretable and explainable because of
the transparency of the symbolic framework.
There exist works that adopt concepts from sym-
bolic logic (Agler, 2012) to establish a reliable rea-
soning path (Creswell et al., 2022; Jung et al., 2022).
To solve binary question-answering problems, Jung
et al. (2022) propose to generate a post hoc ex-
planation graph for a statement and compute the
relative relations to formulate a symbolic logic ex-

pression. The truth of the statement is thereby
assigned by solving the satisfiability problem of
this symbolic expression. The LogiCoT framework
employs a neurosymbolic methodology, leveraging
logical rules and post hoc arguments to enhance
error detection.

3. Methodology
As demonstrated in the contraposition example pre-
sented in the introduction, when known logical rules
are applied to achieve an identical transformation
(equivalent in logic but markedly distinct in natu-
ral language expression), it affords the LLMs the
chance to engage in reasoning from an alternative
perspective.
A challenge is that the language model has to
identify the inherent logical structures first to know
whether certain prior knowledge can be effectively
applied. Moreover, transforming everything from
the real world into a symbolic expression is unre-
alistic. The applicable scenario is limited because
questions in many reasoning fields beyond logic,
e.g. mathematics problem solving, can hardly be
expressed in symbolic logic. Nevertheless, there is
promise in incorporating concepts from logic that
contribute to the process of argument proof in order
to construct a neurosymbolic framework (d’Avila
Garcez and Lamb, 2020; Creswell et al., 2022)
that facilitates a causal reasoning trace, i.e. the
premises and leading thoughts entail the thoughts
behind. Continuing with the success of “let the
model talk”, e.g. “let’s think step by step” in zero-
shot-CoT (Kojima et al., 2022), we further propose
to guide the conversation with logic for more sys-
tematic exploration instead of counting on its reck-
lessness.

3.1. Reductio ad Absurdum
When given an argument generated by an LLM,
it is difficult for the language model to recognize
errors (i.e. to prove falseness) through free double-
checking by itself. This is also the case in the
field of logic. Many propositions pose challenges
when it comes to direct deductive reasoning. One
commonly employed technique to establish a claim
is known as reductio ad absurdum (reduction to
absurdity), which involves an initial assumption and
consequent derivation of absurdity or contradiction.
Let P and Q denote two propositions. The relation
between a premise and its conclusion can be ex-
pressed as P ⊢ Q. Here “⊢” is a syntactic turnstile
which means Q is a syntactic consequence of P
(Agler, 2012), i.e. there exists a proof that claims
the conclusion Q given the premise P . In order to
prove Q by the mean of reductio ad absurdum, let
us assume its negation ¬Q is valid and then check

......

......

✓

✓

✗

✗

......

Verification passed

Verification failed & Revision

Figure 2: A diagram demonstrating the think-verify-
revision loop of LogiCoT. The two zoom-in boxes
exhibit the processes when a thought passes (top-
left) and fails (bottom) the verification respectively.
A thought passing the verification is kept in the rea-
soning trace, while a thought failing the verification
is revised and a new chain of thought is generated
based on the revision. The meaning of the symbols
in this figure is introduced in Sec. 3.2 and Sec. 3.3.

the contradiction2 of the conjunctive proposition

C = P ∧ ¬Q, (1)

where “∧” is a binary conjunction operator, meaning
the truth of the conjunction requires the truth of both
sides. Upon the contradiction of the co-existence
of the P and ¬Q, P ⊢ Q is thus proved true, and
then we can claim the validation of the conclusion
Q given the premise P .
Many logic principles, e.g. the contraposition men-
tioned in the introduction section (see Appendix A
for a proof), can be derived by deductions follow-
ing this rule. This thinking paradigm helps humans
check arguments carefully before composing a con-
clusion. As we will demonstrate later, the reasoning
ability of LLMs can also be improved by benefiting
from this paradigm.

3.2. Logical Chain-of-Thought (LogiCoT)
There is a lot of evidence confirming that a series
of coherent explanations helps an LLM to unleash
its reasoning power (Wei et al., 2022; Kojima et al.,
2022; Zhou et al., 2023), while some discourage-
ment on its utterance, e.g. prompts like “just tell me
the result without any explanation”, catastrophically
hinders the reveal of wisdom. So we continue with
this success of having an explicit reasoning process.

2A proposition is considered contradictory if and only
if it is false under every valuation.

A typical N -step reasoning trace can be expressed
as {P, T1, · · · , TN}, where P is the known premise
and Ti is the i-th step of thoughts. Usually, TN

concludes the thoughts and answers the specified
question.
Unfortunately, LLMs hallucinate. LLMs usually gen-
erate content autoregressively, which means the
generation of Ti is based on the former content
{P, · · · , Ti−1}. Errors in Ti will propagate and grad-
ually influence Ti′ for increasing i′ > i, making
the successive deductions and ultimately the final
conclusion untrustworthy. Therefore, we propose
a verification loop to double-check each reasoning
step. Following Eq. 1, this double-check procedure
unrolls by checking the validity of P, · · · , Ti−1 ⊢ Ti,
i.e. the contradiction of

Ci = P ∧ T1 ∧ · · · ∧ Ti−1 ∧ ¬Ti, (2)

once T<i passed the verification. If any step Ti fails
the verification, this implies that the premises and
previously verified thoughts T<i do not entail Ti. In
this case, T≥i needs to be revised.
To apply the introduction of negation (¬I) on Ti, a
straightforward way is to format ¬Ti as “It is false
to say Ti” or to give to the LLM an instruction of
“Negate Ti”.
Finally, the LLM has to identify contradictions in Ci

(Eq. 2). To obtain a more accurate result, we draw
inspiration from the chain-of-thought approach and
ask the model to compose a post hoc explanation
E¬

i of ¬Ti (Jung et al., 2022) and check the validity
of C ′

i = Ci ∧ E¬
i instead. We call this approach

composing LogiCoT.
Considering that a logical error in a text generated
by an LLM is hard to spot by the LLM itself (which
is the case in the composing approach) we addi-
tionally propose to alleviate the difficulty in verifying
Ti by generating a pair of post hoc explanations Ei

and E¬
i of Ti and ¬Ti respectively, and let the LLM

decide between Ti ∧ Ei and ¬Ti ∧ E¬
i and adopt

one of the two. We call this approach adopting
LogiCoT or just LogiCoT.3

3.3. Chain Growth
Upon the suspect of a step Ti, LogiCoT drops all
of the trailing thoughts T>i and branches out for re-
vision T

′

i conditioned on {T≤i, E
¬
i }. Since precise

feedback is important to the success of revision
(Madaan et al., 2023), we also encourage the LLM

3A post hoc explanation is an explanation completed
by the LLM with a prompt like “Ti is true because” or
“Ti is false because”. An LLM is then often biased by
the prompt and, as a result, generates an explanation
consistent with the prompt. Because of this “compulsory”
behavior, once a statement is deemed false in the leading
prompt, the LLM tries hard to dig out errors even if they
are less obvious. The adopting approach is considered
to benefit from this compulsory error-finding behavior.

#1 To find out how long it took
John to drive to his friend's
house, we can use the formula:
time = distance / speed. John
drove 200 miles at a speed of
70 mph, but he had to take a
detour that added 10 miles to
his trip. So, the total distance
he traveled was 200 + 10 = 210
miles.
time = 210 miles / 70 mph
time = 3 hours

Question: John drives to his
friend's house 200 miles away.
He drives at a speed of 70
mph. He had to take a detour
that added 10 miles to his trip.
After he gets there he takes a
route home that is 240 miles
but he goes 80 mph. How long
did the trip take?

Let's think step by step.
Answer:

#1. First, let's find out how long
it took John to drive to his
friend's house. We can use the
formula: time = distance /
speed.

time = 200 miles / 70 mph
time = 2.86 hours

#2. Next, we need to add the
extra 10 miles from the detour
to his total distance.

total distance = 200 miles + 10
miles
total distance = 210 miles

#3. Now we can find out how
long it took John to drive home.

time = 240 miles / 80 mph
time = 3 hours

#4. Finally, we can add the time
it took to drive to his friend's
house and the time it took to
drive home to find the total trip
time.
total trip time = 2.86 hours + 3
hours
total trip time = 5.86 hours

Therefore, the trip took John
5.86 hours.

#2. To find out how long it took
John to drive home, we can use
the same formula: time =
distance / speed. John drove
240 miles at a speed of 80
mph.

time = 240 miles / 80 mph
time = 3 hours

#3. To find out the total time of
the trip, we just need to add the
time it took John to drive to his
friend's house and the time it
took him to drive home.
total time = 3 hours + 3 hours
total time = 6 hours

Therefore, the trip took John 6
hours.

Review Y: step #1 is false because it
does not take into account the
additional 10 miles that John had to
drive due to the detour. The correct
distance that John drove to his
friend's house is 210 miles, not 200
miles. Therefore, the correct
calculation for the time it took John to
drive to his friend's house is:

time = 210 miles / 70 mph
time = 3 hours

Review X: step #1 is true because
the question states that John drives
to his friend's house 200 miles away
at a speed of 70 mph. Therefore, we
can use the formula time = distance /
speed to calculate how long it took
him to get there.

#1. First, let's find out how long
it took John to drive to his
friend's house. We can use the
formula: time = distance /
speed.

time = 200 miles / 70 mph
time = 2.86 hours

Generate post hoc
explanation of the proposition

Generate post hoc
explanation of the negation

#1 To find out how long it took
John to drive to his friend's
house, we can use the formula:
time = distance / speed. John
drove 200 miles at a speed of
70 mph, but he had to take a
detour that added 10 miles to
his trip. So, the total distance
he traveled was 200 + 10 = 210
miles.
time = 210 miles / 70 mph
time = 3 hours

Revise the
proposition

#1. First, let's find out how long
it took John to drive to his
friend's house. We can use the
formula: time = distance /
speed.

time = 200 miles / 70 mph
time = 2.86 hours

Revision for the next step:
Original next step #1: First, let's find out how long it took John to drive to his
friend's house. We can use the formula: time = distance / speed.

time = 200 miles / 70 mph
time = 2.86 hour

(Hint: It is not good to directly adopt the step #1 because)
Let's revise for a better version based on the question premises and on the reasoning
steps so far. Revision of step #1:

Review X: step #1 is true because ...

Review Y: step #1 is false because ...

Let's start by analyzing one by one:
I. What are the premises and previous steps to support the verification
of step #1? (Your answer should quote exact quote as support.)
II. Criticise the incorrect review.
(Note the examined step doesn't have to tackle the whole problem at once.)

Verification & Revision

Verify reviews

✗

✓

Figure 3: An arithmetic example when applying LogiCoT verification and revision on CoT reasoning paths.
Every reasoning step has to undergo a verification procedure, which is mainly directed by two post hoc
reviews generated by the LLM () independently. In this example, step #1 fails () the verification because
the discriminator agrees with the “Review Y” which correctly points out the error in this step. As a result,
the LLM further revises () the original step into a new step #1 and re-generates the trailing paths based
on the revision. The procedure unrolls till every step is verified to be valid (). Key snippets of prompts
used to achieve each procedure are shown in dotted boxes. Full prompts are given in the case study in
Sec. 4.4 and Appendix C.

to revise inappropriate thought with the advice of
“why it is wrong”, i.e. E¬

i . Then, an adapted chain
with a new conclusion can be re-generated based
on the concatenation of the verified thoughts so far,
i.e. {T<i, T

′

i }. This loop continues until the final
conclusion passes the verification, which results in
a chain with all the nodes being verified (see Fig. 2,

Fig. 3). Note that this chain grows only when re-
quired. See Alg. 1 and Alg. 2 in Appendix B for
the pseudo-code of the function to compute the
reasoning trace of LogiCoT.

4. Experiments
We aim to answer the following research questions
with experiments:

• Does LogiCoT enhance the performance of
CoT in various domains, with LLMs with vari-
ous model scales?

• Does the transition from composing to adopt-
ing lead to improvements in terms of error de-
tection?

• What is the impact of LogiCoT revision on
cases?

Since we regard our work as an enhancement on
the chain produced by zero-shot-CoT (Kojima et al.,
2022), which requires no need to use exemplars,
we compare LogiCoT with it as the baseline to
demonstrate the benefit of step-wise verification
and revision for zero-shot reasoning.
For the following considerations we carry out the ex-
periments in a zero-shot setting: 1) Zero-shot-CoT
has a wide task-agnostic application potential, while
few-shot requires domain knowledge; 2) The few-
shot prompts heavily influence the performance
even on the same dataset, so hard to evaluate
fairly as the prompt varies. Drawing direct compar-
isons with other prompting works in the literature is
challenging due to variations in task settings and
backend language models. Many of these works
are specifically under a few-shot setting, which in-
dicates additional modifications to adapt them for
zero-shot reasoning. However, we acknowledge
this as an area for future investigation.
We evaluate the accuracy of tasks in various do-
mains as the overall performance measure and also
report the worsening and improvement impact of
the logical revision on the original reasoning chain.

4.1. Experimental Setup
Dataset. We demonstrate the effectiveness of Logi-
CoT on diverse language topics: (1) Math reason-
ing tasks GSM8K (Cobbe et al., 2021) and AQuA
(Ling et al., 2017). The GSM8K dataset contains
grade school mathematics questions that should
be responded to by numerical answers; AQuA has
more advanced questions but has several optional
answers to choose from. (2) Commonsense rea-
soning tasks DateUnderstanding and OddOneOut
(Srivastava et al., 2023). The DateUnderstanding
task necessitates the utilization of both common
sense and fundamental arithmetic calculations to
find out the correct date, making it sufficiently chal-
lenging to prevent it from being solvable through
simple one-step reasoning. The OddOneOut re-
quires common sense to deduct the unusual object
in the context. (3) Causal inference tasks CauseEf-
fect and ShuffledObjects (Srivastava et al., 2023),
where both of the tasks require reasoning from the
context for a correct deduction. (4) Symbolic rea-
soning task LastLetter (Srivastava et al., 2023). In
this task, the language model has to extract the last
letter of given candidates and concatenate them in

order, which is simple to humans but challenging to
language models because of tokenization (Mielke
et al., 2021). (5) Social interaction reasoning task,
SocialQA (Srivastava et al., 2023), which measures
the model’s emotional and social intelligence in hu-
man daily activities.
To get a formatted answer that can be directly com-
pared with the ground truth in the aforementioned
dataset, a final prompt asking the final answer
is attached after the reasoning trace, e.g. for the
GSM8K dataset we simply attach “Therefore, the
final numerical answer is:” at the ends. For ro-
bustness, this answer is matched with a regular
expression before comparing it with the ground
truth.
Backend LLMs. To evaluate the effectiveness of
LogiCoT on language models with different capa-
bilities, we experiment on Vicuna-7b, Vicuna-13b,
Vicuna-33b, GPT-3.5-turbo, and GPT-4. This con-
sideration of model choice is because the CoT tech-
nique exhibits distinguishing performance when the
model scale is substantial (Wei et al., 2022; Ko-
jima et al., 2022). The temperature parameter is
set to 0.1 to maintain a stable result while encour-
aging error-finding from its own statements. The
max_token is set to 2048, which is enough for the
question-answer dataset.

4.2. Does LogiCoT enhance the
performance of CoT in various
domains, with LLMs with various
model scales?

To answer the first question, we conduct zero-
shot experiments with datasets covering more di-
verse topics and with language models of different
sizes. The LogiCoT-enhanced performance com-
pared with the zero-shot baseline is reported in
Tab. 1. The experiment shows that LogiCoT can
enhance the performance of the base CoT in vari-
ous domains. The performance benefits are more
consistent when the model size gets considerable
(>7b). Moreover, the performance gain becomes
more prominent as the model’s ability increases
(e.g. GPT-4).

4.3. Does the transition from composing
to adopting lead to improvements in
terms of error findings?

The results of the ablated variant composing Logi-
CoT on three tasks are shown in Tab. 2. The im-
provement in performance observed when utilizing
adopting LogiCoT suggests that when it comes to
error detection in deductive reasoning, it is more
effective for an LLM to embrace one of two oppos-
ing viewpoints (T or ¬T) rather than composing
(generating) the discrepancies directly, especially
when coping with tasks that are difficult such as
math reasoning.

Dataset LogiCoT GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut
Vicuna-7b ✗ 17.52 21.65 7.24 37.00 52.94 34.00 0.00 25.58

✓ 17.68 20.47 7.24 36.50 52.94 35.00 0.00 25.58
(+0.16) (-1.18) (0.00) (-0.50) (0.00) (+1.00) (0.00) (0.00)

Vicuna-13b ✗ 33.79 22.05 32.31 41.00 68.75 31.00 2.00 29.07
✓ 37.56 23.62 33.15 48.50 68.75 31.50 4.00 45.35

(+3.77) (+1.57) (+0.84) (+7.50) (0.00) (+0.50) (+2.00) (+16.28)
Vicuna-33b ✗ 40.33 26.38 15.70 37.50 52.94 32.00 14.67 40.70

✓ 40.49 29.53 20.35 47.50 68.75 34.50 14.00 43.02
(+0.16) (+3.15) (+4.65) (+10.00) (+15.81) (+2.5) (-0.67) (+2.32)

GPT-3.5-turbo ✗ 78.75 57.09 51.26 72.00 92.16 60.75 67.33 81.40
✓ 80.15 60.63 52.37 72.00 92.16 58.25 67.33 81.40

(+1.40) (+3.54) (+1.11) (0.00) (0.00) (-2.5) (0.00) (0.00)
GPT-4 ✗ 94.29 71.56 83.09 77.50 100.00 100.00 92.61 95.35

✓ 95.71 74.31 85.16 77.50 100.00 100.00 93.14 96.51
(+1.42) (+2.75) (+2.07) (0.00) (0.00) (0.00) (+0.53) (+1.16)

Table 1: Zero-shot accuracy results (in %) comparison of CoT (Kojima et al., 2022) without (✗) and with
(✓) LogiCoT enhancement using different LLMs.

Method GSM8K AQuA Date
CoT 78.75 57.09 51.26
LogiCoT (Cmp) 77.67 57.48 52.37
LogiCoT 80.15 60.63 52.37

Table 2: Zero-shot accuracy results (in %) in com-
parison of LogiCoT and its ablated variant Compos-
ing LogiCoT (Cmp). The backend LLM is GPT-3.5-
turbo.

4.4. What is the impact of LogiCoT
revision on cases?

Worsening and Improving Rates. To be spe-
cific, the worsening rate computes as #(correct→wrong)

#(correct→∗) ,
where “#” means counting and “∗” indicates arbi-
trary correct/wrong candidates. Similarly, the im-
provement rate computes as #(wrong→correct)

#(wrong→∗) . From
Tab. 3, we can have a closer look at the interven-
tion impact of LogiCoT. For example, for small-sized
language models such as Vicuna-7b, it is riskier to
exert extra intervention/instructions that the model
may fail to follow. Indeed, larger models generally
benefit from the proposed self-improvement proce-
dure. For instance, GPT-4 exhibited enhanced ac-
curacy on the Date Understanding, LastLetter, and
OddOneOut tasks, with the improvement rate sig-
nificantly surpassing the worsening rate, indicating
that it is more trustworthy to revise the default rea-
soning chain via LogiCoT for better performance.
Revision Steps. In order to measure the complex-
ity of revisions, we describe the average revisions
per chain and typical reasoning steps required by
CoT and LogiCoT in Tab. 4. The percentage of
revisions indicates the frequency of LogiCoT to re-
vise the candidate reasoning chain. Note that the
number of steps is not human-defined or prompted
since our setting is in zero-shot, so the language

models decide by themselves the length of a rea-
soning chain. The average step count is the valid
reasoning steps in the final CoT and LogiCoT chain
(i.e. the intermediate verification, refinement, etc.
are omitted to show).
From Tab. 4, we can conclude that 1) larger lan-
guage models generally generate longer chains
and are also more active in revision; 2) The Logi-
CoT refined reasoning chain is generally a little bit
shorter than the original zero-shot CoT. Our conjec-
ture is that this phenomenon might arise because,
during the refinement process, the language model
strives to incorporate additional information, conse-
quently yielding concise chains of reasoning. We
report more insightful case-wise statistics and dis-
cussions in this section, including (1) the worsening
rate (i.e. the ones being originally correct by CoT
but “correctified” to be wrong by LogiCoT) and im-
proving rate (i.e. the ones that are originally wrong
and being correctified by LogiCoT) in Tab. 3; (2)
average revision frequency and the resultant num-
ber of reasoning steps in Tab. 4; and (3) a case
study to illustrate the logical reasoning procedure.
Case Study. We show a successful case on the
Date Understanding task to demonstrate the verifi-
cation and revision procedure applied to the chain
of thoughts initialized by zero-shot-CoT. (See Ap-
pendix C for detailed prompts and other case stud-
ies.)
Here we use black color to indicate given context
or fixed prompts; non-black color to indicate gener-
ated content by the LLM. Below are the initialized
zero-shot-CoT reasoning steps where step #6 is
actually incorrectly inferred (colored in red). The
error occurs because zero-shot-CoT is distracted
by the irrelevant premise of “Jane’s appointment
will be 3 days later” and concludes with a wrong
answer.

Dataset Impact GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut
Vicuna-7b ↓ 0.92 10.91 0.00 8.11 0.00 2.94 0.00 0.00

↑ 0.39 1.51 0.00 3.97 0.00 3.03 0.00 1.56
Vicuna-13b ↓ 0.00 8.89 1.74 8.08 0.00 12.90 0.00 8.84

↑ 3.89 4.88 2.06 3.85 0.00 6.52 2.05 2.67
Vicuna-33b ↓ 0.51 10.45 0.00 6.67 0.00 6.25 4.55 5.71

↑ 0.37 8.02 5.50 20.00 20.83 6.61 0.00 7.84
GPT-3.5-turbo ↓ 2.01 0.67 6.59 0.69 0 6.59 2.04 2.85

↑ 12.63 5.71 10.17 1.79 0 3.83 0.99 12.50
GPT-4 ↓ 0.10 0.00 1.79 0.00 0.00 0.00 0.00 0.00

↑ 6.67 9.68 21.05 0.00 0.00 0.00 12.50 25.00

Table 3: Worsening rate (↓) and improving rate (↑) when LogiCoT is introduced. Numbers are in %.

Dataset LogiCoT GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut
⟲ 0.02 0.04 0.02 0.01 0.02 0.00 0.03 0.00

Vicuna-7b ✗ 1.22 1.16 1.34 1.09 1.00 2.54 3.46 1.00
✓ 1.27 1.21 1.35 1.10 1.02 2.54 3.49 1.00
⟲ 0.07 0.10 0.05 0.05 0.00 0.07 0.02 0.00

Vicuna-13b ✗ 2.81 2.89 5.06 2.69 1.00 2.93 1.66 1.00
✓ 2.74 2.87 5.05 2.71 1.00 2.96 1.69 1.00
⟲ 0.02 0.09 0.08 0.07 0.06 0.09 0.01 0.07

Vicuna-33b ✗ 1.94 1.99 2.31 3.26 1.00 3.26 1.20 1.70
✓ 1.94 1.91 2.33 3.13 1.06 3.23 1.21 1.64
⟲ 0.16 0.28 0.32 0.05 0.20 0.09 0.04 0.16

GPT-3.5-turbo ✗ 4.17 6.83 3.66 2.50 1.73 3.02 4.84 1.57
✓ 4.08 6.24 3.56 2.51 1.92 3.05 4.81 1.70
⟲ 0.03 0.20 0.07 0.02 0.00 0.01 0.00 0.08

GPT-4 ✗ 3.42 4.22 2.71 2.33 1.00 3.00 4.05 1.00
✓ 3.41 4.39 2.72 2.33 1.00 3.01 4.05 1.08

Table 4: Average revision times (⟲), and the reasoning steps without (✗) and with (✓) LogiCoT impact.

Question: Today is Apr 10, 1985. Jane’s
appointment will be 3 days later.
What is the date 10 days ago in
MM/DD/YYYY?

Let’s think step by step.
Answer:
#1. Today is Apr 10, 1985.
#2. Jane’s appointment will be 3 days

later.
#3. So, Jane’s appointment will be on

Apr 13, 1985.
#4. To find the date 10 days ago, we

subtract 10 days from Apr 13, 1985.
#5. Apr 13, 1985 - 10 days = Apr 3,

1985.
#6. Therefore, the date 10 days ago is

Apr 3, 1985.

To verify the 6th step, the LLM is prompted to gener-
ate two opposite reviews given the question context
and the previous five verified steps. Due to the con-
tent limitation, we omit the long prompt and focus
on the resultant generation as below4. Note that

4In practice, as is shown in the example case, the

Review Y successfully detects the unobvious error
and provides a correction that can be adopted later
for revision.

Verification of the next step:
#6. Therefore, the date 10 days ago is

Apr 3, 1985.
Review X: <review> step #6 is TRUE

because we are subtracting 10 days
from the given date of Apr 13,
1985. By subtracting 10 days, we go
back in time and arrive at Apr 3,
1985. Therefore, the date 10 days
ago is Apr 3, 1985. </review>

Review Y: <review> step #6 is FALSE
because the reasoning in step #4 is
incorrect. To find the date 10 days
ago, we need to subtract 10 days
from Apr 10, 1985, not from Apr 13,
1985.

The correct calculation would be:
Apr 10, 1985 - 10 days = Mar 31, 1985.
Therefore, the date 10 days ago is Mar

special language mark “<review></review>” is applied
for the sake of robust separations of different reviews.

31, 1985. </review>

In the adopting the procedure of LogiCoT, the LLM
is encouraged to extract and deduct based on rele-
vant premises. It ends with adopting Review Y and
reaching a correct conclusion.

Let’s check two different reviews (X
and Y).

Suport the more plausible one and
criticise the other one.

Review X: ...
Review Y: ...
Let’s start by analyzing one by one:
I. What are the premises and previous

steps to support the verification
of step #6? (Your answer should
quote exact quote as support.)

II. Criticise the incorrect review.
(Note the examined step doesn’t have to

tackle the whole problem at once.)
Finally, identify whether step #6 is

true or false.
Analysis and conclusion:
I. The premises and previous steps to

support the verification of step #6
are as follows:

- Today is Apr 10, 1985.
- Jane’s appointment will be 3 days

later.
- Jane’s appointment will be on Apr 13,

1985.
- To find the date 10 days ago, we

subtract 10 days from Apr 13, 1985.
II. Review Y is correct in criticizing

step #4. The reasoning in step #4
is indeed incorrect. To find the
date 10 days ago, we need to
subtract 10 days from Apr 10, 1985,
not from Apr 13, 1985.

The correct calculation would be:
Apr 10, 1985 - 10 days = Mar 31, 1985.
Therefore, the date 10 days ago is Mar

31, 1985.
Conclusion: Step #6 is false. The

correct date 10 days ago is Mar 31,
1985, not Apr 3, 1985.

5. Conclusion
LLMs continually show their impressive ability in
domains that require commonsense knowledge,
specialized expertise, comprehensive understand-
ing, etc. However, there is still large room to im-
prove their multi-step reasoning capability. Building
upon zero-shot-CoT, we derive the LogiCoT frame-
work from a symbolic logic perspective, utilizing
the widely applicable principle of reductio ad absur-
dum, resulting in a robust think-verify-revise frame-
work with plausible prompting properties that we
have summarized from related works. Experiments
conducted on a variety of language tasks span-

ning different domains demonstrate that enhancing
zero-shot Chain-of-Thought with LogiCoT can lead
to improved reasoning ability, particularly when ap-
plied to models of substantial scale.

Limitations
Efficiency Optimization. Many of the reasoning
steps, especially the very initial ones, are just re-
iterated known facts that deserve less thorough
verification. We recognize the potential for enhanc-
ing the efficiency of the current implementation.
Generation Probability. Rather than letting the
LLM choose from different reviews, another pos-
sible method is to access and compare the prob-
ability of the generations. Unfortunately, there is
no public access to the generation probability of
GPT-3.5-turbo yet5 as it is possible for completion
models (such as text-davinci-003). Considering
a cheaper price and better performance, we con-
ducted our experiments with the chatting model
and leave this possibility for future work.
Zero-shot, Few-shot and Beyond. We hold the
belief that significant potential exists for enhancing
the reliability of the verification-revision procedure
and devoting efforts to the advancement of prompt
engineering may prove to be valuable and worth-
while. Since our work is done with an aim to be
as generalizable as possible, the experiments are
all conducted in the zero-shot setting. However,
in general, as expertise revealed in the exemplar
prompt that it is always beneficial for better perfor-
mance in a specific domain (Kojima et al., 2022;
Wei et al., 2022), it is still worthwhile to examine
the advantages when LogiCoT is applied in the
few-shot setting in future work.

Ethics Statement
Large language models sometimes produce biased,
untrustworthy statements. Despite our best inten-
tion to enhance the model, we are not rectifying
these issues. It is advisable for individuals to exer-
cise caution and avoid placing excessive reliance
on it. This method is released with the purpose of
research only.

Acknowledgements
We gratefully acknowledge support from the China
Scholarship Council (CSC) and the German Re-
search Foundation (DFG) under the project Cross-
modal Learning (TRR 169).

David Agler. 2012. Symbolic Logic: Syntax, Seman-
tics, and Proof. Rowman & Littlefield Publishers,
Lanham, Md.

5https://platform.openai.com/docs/
api-reference

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference

Michael Ahn et al. 2022. Do As I Can, Not As I Say:
Grounding Language in Robotic Affordances.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee,
Wenliang Dai, Dan Su, Bryan Wilie, Holy Love-
nia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al.
2023. A multitask, multilingual, multimodal evalu-
ation of chatgpt on reasoning, hallucination, and
interactivity. arXiv preprint arXiv:2302.04023.

Sébastien Bubeck, Varun Chandrasekaran, Ro-
nen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li,
Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks
of Artificial General Intelligence: Early experi-
ments with GPT-4.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training Verifiers to Solve Math
Word Problems.

Antonia Creswell and Murray Shanahan. 2022.
Faithful Reasoning Using Large Language Mod-
els.

Antonia Creswell, Murray Shanahan, and Irina Hig-
gins. 2022. Selection-Inference: Exploiting Large
Language Models for Interpretable Logical Rea-
soning.

Artur d’Avila Garcez and Luis C. Lamb. 2020. Neu-
rosymbolic AI: The 3rd Wave. arXiv:2012.05876
[cs].

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze
Brahman, Chandra Bhagavatula, Ronan Le Bras,
and Yejin Choi. 2022. Maieutic Prompting: Logi-
cally Consistent Reasoning with Recursive Expla-
nations. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1266–1279, Abu Dhabi, United
Arab Emirates. Association for Computational
Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022.
Large Language Models are Zero-Shot Reason-
ers. In Advances in Neural Information Process-
ing Systems.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei
Chen, Jian-Guang Lou, and Weizhu Chen. 2023.
Making Large Language Models Better Reason-
ers with Step-Aware Verifier.

Hunter Lightman, Vineet Kosaraju, Yura Burda,
Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl
Cobbe. 2023. Let’s Verify Step by Step.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil
Blunsom. 2017. Program Induction by Rationale
Generation: Learning to Solve and Explain Al-
gebraic Word Problems. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 158–167, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su.
2023. Deductive Verification of Chain-of-Thought
Reasoning.

Aman Madaan, Niket Tandon, Prakhar Gupta,
Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yim-
ing Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck,
Amir Yazdanbakhsh, and Peter Clark. 2023. Self-
Refine: Iterative Refinement with Self-Feedback.

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun
Raja, Chenglei Si, Wilson Y. Lee, Benoît Sagot,
and Samson Tan. 2021. Between words and
characters: A Brief History of Open-Vocabulary
Modeling and Tokenization in NLP.

Maxwell Nye, Michael Henry Tessler, Joshua B.
Tenenbaum, and Brenden M. Lake. 2021. Im-
proving Coherence and Consistency in Neu-
ral Sequence Models with Dual-System, Neuro-
Symbolic Reasoning.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul F. Christiano, Jan Leike,
and Ryan Lowe. 2022. Training language mod-
els to follow instructions with human feedback.
Advances in Neural Information Processing Sys-
tems, 35:27730–27744.

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eber-
hart, and Pascal Hitzler. 2021. Neuro-symbolic
artificial intelligence. AI Communications,
34(3):197–209.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì,
Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom.
2023. Toolformer: Language Models Can Teach
Themselves to Use Tools.

Aarohi Srivastava et al. 2023. Beyond the Imita-
tion Game: Quantifying and extrapolating the
capabilities of language models.

https://doi.org/10.48550/arXiv.2204.01691
https://doi.org/10.48550/arXiv.2204.01691
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2208.14271
https://doi.org/10.48550/arXiv.2208.14271
https://doi.org/10.48550/arXiv.2205.09712
https://doi.org/10.48550/arXiv.2205.09712
https://doi.org/10.48550/arXiv.2205.09712
http://arxiv.org/abs/2012.05876
http://arxiv.org/abs/2012.05876
https://doi.org/10.48550/arXiv.2206.02336
https://doi.org/10.48550/arXiv.2206.02336
https://doi.org/10.48550/arXiv.2305.20050
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.48550/arXiv.2306.03872
https://doi.org/10.48550/arXiv.2306.03872
https://doi.org/10.48550/arXiv.2303.17651
https://doi.org/10.48550/arXiv.2303.17651
http://arxiv.org/abs/2112.10508
http://arxiv.org/abs/2112.10508
http://arxiv.org/abs/2112.10508
https://doi.org/10.48550/arXiv.2107.02794
https://doi.org/10.48550/arXiv.2107.02794
https://doi.org/10.48550/arXiv.2107.02794
https://doi.org/10.48550/arXiv.2107.02794
https://doi.org/10.3233/AIC-210084
https://doi.org/10.3233/AIC-210084
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2206.04615

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-Consistency
Improves Chain of Thought Reasoning in Lan-
guage Models.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. 2022. Chain-of-
Thought Prompting Elicits Reasoning in Large
Language Models. In Advances in Neural Infor-
mation Processing Systems.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating Sequences by Learning
to Self-Correct.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of Thoughts: Deliber-
ate Problem Solving with Large Language Mod-
els.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao.
2023b. ReAct: Synergizing Reasoning and Act-
ing in Language Models. In The Eleventh Interna-
tional Conference on Learning Representations.

Xufeng Zhao, Mengdi Li, Cornelius Weber, Muham-
mad Burhan Hafez, and Stefan Wermter. 2023.
Chat with the Environment: Interactive Multi-
modal Perception using Large Language Models.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhen-
guo Li, and Yu Li. 2023. Progressive-Hint Prompt-
ing Improves Reasoning in Large Language Mod-
els.

Denny Zhou, Nathanael Schärli, Le Hou, Jason
Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc Le,
and Ed Chi. 2023. Least-to-Most Prompting En-
ables Complex Reasoning in Large Language
Models.

https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2211.00053
https://doi.org/10.48550/arXiv.2211.00053
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2303.08268
https://doi.org/10.48550/arXiv.2303.08268
https://doi.org/10.48550/arXiv.2304.09797
https://doi.org/10.48550/arXiv.2304.09797
https://doi.org/10.48550/arXiv.2304.09797
https://doi.org/10.48550/arXiv.2205.10625
https://doi.org/10.48550/arXiv.2205.10625
https://doi.org/10.48550/arXiv.2205.10625

A. Proof of Contraposition

Known premises P → Q (if P is true, then Q is true) and ¬Q (Q is false), prove ¬P . Proof of P → Q,¬Q ⊢
¬P :

1 P → Q P

2 ¬Q P

3 P A

4 Q → E 1, 3

5 X C 2, 4

6 ¬P ¬I 3-5

Inside the proof, P stands for the known premise, A for assumption,→ E for the elimination of “→” symbol
by following the conditional statement, C for contradiction assertion (followed by an “X” which indicates
the branch with an assumption is closed) and ¬I for the introduction of negation according to the rule of
reductio ad absurdum.

B. Pseudo Codes for LogiCoT and LogiCoT(cmp)

Alg. 1 and Alg. 2 are the pseudo-code of the function to compute the reasoning trace of LogiCoT, in which
P is the known premises, e.g. question context, and an LLM is employed with various purposes in this
context. By prompting the LLM to generate post hoc inferences and subsequently exposing them as
discernible options for differentiation, the process facilitates a more convenient verification of entailment,
as opposed to relying on the model to independently discover contradictions.

Algorithm 1 LogiCoT Reasoning Trace
Require: P , LLM

Initialize T ← {P}
T1, T2, · · · , TN ← LLM(T) ▷ Vanilla zero-shot-CoT
i← 1
while i ≤ N do

Ei ← post hoc LLM(E|Ti; T)
E¬

i ← post hoc LLM(E|¬Ti; T)
Ê ← LLM(Ei;E

¬
i |T) ▷ Adopt

if Ê is E¬
i then

T
′

i ← LLM(T |T ;Ti;E
¬
i) ▷ Revise

Ti ← T
′

i

{T>i}N ′ ← LLM(T ∪ Ti) ▷ Adapt
N ← N

′

end if
T ← T ∪ Ti ▷ Update
i← i+ 1

end while
return T

Algorithm 2 Composing LogiCoT
Require: P , LLM

Initialize T ← {P}
T1, T2, · · · , TN ← LLM(T) ▷ Vanilla zero-shot-CoT
i← 1
while i ≤ N do

E¬
i ← LLM(Ei|¬Ti; T)

C ← LLM(E¬
i |T) ▷ Contradiction

if C is False then
Ti ← LLM(T |T ;Ti;E

¬
i) ▷ Revise

{T>i}N ′ ← LLM(T ∪ Ti) ▷ Adapt
N ← N

′

end if
T ← T ∪ Ti ▷ Update
i← i+ 1

end while
return T

C. Prompts and Results for Cases
C.1. GSM8K Success Case
Initial Zero-shot-CoT

Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts for
$5.00. How much does he spend on yogurt over 30 days?

Let’s think step by step.
Answer:
#1. First, we need to determine how many packs of 4 yogurts Terry will need to buy

over 30 days. To do this, we divide 30 by 4: 30 / 4 = 7.5
#2. Since Terry can’t buy a fraction of a pack, we round up to the nearest whole

number: 8
#3. Next, we need to determine how many individual yogurts Terry will buy. To do

this, we multiply the number of packs by the number of yogurts per pack: 8 * 4
= 32

#4. Finally, we need to determine how much Terry will spend on yogurt. To do this,
we divide the total number of yogurts by the number of yogurts per dollar: 32 /
4 = 8

Therefore, Terry will spend $8.00 on yogurt over 30 days.

Verification of step #1

Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts for
$5.00. How much does he spend on yogurt over 30 days?

Let’s think step by step.
Answer:
Verification of the next step:

#1. First, we need to determine how many packs of 4 yogurts Terry will need to buy
over 30 days. To do this, we divide 30 by 4: 30 / 4 = 7.5

Let’s check two different reviews (X and Y).
Suport the more plausible one and criticise the other one.
Review X: <review> step #1 is TRUE because Terry eats 2 yogurts a day and there are

4 yogurts in each pack. So, to determine how many packs of 4 yogurts Terry will
need to buy over 30 days, we divide 30 by 4. </review>

Review Y: <review> step #1 is FALSE because the question states that Terry eats 2
yogurts a day, not 4. Therefore, we cannot assume that Terry needs to buy packs
of 4 yogurts.

Instead, we need to calculate how many individual yogurts Terry needs to buy over
30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 * 30 = 60.

Therefore, Terry needs to buy 60 individual yogurts over 30 days.

Next, we need to determine the cost of each individual yogurt. The sale price is 4
yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *
$1.25 = $75.

Therefore, Terry spends $75 on yogurt over 30 days. </review>

Let’s start by analyzing one by one:
I. What are the premises and previous steps to support the verification of step #1?

(Your answer should quote exact quote as support.)
II. Criticise the incorrect review.
(Note the examined step doesn’t have to tackle the whole problem at once.)
Finally, identify whether step #1 is true or false.

Analysis and conclusion:
I. The premise to support the verification of step #1 is that Terry eats 2 yogurts

a day and the yogurts are on sale at 4 yogurts for $5.00.

II. The incorrect review (Review X) is incorrect because it misinterprets the
information given in the question. The question clearly states that Terry eats
2 yogurts a day, not 4. Therefore, the calculation of how many packs of 4
yogurts Terry needs to buy over 30 days is not relevant to the problem.

III. Step #1 is false. The correct calculation should be to determine how many
individual yogurts Terry needs to buy over 30 days, which is 2 yogurts per day
multiplied by 30 days, resulting in 60 individual yogurts.

Therefore, Terry needs to buy 60 individual yogurts over 30 days.

Revision

Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts for
$5.00. How much does he spend on yogurt over 30 days?

Let’s think step by step.
Answer:
Original next step #1: First, we need to determine how many packs of 4 yogurts

Terry will need to buy over 30 days. To do this, we divide 30 by 4: 30 / 4 = 7.5

(Hint: It is not good to directly adopt the step #1 because there is a review says
<review> the question states that Terry eats 2 yogurts a day, not 4. Therefore,
we cannot assume that Terry needs to buy packs of 4 yogurts.

Instead, we need to calculate how many individual yogurts Terry needs to buy over
30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 * 30 = 60.

Therefore, Terry needs to buy 60 individual yogurts over 30 days.

Next, we need to determine the cost of each individual yogurt. The sale price is 4
yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *
$1.25 = $75.

Therefore, Terry spends $75 on yogurt over 30 days. </review>.)

Let’s revise for a better version based on the question premises and on the
reasoning steps so far.

Revision of step #1:
First, we need to determine how many individual yogurts Terry will need to buy over

30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 * 30 = 60.

Next, we need to determine the cost of each individual yogurt. The sale price is 4
yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *
$1.25 = $75.

Therefore, Terry spends $75 on yogurt over 30 days.
...

C.2. GSM8K Failure Case
Initial Zero-shot-CoT

Question: Mike plays ping pong for 40 minutes. In the first 20 minutes, he scores 4
points. In the second 20 minutes, he scores 25% more points. How many total
points did he score?

Let’s think step by step.
Answer:
#1. In the first 20 minutes, Mike scores 4 points.
#2. In the second 20 minutes, he scores 25% more points than in the first 20

minutes.
#3. To find 25% more points, we can multiply the number of points in the first 20

minutes by 1.25.
#4. 4 points * 1.25 = 5 points.
#5. In total, Mike scores 4 points + 5 points = <<4+5=9>>9 points. Answer:

\boxed{9}.
...

Verification of step #4

Question: Mike plays ping pong for 40 minutes. In the first 20 minutes, he scores 4
points. In the second 20 minutes, he scores 25% more points. How many total
points did he score?

Let’s think step by step.
Answer:
#1. In the first 20 minutes, Mike scores 4 points.
#2. In the second 20 minutes, he scores 25% more points than in the first 20

minutes.
#3. To find 25% more points, we can multiply the number of points in the first 20

minutes by 1.25.

Verification of the next step:
#4. 4 points * 1.25 = 5 points.

Let’s check two different reviews (X and Y).
Suport the more plausible one and criticise the other one.
Review X: <review> step #4 is TRUE because 25% more than 4 points is 1.25 * 4 = 5

points. </review>
Review Y: <review> step #4 is FALSE because the question states that Mike scores

25% more points in the second 20 minutes, not 25% more points than the first 20
minutes. Therefore, we cannot simply multiply the number of points in the first
20 minutes by 1.25 to find the number of points in the second 20 minutes.

Instead, we need to calculate 25% of the number of points in the first 20 minutes

and add that to the number of points in the first 20 minutes.

25% of 4 points is 0.25 * 4 = 1 point.

So, in the second 20 minutes, Mike scores an additional 1 point.

Therefore, the total number of points scored by Mike is 4 + 1 = 5 points. </review>

Let’s start by analyzing one by one:
I. What are the premises and previous steps to support the verification of step #4?

(Your answer should quote exact quote as support.)
II. Criticise the incorrect review.
(Note the examined step doesn’t have to tackle the whole problem at once.)
Finally, identify whether step #4 is true or false.

Analysis and conclusion:
I. The premise to support the verification of step #4 is that in the second 20

minutes, Mike scores 25% more points than in the first 20 minutes.

II. The incorrect review (Review Y) criticizes step #4 by stating that we cannot
simply multiply the number of points in the first 20 minutes by 1.25 to find
the number of points in the second 20 minutes. Instead, it suggests calculating
25% of the number of points in the first 20 minutes and adding that to the
number of points in the first 20 minutes.

After analyzing both reviews, it is clear that step #4 is FALSE. The correct
approach is to calculate 25% of the number of points in the first 20 minutes
and add that to the number of points in the first 20 minutes. Therefore, the
total number of points scored by Mike is 4 + 1 = 5 points.

...

Revision and Reduction

Question: Mike plays ping pong for 40 minutes. In the first 20 minutes, he scores 4
points. In the second 20 minutes, he scores 25% more points. How many total
points did he score?

Let’s think step by step.
Answer:
#1. In the first 20 minutes, Mike scores 4 points.
#2. In the second 20 minutes, he scores 25% more points than in the first 20

minutes.
#3. To find 25% more points, we can multiply the number of points in the first 20

minutes by 1.25.
#4. To find the number of points Mike scores in the second 20 minutes, we need to

calculate 25% of the number of points in the first 20 minutes and add that to
the number of points in the first 20 minutes.

25% of 4 points is 0.25 * 4 = 1 point.

So, in the second 20 minutes, Mike scores an additional 1 point.

Therefore, the total number of points scored by Mike is 4 + 1 = 5 points.
#5. Therefore, Mike scored a total of 5 points.

C.3. GSM Failure Case

Question: Jerry is rolling a six-sided die. How much more likely is it (expressed
as a percentage) that he rolls a number greater than 3 than that he rolls two
even numbers in a row?

Let’s think step by step.

Answer:
#1. The probability of rolling a number greater than 3 is 3/6 or 1/2, since there

are three numbers (4, 5, and 6) that are greater than 3 out of six possible
outcomes.

#2. The probability of rolling two even numbers in a row is (1/2) x (1/2) or 1/4,
since the probability of rolling an even number on a single roll is 1/2 and the
probability of rolling another even number on the next roll is also 1/2.

#3. To find out how much more likely it is to roll a number greater than 3 than to
roll two even numbers in a row, we need to compare the difference between their
probabilities.

#4. The probability of rolling a number greater than 3 is 1/2, and the probability
of rolling two even numbers in a row is 1/4.

#5. The difference between these probabilities is 1/2 - 1/4 = 1/4.
#6. To express this as a percentage, we can multiply by 100 to get 25%.

\n\nTherefore, it is 25% more likely that Jerry rolls a number greater than 3
than that he rolls two even numbers in a row.

Revision of step #6.

...
#6. To express this as a percentage, we need to calculate the ratio of the

difference between the probabilities to the probability of rolling two even
numbers in a row, and then multiply by 100 to get the percentage. \n\nThe
difference between the probabilities is 1/4, and the probability of rolling two
even numbers in a row is 1/4. Therefore, the ratio is 1/4 \u00f7 1/4 = 1.
Multiplying by 100 gives us 100%, which means that it is 100% more likely that
Jerry rolls a number greater than 3 than that he rolls two even numbers in a
row.\n

#7. Therefore, it is twice as likely that Jerry rolls a number greater than 3 than
that he rolls two even numbers in a row.

Revision of step #7.

...
#7. Therefore, it is 100% more likely that Jerry rolls a number greater than 3 than

that he rolls two even numbers in a row.\n
#8. Final Answer: It is 100% more likely that Jerry rolls a number greater than 3

than that he rolls two even numbers in a row.

The result is not aligned with the ground truth but is acceptable because it presented the answer with a
ratio rather than an absolute value increase.

C.4. AQuA Success Case
Initial Zero-shot-CoT

Analyze and answer the following single-choice problem.
Question: An aeroplane flies along the four sides of a square at the speeds of 200,

400, 600 and 800km/hr. Find the average speed of the plane around the field?
Options:
OptA)384
OptB)562
OptC)458
OptD)156
OptE)452

Let’s think step by step.
Answer:
#1. To find the average speed, we need to find the total distance traveled and

divide it by the total time taken.
#2. The distance traveled on each side of the square is equal to the speed

multiplied by the time taken. Let’s assume the length of each side of the
square is "s" km.

#3. The time taken to travel each side of the square is equal to the length of the

side divided by the speed. So, the time taken for each side is s/200, s/400,
s/600, and s/800 hours.

#4. The total distance traveled is equal to the sum of the distances traveled on
each side of the square. So, the total distance is 4s km.

#5. The total time taken is equal to the sum of the times taken for each side of
the square. So, the total time is (s/200) + (s/400) + (s/600) + (s/800) hours.

#6. Now, we can calculate the average speed by dividing the total distance by the
total time. So, the average speed is (4s) / ((s/200) + (s/400) + (s/600) +
(s/800)) km/hr.

#7. Simplifying the expression, we get the average speed as (4s) / ((3s + 2s +
(4/3)s + (1/2)s) / 2400) km/hr.

#8. Further simplifying the expression, we get the average speed as (4s) / ((19/6)s
/ 2400) km/hr.

#9. Canceling out the common terms, we get the average speed as (4/1) / ((19/6) /
2400) km/hr.

#10. Simplifying the expression, we get the average speed as (4/1) * (2400 /
(19/6)) km/hr.

#11. Further simplifying the expression, we get the average speed as (4 * 2400) /
(19/6) km/hr.

#12. Calculating the expression, we get the average speed as 9600 / (19/6) km/hr.
#13. Dividing the numerator by the denominator, we get the average speed as 9600 *

(6/19) km/hr.
#14. Simplifying the expression, we get the average speed as 3200 * (2/19) km/hr.
#15. Calculating the expression, we get the average speed as 6400 / 19 km/hr.
#16. Rounding the answer to the nearest whole number, we get the average speed as

337 km/hr.
#17. None of the given options match the calculated average speed.
...

Revision and Re-deduction

Analyze and answer the following single-choice problem.
Question: An aeroplane flies along the four sides of a square at the speeds of 200,

400, 600 and 800km/hr. Find the average speed of the plane around the field?
Options:
OptA)384
OptB)562
OptC)458
OptD)156
OptE)452

Let’s think step by step.
Answer:
#1. To find the average speed, we need to find the total distance traveled and

divide it by the total time taken.
#2. The distance traveled on each side of the square is equal to the speed

multiplied by the time taken. Let’s assume the length of each side of the
square is "s" km.

#3. The time taken to travel each side of the square is equal to the length of the
side divided by the speed. So, the time taken for each side is s/200, s/400,
s/600, and s/800 hours.

#4. The total distance traveled is equal to the sum of the distances traveled on
each side of the square. So, the total distance is 4s km.

#5. The total time taken is equal to the sum of the times taken for each side of
the square. So, the total time is (s/200) + (s/400) + (s/600) + (s/800) hours.

#6. Now, we can calculate the average speed by dividing the total distance by the
total time. So, the average speed is (4s) / ((s/200) + (s/400) + (s/600) +
(s/800)) km/hr.

#7. To simplify this expression, we need to find a common denominator for the
fractions in the denominator. The common denominator is 2400.

(4s) / ((s/200) + (s/400) + (s/600) + (s/800))

Now, we can add the fractions:

(4s) / ((12s + 6s + 4s + 3s) / 2400)

(4s) / (25s / 2400)

(4s) * (2400 / 25s)

(4s) * 96

384s

Therefore, the correct average speed is 384s km/hr.
The correct answer is OptA) 384.

C.5. AQuA Failure Case
Initial Zero-shot-CoT

Analyze and answer the following single-choice problem.
Question: Roy was suffering from severe headaches. He went to see his doctor and

the doctor gave him 5 tablets asking him to take one tablet every 15 minutes.
How much time will it take Roy to consume all the 5 tablets?
Options:
OptA)45 Min
OptB)75 Min
OptC)90 Min
OptD)120 Min
OptE)60 Min

Let’s think step by step.
Answer:
#1. Roy needs to take 5 tablets.
#2. He needs to take one tablet every 15 minutes.
#3. To calculate the total time, we need to multiply the number of tablets by the

time it takes to consume one tablet.
#4. 5 tablets x 15 minutes = 75 minutes.
Therefore, the correct answer is OptB) 75 Min.

In this case, all of the reasoning steps passed the verification, such that the answer by LogiCoT is consistent
with CoT. However, they are both not correct. The ground truth is OptE) 60 Min, with an explanation that
“Tablet 1 will be taken in 0 min...”. Because there is no message for this hidden commonsense knowledge,
neither CoT nor LogiCoT can realize it.

C.6. Date Understanding Success Case
Initial Zero-shot-CoT

Question: Jane and John married on Jan 2, 1958. Today is their golden wedding
anniversary. What is the date one week ago from today in MM/DD/YYYY?

Let’s think step by step.
Answer:
#1. First, we need to determine the date of their golden wedding anniversary.

To do this, we need to add 50 years to their wedding date.

Jan 2, 1958 + 50 years = Jan 2, 2008

#2. Next, we need to determine the date one week ago from today.

To do this, we subtract 7 days from today’s date.

Today’s date - 7 days = (MM/DD/YYYY)

Therefore, the date one week ago from today in MM/DD/YYYY format is (MM/DD/YYYY).

Revision and Re-deduction

Question: Jane and John married on Jan 2, 1958. Today is their golden wedding
anniversary. What is the date one week ago from today in MM/DD/YYYY?

Let’s think step by step.
Answer:
#1. First, we need to determine the date of their golden wedding anniversary.

To do this, we need to add 50 years to their wedding date.

Jan 2, 1958 + 50 years = Jan 2, 2008
#2. Next, we need to determine the date one week ago from today.

To do this, we need to subtract 7 days from the date of their golden wedding
anniversary.

Jan 2, 2008 - 7 days = Dec 26, 2007

Therefore, the date one week ago from today in MM/DD/YYYY format is 12/26/2007.
The date one week ago from today in MM/DD/YYYY format is 12/26/2007.

In this case, CoT successfully applies the commonsense knowledge that a “golden wedding anniversary”
means fifty years. However, the language model fails to generate a meaningful answer as a conclusion
while the revision by LogiCoT leads to a correct answer.

C.7. Date Understanding Failure Case
Initial Zero-shot-CoT

Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is the
date tomorrow in MM/DD/YYYY?

Let’s think step by step.
Answer:
#1. Today’s date: May 30, 2021
#2. Tomorrow’s date: May 31, 2021
#3. Convert to MM/DD/YYYY format: 05/31/2021

Verification of step #1

Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is the
date tomorrow in MM/DD/YYYY?

Let’s think step by step.
Answer:

Verification of the next step:
#1. Today’s date: May 30, 2021

Let’s check two different reviews (X and Y).
Suport the more plausible one and criticise the other one.
Review X: <review> step #1 is TRUE because the user stated that the deadline is 2

days away from now, and today’s date is May 30, 2021. </review>
Review Y: <review> step #1 is FALSE because the given information states that the

deadline is June 1, 2021, which means that today’s date is May 31, 2021.

Now, let’s move on to the next step.

Step #2: Determine the date tomorrow.

Since today is May 31, 2021, tomorrow will be June 1, 2021.

Therefore, the date tomorrow in MM/DD/YYYY format is 06/01/2021. </review>

Let’s start by analyzing one by one:
I. What are the premises and previous steps to support the verification of step #1?

(Your answer should quote exact quote as support.)
II. Criticise the incorrect review.
(Note the examined step doesn’t have to tackle the whole problem at once.)
Finally, identify whether step #1 is true or false.

Analysis and conclusion:
I. The premise to support the verification of step #1 is the user’s statement that

the deadline is 2 days away from now, and today’s date is May 30, 2021.

II. Review Y criticizes step #1 by stating that the given information states that
the deadline is June 1, 2021, which means that today’s date is May 31, 2021.

Based on the user’s statement and the given information, it can be concluded that
step #1 is FALSE. Today’s date is May 31, 2021, not May 30, 2021.

Revision and Re-deduction

Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is the
date tomorrow in MM/DD/YYYY?

Let’s think step by step.
Answer:
#1. Determine the date tomorrow.

Since today is May 31, 2021, tomorrow will be June 1, 2021.

Therefore, the date tomorrow in MM/DD/YYYY format is 06/01/2021.

#2. The date tomorrow in MM/DD/YYYY format is 06/01/2021.

This failure of LogiCoT showcases the importance of correctly identifying the more plausible review,
especially when both reviews claim statements but with established facts as support. Apparently, there is
no clear reason to support “Review Y”, the post hoc explanation, in this case, is just a hallucination of the
LLM but it sometimes fools the LLM itself.

	Introduction
	Related Work
	Methodology
	Reductio ad Absurdum
	Logical Chain-of-Thought (LogiCoT)
	Chain Growth

	Experiments
	Experimental Setup
	Does LogiCoT enhance the performance of CoT in various domains, with LLMs with various model scales?
	Does the transition from composing to adopting lead to improvements in terms of error findings?
	What is the impact of LogiCoT revision on cases?

	Conclusion
	Proof of Contraposition
	Pseudo Codes for LogiCoT and LogiCoT(cmp)
	Prompts and Results for Cases
	GSM8K Success Case
	GSM8K Failure Case
	GSM Failure Case
	AQuA Success Case
	AQuA Failure Case
	Date Understanding Success Case
	Date Understanding Failure Case

