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Abstract— In recent years, Generative Adversarial Networks
(GANs) have proven to be a sophisticated approach for generative
tasks in image processing, especially inpainting and image syn-
thesis While most GAN approaches feature comparatively large
networks, we introduce an approach to image inpainting using
progressive growing GANs, which enables significantly reduced
model sizes, faster convergence, and thus an overall more efficient
training that is inspired by insights on the development of visual
abilities in biological systems. We demonstrate the effectiveness
and efficiency of our approach on Places, a comprehensive dataset
encompassing a wide variety of images from diverse locations in
the wild.

Index Terms— progressive growing, GAN, image inpainting,
model size reduction, efficient training

I. INTRODUCTION

Image data can be damaged, incomplete, or of low quality
due to noise. Image manipulation techniques, such as inpaint-
ing, super-resolution, and denoising, address these issues. This
paper focuses on image inpainting, which fills blank or masked
areas with context-sensitive information.

Inpainting approaches are typically categorized into
sequential-based, Convolutional Neural Network (CNN)-based,
and Generative Adversarial Network (GAN)-based meth-
ods [1]. Sequential-based methods include patch-based ap-
proaches [2]–[5] and diffusion-based approaches [6]–[8]. To
capture global image structure, CNN-based architectures such
as ShiftNet [9] and Liu et al.’s approach [10] were introduced.
GAN-based techniques [11]–[13], employing coarse-to-fine
networks and contextual attention modules, further enhance
inpainting performance. However, they require more training
time and possess a high parameter count, posing challenges
for machines with limited computational resources.

Our main contribution is a progressive growing GAN [14]
trained on the Places dataset [15] for image inpainting up to
a resolution of 64 × 64 pixels. While our approach enables
faster convergence it mainly focuses on a significantly smaller
model size compared to other GAN- or stable diffusion-based
methods by mixing the progressive growing mechanism with an
efficient layer design and utilizing multiple loss functions such
as perceptual loss [16]. This incremental learning approach
resembles human learning in its progression from simple to
complex and from lower to higher resolutions.
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II. RELATED WORK

A. Image Inpainting with GANs

The work by Suvorov et al. [13] demonstrates a mask
inpainting method called LaMa (Large Mask Inpainting) that
is based on fast Fourier convolutions, originally proposed by
Chi et al. [17]. Compared to standard convolution operations
that compute their input based on local neighborhood kernels
of fixed size, this type of convolution uses Fourier transforms.
The filters compute input information on a global scale, which
is particularly useful for images containing repeating structures
since information can be replayed. High-resolution results
of the LaMa approach with arbitrary masks look promising
for images with repeating patterns and are visually nearly
indistinguishable from real images. However, the performance
decreases when the input does not contain many repeating
patterns, and the application domain differs from the train-
ing data. Iizuka et al. [12] introduce an adversarial training
approach on both the global and the local level by utilizing a
second local Discriminator that only takes in a small portion of
the image. This leads to high-quality results for smaller mask
sizes, but their approach still struggles with large masks and
heavily structured objects. Although both approaches, within
their respective limitations, deliver high-quality results they
require extensive training time (up to 2 months for Iizuka et
al.) and a high number of iterations, 1M for LaMa and 500k
for Iizuka et al., for a final resolution of 512 × 512 (LaMa)
and 256× 256 (Iizuka et al.). This demonstrates that there is a
need for more dynamic approaches utilizing transfer learning
to reduce training time and number of total iterations.

B. Progressive Growing

A substantial contribution towards stable GAN training and
high-resolution networks is the approach by Karras et al. [14],
which introduces GAN models that grow during training de-
pending on a target resolution. Training a large neural network,
with two competing networks during training, is a challenging
task, and convergence for high-resolution output is hard to
achieve. The work of Karras et al. addresses this problem
by initially training a small network for a 4 × 4 resolution
for a limited number of epochs. Subsequently, the resolution
is doubled by incorporating additional layers. The resulting
network is then trained on the new 8 × 8 resolution. This
process is iteratively applied to the entire dataset and all
epochs for each resolution until the maximum resolution is
reached. Incrementally adding new layers that introduce higher-
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Fig. 1. Architecture of blocks, sub-blocks, and layers. These are the
modular constructs used to build Discriminator (D) and Generator (G).
Depending on the setup, weight normalization or regular normalization is used
but never both at the same time.

resolution information as the training advances significantly
accelerates training time and improves stability at high res-
olutions. In the case of Karras et al. [14], the maximum
resolution is 1024×1024, and the generator is able to produce
highly realistic-looking images of faces for validation on the
CelebA [18] dataset.
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Fig. 2. Proposed Generator (G). The network starts to train the lowest
resolution of 4×4 and grows once this resolution is fully trained. Each growing
step doubles the resolution by adding blocks to the encoder and decoder part
of G. This process is adapted from Karras et al. [14].

C. Advanced Loss Functions

In standard GAN scenarios, the generator G and discrimina-
tor D train adversarially using binary cross-entropy loss applied
to D’s output. D learns to distinguish generated samples from
real ones, acquiring features and domain knowledge that G
uses to generate samples resembling real images. However, the
lack of connection between D and G in the loss may result in
imbalanced learning rates and an absence of qualitative metrics
to ensure G’s output is visually close to real images might lead
to less realistic images. The task becomes dependent on D’s
ability to learn proper image representation for discrimination.
To address those issues, GAN-based approaches often employ
advanced loss functions, such as BEGAN’s [19] boundary equi-
librium. This method balances two objectives: overall image
consistency (coverage of low-frequency features) and image
quality (coverage of high-frequency features). Berthelot et al.
achieve this by constructing a GAN architecture resembling
an autoencoder and utilizing a balanced loss term to weigh
the autoencoder and GAN loss. The autoencoder loss ensures
accurate target learning through low-frequency feature repre-
sentation, while the GAN loss introduces variance by learning
high-frequency features, adding sharpness and variation to the
output.

Another approach to increase sharpness through high-
frequency features in the generated images and ensure diversity
in the output is the perceptual loss by Johnson et al. [16]. In our
approach, we use a pre-trained network, e. g. a classification
network trained on a large dataset like ImageNet [20] and feed
the original as well as the generated image into only the first
few layers of this pre-trained network, which consists mostly
of filters, modeling rather simple, high-frequency features like
edge detection. Let N denote the pre-trained network itself,
x an input, and N0,1 the first and second convolutional block
of the classification network. N0,1(x) is the output of the net-
work’s first and second convolutional block, which functions as
a feature map modeling high-frequency features that describe
sharpness and a high level of detail in the image. Using these
feature maps to design a loss function will result in a decent
approximation of the overall image quality. The function itself
compares the divergence of N0,1(xreal), meaning the output of
the first and second convolutional blocks of the classification
network with the original image as input, and N0,1(xgenerated)
with the generated image as input. By comparing N0,1(xreal)
and N0,1(xgenerated), we obtain the perceptual loss that tries
to approximate the overall image quality in concepts like
sharpness, which are otherwise very challenging to model.

III. METHODOLOGY

A. Dataset

Inpainting images recorded “in the wild” require a training
dataset that covers a large variety of domains, as well as
a diverse set of features within them, and consists of high-
quality images that allow for learning a diverse representation
of high-frequency features. Following these requirements, we
chose the Places [15] dataset, which is curated for scene



understanding through a focus on typical visual tasks. This
enables the model to learn a knowledge representation that
includes scene understanding, context information, and object
recognition. Consequently, the categories and the number of
images, over 10 million in total, are chosen to reflect a diverse
set of real-world areas and domains, covering many different
backgrounds and objects at the same time. MNIST [21] was
used for prototyping in the early development of our approach,
due to its simple training requirements.

B. Architecture

Both networks, the Discriminator (D) and the Generator (G),
are built with modular constructs, which we call blocks, sub-
blocks, and layers. An illustration can be seen in Figure 1.
A block can either be an up block used for upsampling or a
down block used for downsampling. Each block represents the
sub-network responsible for one resolution. G uses both down
and up blocks to half or double the resolution of the image
respectively. D only utilizes down blocks. A sub-block is a
residual part of the architecture. It takes in feature maps, applies
three different convolutions, then concatenates the results and
adds the input to its output. A layer is the smallest modular
construct and consists of one convolution, which can be either
regular or transposed, and either strided or non-strided. To
map the input to blocks, regular convolutions without strides
are used, while layers connected to a block’s output use
strided convolutions, either regular ones for downsampling or
transposed ones for upsampling. The activation corresponds to
an activation function that is passed at the initial construction
and then rolled out to the entire network. Similarly, the configu-
ration for the normalization is passed at the initial construction
and then used for the entire network.

The Generator (G) (Figure 2) is responsible for the in-
painting task. G receives a 4D tensor as input, which is the
concatenation of a masked RGB image (3D) and a binary
mask image (1D). The network consists of modular building
blocks, sub-blocks, and layers (see Figure 1). The growing
process, described in Section II-B, is the main concept of how
to simplify the training process for the entire GAN and keep
it small. The final model consists of only 328,887 parameters
since training in a low resolution first is a much easier task
and faster to execute.

One benefit of working with a modular architecture is that it
is possible to test many different configurations and stop train-
ing early in case of diverging gradients or bad image quality.
Additionally, only a few parameters need to be changed to
test regular/weight normalization, different loss configurations,
different numbers of layers, or different activation functions.
The final Generator architecture uses spectral normalization
as weight normalization and PyTorch’s default LeakyReLU
class with 0.01 as the value for the negative slope as an
activation function. All parameters were either taken as de-
fault from PyTorch or chosen empirically by testing various
configurations. The Discriminator (D) is built from the same
building blocks as G, see Figure 1. However, since D just needs
to downsample the information and subsequently flatten and

process it through fully-connected layers, we use only down
blocks in the construction of D.

C. Perceptual Loss Network

Our advanced loss function consists of a adversarial loss,
a reconstructional loss (mean-squared error), and a percep-
tual loss. The perceptual loss network LN is a standard
VGG19 [22] classification network. We use a snapshot of this
network pre-trained on ImageNet [20] via TIMM1 and extract
the first two feature blocks for the calculation of the perceptual
loss in Equation (1).

Lperceptual =

√∑
(LN(G(xmasked))− LN(xreal))2

c ∗ h ∗ w
(1)

Here, xmasked is the input batch with masked images, and
xreal is the input batch with the real (non-masked) images.
LN(G(xmasked)) describes the output of the loss network LN
with G(xmasked) as input, where G(xmasked) are the generated
samples, meaning the output of G. LN(xreal) defines the
output of LN while using xreal as input, thus giving an
estimation of how edges and other high-frequency features
should look like because these features are extracted based
on real images. The term c ∗ h ∗ w describes the number of
channels, height, and width of the resulting feature maps, which
normalizes the output. This step is needed to restrict the loss to
a reasonable domain and give an approximation of the average
quality throughout the whole image rather than a pixel-based
metric or sum.

D. Training Procedure

Generator G and Discriminator D are trained in an adver-
sarial approach, competing against each other. The progressive
growing techniques extend this setup by repeating the whole
procedure, i. e. training the network over all epochs for all
resolutions, starting at the smallest resolution of 4 × 4. To
prevent the continued adaptation of already learned features
for a previously trained resolution, the weights of all layers
corresponding to the smaller resolution are frozen after it is
trained. For example, once the training for the resolution of
8 × 8 starts, the trained layers for the resolution of 4 × 4 are
frozen. This process is repeated every time the resolution is
doubled.

IV. RESULTS AND DISCUSSION

A. Generative Results on Places

The final results for the Places [15] dataset were obtained by
using the full architecture (see Section III-B), i.e. training until
and including the resolution of 64× 64. Our model generates
visually plausible information up to a resolution of 16 × 16.
Freezing the layers responsible for the resolutions of 4 × 4
and 8 × 8 lets the network train the resolution of 16 × 16
faster than training from scratch. Visually appealing results in a
resolution of 16×16 start to appear after training approximately
the first 5-10k batches (batch size of 128 images). On the

1https://github.com/rwightman/pytorch-image-models



Fig. 3. Results (final architecture) for Places dataset in 16× 16 resolution (randomly selected validation batch). From left to right: masked input, generated
samples, original images. In the final architecture, the mask was passed as additional input to the network alongside the masked image, and all losses were used.
As can be seen from these results, most images are reconstructed in a visually plausible way, regardless of mask size.

Fig. 4. Results (final architecture) for Places dataset in 32× 32 resolution (randomly selected validation batch). From left to right: masked input, generated
samples, original images. In the final architecture, the mask was passed as additional input to the network alongside the masked image, and all losses were
used. For smaller masks and images with clear edges, the generator performs visually plausible inpainting. However, for larger masks, the generated information
contains artifacts.

TABLE I
A DIRECT COMPARISON OF NUMBER OF PARAMETERS PER MODEL.

Ours DCGAN WGAN Iizuka et al. WGAN LaMa dVAE DDPM
[23] small [24] [12] full [24] [13] [25] [26]

0.3M 1.0M 2.5M 6.0M 10.0M 27.0M 14.0M + 84.6M 167.0M

other hand, training the architecture as a whole starting with
a resolution of 16 × 16 from the beginning requires over 50k
batches to converge far enough for generating images with the
same subjective quality.

In addition to the fact that the training time can be reduced
this way, the training scenario is also biologically more plau-
sible. Biological neural networks grow and learn over time,
and it is not efficient to train artificial networks with all layers
from scratch for each task either. However, it is noteworthy
that such architectures come with a few challenges to train.
While this work implements several modular building blocks
(see Section III-B and Figure 1) to allow for a more flexible
and easy-to-orchestrate network-building process via loops and
pre-defined data structures, it also makes the implementation
more complex compared to static, non-growing networks.

We were able to achieve fast convergence with a simple
binary cross-entropy loss at a resolution of 32×32, albeit with
blurry output lacking high-frequency features. These findings
highlight the importance of more advanced loss functions and
freezing already trained layers to circumvent the convergence
issues commonly faced by GANs, preventing diverging gradi-
ents. The results indicate that simple losses may be insufficient
for generating visually appealing outcomes with real-world
data. In a resolution of 32 × 32 and more often in one of
64 × 64, we observed smaller to medium-sized masks to be
reconstructed well, but the reconstruction of others, especially
larger masks, led to mosaic-like patterns that partly match in
color distribution (see Figure 4). However, the potential of
using a combination of losses, especially a perceptual loss
(Section III-C), can be seen in Figure 3 as well as our result
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Fig. 5. Comparison of LaMa [13] and our approach on Places [15] dataset in resolutions of 32× 32 and 64× 64. We used the best model “Big LaMa”
for the comparison, which was also trained on the Places dataset.

comparison with LaMa [13] in Figure 5. The mix of an adver-
sarial loss and reconstruction loss as well as the introduction
of a perceptual loss in particular led to an increase in high-
frequency features and sharper images, effectively reducing
blurriness. In some examples, even comparatively big masks
are reconstructed in a context-aware and credible fashion,
which indicates that the same could be possible with further
research for higher resolutions. Moreover, in some cases, our
approach seems to incorporate a better scene understanding
than LaMa. For example, in the third image in Figure 5 a tree
is covered almost entirely with a mask on the left side of the
image and while LaMa reconstructs the missing information
with a high level of detail, it actually cuts the tree in half
missing the context information of a tree not existing like this
in reality whereas our model actually paints an entire tree into
the mask, albeit with less detailed information with respect to
high-frequency features.

B. Size Comparison

As stated in Section III-B, our Generator consists of approxi-
mately 330k parameters and reaches convergence for a resolu-
tion of 16 × 16 after 5-10k batches. Comparatively, the two
GAN-based inpainting approaches introduced in Section II-
A include 27M (LaMa [13]) and 6M (Iizuka et al. [12])
parameters respectively. Even the original DCGAN by Radford
et al. [23], trained for an output resolution of 64×64, consists
of more than 1M parameters in the re-implementation of
the PyTorch-GAN2 repository. Visually more appealing results
produced by the Wasserstein GANs in the work by Shmelkov
et al. [24] consist of 2.5M parameters for the smaller model

2https://github.com/eriklindernoren/PyTorch-GAN

and 10M parameters for the full model. Additionally, the
Wasserstein GANs are trained on the CIFAR-10 [27] dataset,
which has fewer classes, less variety, and is smaller in size in
comparison to the Places [15] dataset.

Even beyond GAN-based approaches, diffusion models like
the Denoising Diffusion Probabilistic Models (DDPM) pro-
posed by Ho et al. [26] consist of 167M parameters. The work
of Pandey et al. [25] proposes a diffusion-based variational
auto-encoder (dVAE), which produces state-of-the-art, visually
appealing results. Still, the VAE part of the network includes
14M parameters and the DDPM part of the network includes
84.6M parameters. Since the initial proposal of diffusion
models by Sohl-Dickstein et al. [28], these types of neural
architectures are often among state-of-the-art image generation
models.

V. CONCLUSION

We present an application of progressive growing networks
for image inpainting tasks with GANs, which utilizes the
advantages of growing networks to tackle two challenges of
GANs: training time and stable convergence. Training progres-
sive growing networks presents challenges, such as the need to
construct datasets multiple times for lower resolutions to avoid
GPU under-utilization and prevent disk loading speed from
becoming a bottleneck. Despite these challenges, the potential
of progressive growing networks is evident. Especially for
resolutions of up to 16×16, we achieved a decrease in training
time until convergence and generation of visually plausible
images. Additionally, since the entire network consists of
just 330k parameters, it is considerably smaller than usual
GANs and diffusion models, where model sizes of millions
of parameters are common (see Table I and Section IV-B).



The efficiency of the growing mechanism shows that a more
dynamic and efficient way of building and training neural
networks is possible. Furthermore it is also plausible that these
underlying principles of incremental learning can, in other
forms, help to explain biological learning processes.

VI. FUTURE WORK

A. Adaptive Growing

Currently, the growing process is coupled to the step-wise
increase in resolution, meaning that the size of the added sub-
network for the new resolution has to be estimated and em-
pirically evaluated beforehand. Additionally, it would be more
dynamic and effective to only add new layers when needed.
E. g. only expanding the network when new information cannot
be learned without catastrophic forgetting.

B. Anonymization

Data privacy is an essential topic in computer vision, and
being able to completely remove humans from pictures is
a practical application of inpainting networks. To achieve
this, one could combine the training process with a detection
network that detects segmentation masks for humans so that
the Generator’s task is not only to paste context-aware and
visually plausible information into masks but also to remove
humans from the picture.
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