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Disentangling Prosody Representations With
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Abstract—Human speech can be characterized by different com-
ponents, including semantic content, speaker identity and prosodic
information. Significant progress has been made in disentangling
representations for semantic content and speaker identity in speech
recognition and speaker verification tasks respectively. However, it
is still an open challenging question to extract prosodic information
because of the intrinsic association of different attributes, such
as timbre and rhythm, and because of the need for supervised
training schemes to achieve robust speech recognition. The aim
of this article is to address the disentanglement of emotional
prosody based on unsupervised reconstruction. Specifically, we
identify, design, implement and integrate three crucial compo-
nents in our proposed model Prosody2Vec: (1) a unit encoder
that transforms speech signals into discrete units for semantic
content, (2) a pretrained speaker verification model to generate
speaker identity embeddings, and (3) a trainable prosody encoder
to learn prosody representations. We first pretrain Prosody2Vec
on unlabelled emotional speech corpora, then fine-tune the model
on specific datasets to perform Speech Emotion Recognition (SER)
and Emotional Voice Conversion (EVC) tasks. Both objective and
subjective evaluations on the EVC task suggest that Prosody2Vec
effectively captures general prosodic features that can be smoothly
transferred to other emotional speech. In addition, our SER exper-
iments on the IEMOCAP dataset reveal that the prosody features
learned by Prosody2Vec are complementary and beneficial for the
performance of widely used speech pretraining models and surpass
the state-of-the-art methods when combining Prosody2Vec with
HuBERT representations. Audio samples can be found on our demo
website.

Index Terms—Prosody disentanglement, speech emotion
recognition, emotional voice conversion.
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I. INTRODUCTION

HUMAN speech contains rich information, which includes
semantic content (what is spoken), speaker identity (who

is speaking), and prosodic information (how is it spoken).
Among them, prosody plays an important role in characterizing
speaking styles, emotional states, and social intentions. Most
importantly, humans express and perceive emotions via various
prosodic cues, for instance, sad speech often comes along with
a low speaking rate, and angry emotion is usually accompanied
by a raised pitch. According to Charles Darwin [1], emotions
are instinctive and present not only in humans in similar forms
but also in many other species. Human infants can understand
adults’ emotions even without language skills [2]. Therefore,
enabling machines to capably recognize, understand and convey
emotions is one of the crucial steps to achieving true artificial
intelligence.

Learning meaningful prosodic representations has gained at-
tention in recent years. Attention-enhanced Connectionist Tem-
poral Classification (CTC) [3] and attention pooling [4] are
utilized to dynamically capture useful temporal information for
Speech Emotion Recognition (SER). Additionally, deep belief
networks [5] and continuous wavelet transform [6] are utilized
to learn prosodic features for Emotional Voice Conversion
(EVC). However, model performance is greatly limited due
to the lack of large-scale and high-quality emotional speech
corpora.

Hence, disentangling prosodic information with unsupervised
learning has been a promising direction, which includes Text-to-
Speech (TTS) based style learning, such as automatically discov-
ering expressive styles with global style tokens [7]. Moreover, an
information bottleneck is used to control the information flow by
careful design, such as in SpeechFlow [8]. In addition, mutual
information loss is adopted to purify prosody representations,
such as in a mutual information neural estimator [9]. However,
unsupervised methods usually require a well-trained Automatic
Speech Recognition (ASR) system to decompose semantic con-
tent from speech. It is challenging to train a qualified ASR model
with good performance, especially on emotional speech, since
creating massive labeled corpora is time- and cost-consuming.

Another method is based on self-supervised learning by lever-
aging a large amount of unlabeled speech data. Chen et al. [10]
propose WavLM and achieve state-of-the-art performance by
fine-tuning the pretrained model on SER tasks. Nevertheless,
the self-supervised learning models are mostly trained with
mask prediction, similar to BERT [11], which leads the model
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to focus more on semantic content and local variations but
neglect non-verbal and global information. Psychologists [12]
found that the superior temporal gyrus—the site of the auditory
association cortex—is more activated by longer audio, which
reveals that humans tend to perceive emotions with long-term
cues. Hence, it is critical to capture global or long-term prosodic
changes.

The recent self-supervised model HuBERT [13] integrates
quantization into pretraining, where, instead of directly pre-
dicting the masked low-level acoustic features, HuBERT treats
clustered Mel-Frequency Cepstral Coefficient (MFCC) features
or clustered intermediate layer outputs by k-means as train-
ing targets. It has been proven that the quantization proce-
dure can successfully filter non-verbal information, such as
prosodic information [14] and speaker identity [15]. Inspired
by the above findings, we propose Prosody2Vec which does
not require any human annotations and reconstructs emotional
speech in an unsupervised fashion by conditioning on three
information flows: (1) a unit encoder which is based on the
pretrained HuBERT model to filter paralinguistic information
and preserve only semantic content, (2) a pretrained Speaker
Recognition (SR) model to generate speaker identity embed-
dings, and (3) a trainable prosody encoder to learn prosody
representations.

Previous works, for instance, NANSY [16] and Speech-
Flow [8], perform controllable or fine-grained speech synthesis
by factorizing detailed prosodic attributes, such as pitch and
rhythm. Instead of disentangling individual attributes, we aim
to learn prosodic representations that reflect the combined effect
of different prosodic attributes. Additionally, current speech
representation models, e.g. HuBERT, focus more on local se-
mantics modeling on a millisecond time scale, which results in
an incapacity to represent long-term information. However, the
production and perception of emotion usually require a relatively
long, second-level time scale [17].

In addition, previous supervised work using Variational Au-
toencoder (VAE) [18] and Vector-Quantize VAE (VQ-VAE) [19]
requires human annotations (text transcriptions) to provide se-
mantic content. The lack of large-scale labeled emotional or
expressive datasets significantly restricts model performance. In
comparison, the proposed Prosody2Vec model leverages self-
supervised pretraining, quantization, and refinement schemes
to represent semantics without text annotations, which enables
Prosody2Vec to train with large-scale datasets containing variant
speaker styles.

Comparing with unsupervised methods, like AutoVC [20]
and SpeechFlow [8], which control information flows by several
carefully designed bottleneck autoencoder modules. It is com-
plicated and time-consuming to balance different information
flows and determine a suitable dimension through trial and
error. However, we explicitly provide semantic and speaker
information by pretrained models in Prosody2Vec. Only the
prosody encoder needs to be controlled and tuned.

In this article, our goal is to capture global or utterance-
level variations, which are complementary to the semantic
representations learned by speech representation models. The
main contributions of this article are:

1) We propose a novel model, Prosody2Vec, to learn prosody
information from speech, which requires neither emotion
labels nor transcribed speech for robust ASR system build-
ing.

2) The SER results on the IEMOCAP dataset reveal that, after
pretraining with large-scale unlabelled data, Prosody2Vec
can successfully capture prosody variations, which is
complementary to the widely used speech pretraining
models, such as Wav2Vec2 [21] and HuBERT. We surpass
the state-of-the-art method when combining Prosody2Vec
with HuBERT.

3) We conduct subjective and objective evaluations on
EVC tasks. The experimental results demonstrate that
Prosody2Vec can effectively convert a given emotional
reference into any speech utterance.

The rest of the article is organized as follows. Section II
reviews some related work on prosody disentanglement, SER
and EVC. Section III details the proposed Prosody2Vec architec-
ture. We introduce the used datasets, Prosody2Vec pretraining,
and evaluate our proposed method on SER, and EVC tasks in
Section IV. We conduct a series of ablation studies to deelp
understand the Prosody2Vec model in Section V. Some potential
applications, such as, zero-shot emotional, speaking, and singing
style transfer, are presented in Section VI. We conclude and
summarize the results of this article in Section VII.

II. EXISTING RESEARCH METHODS

In this section, we briefly review related work on prosody
disentanglement, speech emotion recognition, and emotional
voice conversion.

A. Prosody Disentanglement

Prosody disentanglement aims to decompose different acous-
tic or phonetic speech attributes, such as pitch, timbre, rhythm,
intonation, loudness, and tempo. Current approaches can be
mainly divided into three parts: (1) TTS-based style learning, (2)
information bottleneck [22], and (3) mutual information loss.

TTS-based methods force additional attribute encoders to
provide prosodic information when transforming text sequences
into speech signals. Skerry-Ryan et al. [23] integrate an encoder
module into the Tacotron [23] TTS system to capture meaningful
variations of prosody and successfully perform speaking style
transfer. Subsequently, Wang et al. [7] introduce “global style
tokens” to automatically discover expressive styles. In addition,
Variational Autoencoder (VAE) [18] and Vector-Quantize VAE
(VQ-VAE) [19] are adopted to learn continual and discretized
prosody representations from a reference audio respectively.

The basic idea of information bottleneck approaches is to
control the information flow by carefully designing appropriate
bottlenecks. AutoVC [20] adopts a properly tuned autoencoder
as the information bottleneck to force the model to disentangle
linguistic content and speaker identity with self-reconstruction.
SpeechFlow [8] extends the AutoVC model by constraining
the dimension of representations and adding randomly sampled
noise to blindly split content, pitch, timbre, and rhythm from
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speech. However, bottlenecks need to be carefully designed and
are sensitive to the dimension of latent space.

The use of mutual information loss is minimizing informa-
tion redundancy between different attributes. To allow more
precise control over different speech attributes, Kumar et al. [24]
formulate a modified Variational Auto-Encoder (VAE) loss
function to penalize the similarity between different attribute
representations. Weston et al. [25] introduce a self-supervised
contrastive model that adopts product quantization to disentan-
gle non-timbral prosodic information from raw audio.

Different from the aforementioned approach, in this article,
we aim to disentangle a global prosody representation from
speech instead of factorizing detailed attributes for controllable
or fine-grained speech synthesis. Different from speech syn-
thesis, emotion recognition, and conversion tasks rely more
on prosody representations that reflect the combined effect of
different prosodic attributes.

B. Speech Emotion Recognition

In this article, we only review the recent work on categorical
emotion classification. Advanced models and methods are pro-
posed to overcome the bottleneck caused by limited emotional
speech corpora. Lakomkin et al. [26] utilize fine-tuning meth-
ods and progressive networks [27] to transfer ASR representa-
tions to emotion classification. In addition, attention-enhanced
Connectionist Temporal Classification (CTC) [3] and attention
pooling [4] are utilized to dynamically weigh the contribution
of temporal changes in an utterance. Furthermore, different
multi-task architectures are designed to learn more generalized
features. For instance, building SER models with both discrete
and continual labels [28], integrating naturalness prediction as
an auxiliary task [29], and exploiting secondary emotion labels
by the perceptual evaluation of annotators after aggregating
them [30].

Inspired by the success of self-supervised pretraining in ASR
tasks, researchers directly utilize pretrained speech representa-
tions for SER, such as attempting different fine-tuning strate-
gies [31]. However, modern speech representation models focus
more on local variations or semantic information but rarely
take emotional or prosodic cues into account. In this article,
we propose to adopt unsupervised pretraining to capture global
prosodic information at an utterance level, which is complemen-
tary to the widely used speech representation models, such as
Wav2Vec2 and HuBERT.

C. Emotional Voice Conversion

The EVC task aims to convert a speaker’s speech from one
emotion to another while preserving semantic contents and
speaker identities. Typically, parallel data is required to perform
frame-to-frame mapping. Şişman et al. [32] utilize continuous
wavelet transforms to map source and target audios on the side of
F0, energy contour, and duration. Subsequently, deep belief net-
works and deep neural networks are used to build mel-cepstral
coefficients and F0 mappings respectively [5]. Frame-to-frame
methods assume the same utterance length between input and
generated speech. However, different emotions are conveyed

with various segments or syllable duration, and it is unreasonable
to restrict different emotional speech utterances to have the same
duration. In addition, collecting parallel emotional datasets is
expensive and time demanding.

To tackle the above issues, different models using nonpar-
allel data are thereby proposed. For instance, Cycle Genera-
tive Adversarial Networks (GANs) [33] and StarGANs [34]
are used to predict spectrum and prosody mappings. Besides,
Zhou et al. [35] propose a sequence-to-sequence framework, in
which TTS and SER tasks are jointly trained with EVC. Zhou
et al. [36] propose Emovox to control fine-grained emotional
intensity by integrating intensity and emotion classification into
EVC training. Inspired by the mechanism of speech produc-
tion, Luo et al. [37] design a source-filter network to learn
speaker-independent emotional features. Nonetheless, these sys-
tems usually rely on additional annotations, such as emotion
labels, text transcriptions, and speech intensities. Different from
the current EVC methods, we conduct EVC experiments with
unsupervised emotional speech reconstruction, which requires
neither paired speech nor additional labels.

III. PROSODY2VEC ARCHITECTURE

To leverage disentangled semantic content by the quantization
procedure in HuBERT, we propose Prosody2Vec, as shown in
Fig. 1, which consists of four crucial modules: a unit encoder,
a speaker encoder, a prosody encoder, and a decoder. We detail
each module in the following subsections.

A. Unit Encoder

As shown in Fig. 1, the unit encoder firstly extracts latent
representations from original speech signals with pretrained
HuBERT. Then, the k-means algorithm and deduplication pro-
cess are used for vector quantization and semantics refinement
respectively. The process of quantization and refinement can
effectively remove the speaker and prosody information from
the original speech, which is discussed in Section V. Lastly, a
Unit2Vec (U2V) module transforms the deduplicated discrete
units into latent space for model training. We detail the quanti-
zation and refinement procedures as follows.

1) Quantization: The backbone of the unit encoder is based
on the recent self-supervised model HuBERT which learns
speech representations by predicting masked parts, similar to
BERT [11]. HuBERT1 is pretrained on the LibriSpeech [38]
dataset with 960 hours data. We first extract dense representa-
tions at the frame level for each utterance from waveform signals.

We denote a sequence of waveform signals as x =
(x1, . . ., xT ), where T is the length of an audio waveform. The
audio sample x is transformed into a sequence of continuous
vectors by the pretrained HuBERT:

y = HuBERT (x) (1)

with y = (y1, . . ., yL), where L < T . The dense representation
y is often used for downstream tasks, e.g. ASR and SER.

1https://huggingface.co/facebook/hubert-base-ls960

https://huggingface.co/facebook/hubert-base-ls960
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Fig. 1. Architecture of Prosody2Vec. During training, the weights in U2V, prosody encoder, attention module and the decoder are updated, while the HuBERT
representations and the k-means algorithm in the unit encoder are performed beforehand, and the speaker encoder is frozen. The model receives two different
mel-spectrograms as inputs and aims to reconstruct a mel-spectrogram similar to the one fed into the unit encoder.

TABLE I
SPEECH UNITS FOR THE UTTERANCE OF “I’M DAMN GOOD AT MY JOB”,

WHERE VS IS SHORT FOR VOCABULARY SIZE

Different from previous work, we quantize continuous vec-
tors into discrete units to filter speaker information and refine
semantic content. The quantization procedure can be performed
by the k-means algorithm on the dense representations:

u = k-means(y) (2)

with u = (u1, . . ., uL) and ui ∈ {1, N}, where N is the number
of clusters. The dense representations embedded by HuBERT are
quantized into discrete units (cluster labels) u frame by frame,
e.g. “23, 23, 23, 2, 2,..., 57”.

2) Refinement: Subsequently, to refine the quantized se-
quences, we perform a refinement procedure since the adjacent
repetitions may carry duration and rhythm information. Specifi-
cally, we deduplicate the unit sequence u to ũ by merging and re-
moving repetitions, e.g. “23, 23, 23, 2, 2,..., 57”→ “23, 2,..., 57”,
which purifies the speech units and avoids the leak of prosody
information. As a consequence, Prosody2Vec can only capture
rhythm and duration information from the prosody encoder. We
hereafter use speech units to represent the deduplicated discrete
units and refer to N as vocabulary size. The purified speech
units are utilized to represent semantic content. Table I shows
the discrete speech units of a random utterance with a vocabulary
size of 50, 100, and 200 units.

TABLE II
CONFIGURATION OF U2V, ATTENTION AND DECODER OF PROSODY2VEC

3) Unit2Vec: The Unit2Vec (U2V) module maps the discrete
speech units to a continuous latent space with an embedding
layer, followed by three 1D-CNN layers and one bi-directional
Long Short-Term Memory (LSTM) layer. The detailed config-
urations are listed in Table II.

B. Speaker Encoder and Prosody Encoder

The speaker encoder is based on the ECAPA-TDNN [39]
speaker verification model [39], which is pretrained on the
VoxCeleb2 [40] dataset and achieves state-of-the-art results with
a 0.87% equal error rate. We show the ECAPA-TDNN [39]
details in Fig. 2, which begins with a Time Delay Neural Network
(TDNN) [41] layer, followed by three SE-Res2Blocks. Each SE-
Res2Block consists of 2 1D-CNN layers, a dilated Res2Net [42]
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Fig. 2. Architecture of ECAPA-TDNN, where SE is short for squeeze
excitation.

and a Squeeze-Excitation (SE) [43] block. Then a 1D-CNN com-
bines outputs from the three previous SE-Res2Blocks, followed
by attentive statistics pooling and a Fully Connected (FC) layer.
The dilation factors used in the first three SE-Res2Blocks are 2,
3, and 4 respectively. The channel size used in the above three
blocks is 1024 with a kernel size of 3.

The output vectors with 192 dimensions from the last FC layer
of a model pretrained on the Voxceleb2 dataset are used as the
speaker embeddings. In case the decoder directly learns prosodic
information from speaker embeddings, we input a different au-
dio belonging to the same speaker to the speaker encoder during
training. The HuBERT representations and k-means algorithm
in the unit encoder are performed beforehand. During training,
the weights in U2V, prosody encoder, attention module and
the decoder are updated, while the speaker encoder are frozen.
The dense representations of speech signals are extracted by
pretrained HuBERT beforehand and speech units quantized with
k-means are saved locally. We freeze the pretrained speaker
encoder to maintain the knowledge learned on the big Voxceleb2
dataset and ensure only speaker-related information is delivered.

The architecture of the prosody encoder is also based on
ECAPA-TDNN, which is the same as the speaker encoder, but
with random initialization. The weights of prosody encoder are
updated by minimizing the mean square error (MSE) between
the generated and original mel-spectrograms. The prosody en-
coder is fed with the same mel-spectrograms as the one used in
the unit encoder.

C. Decoder

Our decoder is similar to the one used in Tacotron2 [44].
The decoder reconstructs mel-spectrograms utilizing the out-
puts from the aforementioned three encoders. A location-aware
attention mechanism [45] is used to bridge the encoders and the
decoder. The decoder consists of one unidirectional LSTM layer
followed by one linear projection layer to map the intermediate
representations to the dimension of the mel-scale filter bank.

TABLE III
OVERVIEW OF ALL CORPORA USED IN THIS PAPER. SPK: SPEAKERS. UTT:

UTTERANCES

In addition, two FC layers (PreNet) are used to embed the
ground-truth mel-spectrograms into a latent space.

Table II shows the configuration of U2V, attention module,
and decoder. More details about the location-aware attention
mechanism can be found in the approach by Chorowski et al. [45]
and LipSound2 [46].

IV. EXPERIMENTS

In this section, we describe the setup and datasets used for
the pretraining Prosody2Vec. We conduct comprehensive as-
sessments and report results for SER and EVC experiments.

A. Datasets

We use spontaneous and emotional speech datasets, i.e.
LRS3-TED [47], MSP-PODCAST [48], MSP-IMPROV [49]
and, OMG [50] datasets, to pretrain the proposed model, then
fine-tune it on IEMOCAP [51] and ESD [52] datasets to perform
SER and EVC experiments respectively. The statistics of all
datasets used in this article are shown in Table III.
� LRS3-TED [47]: an audio-visual dataset collected from

TED and TEDx talks with spontaneous speech and various
speaking styles and emotions. It is comprised of over 400
hours of video by more than 5000 speakers and contains
an extensive vocabulary.

� MSP-PODCAST [48]: a large real-scenario dataset in-
cluding extensive emotional speech from podcast record-
ings. It contains speech about various topics, such as
movies, politics, and sports.

� MSP-IMPROV [49]: a multimodal dataset recorded in
spontaneous dyadic interactions in which the emotions are
evoked by an elicitation scheme.

� OMG [50]: an audio-visual dataset collected from
YouTube with restricted keywords, for instance, “mono-
logue”. The dataset allows the exploration of the long-term
emotional behavior categorization by using contextual in-
formation.

� IEMOCAP [51]: a multimodal dataset recorded with
elicited emotions by 10 actors in a fictitious scenario. The
dataset provides audio and visual modalities, and motion
information on the head, face, and hands during commu-
nication.

� ESD [52]: an audio dataset with parallel emotional speech,
in which actors are required to act 5 different emotions with
the same text content.
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B. Prosody2Vec Pretraining

We merge the LRS3-TED, MSP-PODCAST, MSP-IMPROV,
and OMG datasets for pretraining. 500 randomly selected sam-
ples from the above datasets are utilized for validation. We
augment training data by perturbing speed with the factors of
0.9, 1.0, and 1.1. Furthermore, SpecAugment [53] with two
frequency masks (maximum width of 50) is utilized on the fly
during training. In addition, gradient clipping with a threshold
of 1.0, early stopping, and scheduled sampling [54] are adopted
to avoid overfitting. The Prosody2Vec model is pretrained with
a batch size of 30 and 3000 warm-up steps. We use the Adam
optimizer [55] and the cosine Learning Rate (LR) decay strategy
with an initial value of 1e-3. The experiments are conducted
on two 32 G memory NVIDIA Tesla V100 GPUs in parallel.
We pretrain three models with a vocabulary size of 50, 100,
and 200 units to explore the effect of quantization. The en-
tire pretraining procedure takes around three weeks for each
model.

We extract the magnitude using the Short Time Fourier Trans-
form (STFT) with 1024 frequency bins and a 64 ms window size
with a 16 ms stride. The mel-scale spectrograms are obtained
by applying an 80-channel mel filter bank to the magnitude.
The model is optimized with Mean Squared Error (MSE) loss
to minimize the distance between the generated and original
mel-spectrograms.

C. Experiments of Speech Emotion Recognition

1) Experimental Setups: The SER experiments are con-
ducted on the widely used IEMOCAP dataset. We merge
“happy” and “excited” into the category of “happy” to balance
each class. Finally, 5531 utterances are used for training and
testing, which include four emotions, i.e. angry, sad, happy,
and neutral. The dataset is comprised of five sessions with two
speakers in each session. We conduct SER experiments with the
following two settings to provide a comprehensive comparison
with previous work [56]:
� Leave-one-session-out is performed with 5-fold cross-

validation. In each round, one session is used for testing
and another random session is used as a validation set. The
remaining three sessions are treated as the training set.

� Leave-one-speaker-out means using one speaker for test-
ing in one session and the other speaker in the same
session is utilized for validation. Therefore, 10-fold cross-
validation is performed.

We fine-tune the pretrained prosody encoder with one addi-
tional FC layer to perform emotion classification, in which LRs
of 1e-4 and 5e-4 are used for the pretrained prosody encoder
and for the last FC layer respectively. The fusion experiments
are conducted by concatenating the representations generated by
the prosody encoder with the outputs of Wav2Vec2 or HuBERT.
Then the concatenated vectors are fed into one FC layer for
classification.

2) Evaluation Metrics: We utilize the following two metrics
to assess the Prosody2Vec performance on SER tasks.

� Weighted Accuracy (WA): the accuracy of all utterances
in the test set.

WA =

∑M
i=1 Ui

N
(3)

� Unweighted Accuracy (UA): the average accuracy of each
emotion class.

UA =

∑M
i=1 Ui/Ti

M
(4)

where M and N represent the number of emotion classes
and the total number of utterances in the test set respec-
tively. Ui denotes the number of utterances with a correct
prediction of the emotion class i and Ti is the total number
of utterances of emotion class i.

3) Experimental Results of Speech Emotion Recognition:
We compare the performance of using only acoustic FBANK
features, only our pretrained Prosody2Vec, and only pretrained
speech representation models, i.e. Wav2Vec2 and HuBERT,
where the base and large models are trained on 960 h LibriSpeech
and 60kh Libri-light [57] respectively. In addition, we also
report the results of combining Prosody2Vec with Wav2Vec2
or HuBERT. As shown in Table IV, Prosody2Vec surpasses
the baseline model using FBANK features but is not as good
as Wav2Vec2 or HuBERT. One reason is that Wav2Vec2 and
HuBERT are trained with larger datasets, 960 h or 60kh, whereas
our model is trained on only 460 h of speech data. Another po-
tential reason is that the representations captured by the prosody
encoder are more related to prosodic variations. In comparison to
prosody information, semantic content learned by Wav2Vec2 or
HuBERT is important for emotion recognition as well, which
is also found in psychology [58]. Further improvement can
be obtained when combining Prosody2Vec with Wav2Vec2 or
HuBERT. Moreover, it seems that a bigger vocabulary size
equals better performance. Hence, we only report the results
of vocabulary size 200 in the rest of the article.

We compare our model performance with supervised meth-
ods, i.e. CNN-ELM+STC attention, Auido25 [59], co-attention-
based fusion [60], IS09-classification [61], TCN+self-attention
w/AT [62] and self-supervised methods, i.e. Wav2Vec [63],
modified-CPC [64], DeCoAR [65], Data2Vec [66] and
WavLM [10]. We present the leave-one-session-out results in
Table V. Prosody2Vec achieves competitive results with some
supervised models and is superior to the state-of-the-art model
Wav2LM when fused with HuBERT-Large, since Prosody2Vec
captures more efficient long-term variances on prosody.

For a fair comparison, we retrain SpeechFlow [8] and Speech-
Split2.0 [67] on the datasets used for Prosody2Vec pretraining.
We then fine-tune the rhythm and pitch encoders for SER tasks.
As shown in Table. V, the results using the disentangled prosody
representations from SpeechFlow and SpeechSplit2.0 are not
good as Prosody2Vec, since only rhythm and pitch information
are decoupled.

As shown in Table VI, we compare our model with previous
supervised and self-supervised work using leave-one-speaker-
out settings. The self-supervised models (Wav2Vec 2.0 and
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TABLE IV
WEIGHTED ACCURACY (WA↑) OF SPEECH EMOTION RECOGNITION WITH LEAVE-ONE-SESSION-OUT SETTINGS

TABLE V
RESULTS OF SER ON THE IEMOCAP DATASET WITH 5-FOLD

CROSS-VALIDATION AND LEAVE-ONE-SESSION-OUT SETTINGS

TABLE VI
RESULTS OF SER ON THE IEMOCAP DATASET WITH 10-FOLD

CROSS-VALIDATION AND LEAVE-ONE-SPEAKER-OUT SETTINGS

HuBERT large) are first pretrained on a 60 k hours speech
dataset, then perform SER on IEMOCAP by partially fine-tuned.
The results of WA and UA further verify that Prosody2Vec is
complementary and beneficial for the performance in widely
used speech pretraining models.

D. Experiments of Emotional Voice Conversion

1) Experimental Setups: We follow the setups used in
Emovox [36] and conduct emotion conversion with the follow-
ing three conditions, neutral to angry, neutral to happy, and
neutral to sad. The official split of the dataset is utilized. It
is worth noting that, in contrast to previous work that trains
the model only on one male speaker (003), e.g. Emovox, we
perform multi-speaker EVC in one model. After fine-tuning on
the ESD dataset with a fixed LR of 1e-5, emotion conversion can
be performed by directly replacing the input audio with expected
emotions for the prosody encoder.

2) Evaluation Metrics: The Mean Opinion Score (MOS) is
utilized to subjectively evaluate the similarity between the gener-
ated and original audio. In addition, we use two objective metrics
to measure the converted speech quality, i.e. Mel-cepstral distor-
tion (MCD) and Root Mean Squared Error for F0 (F0-RMSE).
� sMOS is similarity MOS that is a subjective metric evalu-

ated by the human auditory sense. For a fair comparison,
the audio selection is according to the samples provided by
Emovox.2 The sMOS results are evaluated by 14 subjects
consisting of 6 females and 8 males with ages ranging
from 23 to 34 years. During testing, all 14 subjects are
assigned to listen to the original audio first, followed again
by the original or a generated one. Then the subjects rate
the emotional similarity of the two audios with an opinion
score in the range of −2 to +2 (−2: absolutely different,
−1: different, 0: cannot tell, +1: similar, +2: absolutely
similar).

� nMOS is naturalness MOS which is judged on a scale of
1 (bad) to 5 (excellent).

� MCD is adopted to quantify the distortion between two
mel-scale cepstral features objectively, and smaller values
equal better performance.

MCD = (10/ ln 10)

√
2
∑24

i=1
(M t

i −M c
i )

2 (5)

where M t
i is the mel-cepstral of target emotion and M c

i is
the mel-cepstral of converted audio by Prosody2Vec.

� F0-RMSE is utilized to evaluate the distortion of frequency
contour objectively.

F0-RMSE =

√
1

n

∑N

i=1
(F t

i − F c
i )

2 (6)

2https://kunzhou9646.github.io/Emovox_demo/

https://kunzhou9646.github.io/Emovox_demo/
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Fig. 3. Subjective evaluation on emotion similarity, where X is the original audio or the audio generated by the EVC models listed in the x-axis.

TABLE VII
OBJECTIVE EVALUATION OF EMOTIONAL VOICE CONVERSION WITH THE METRIC OF MCD AND F0-RMSE

Fig. 4. Subjective evaluation on target and generated audio naturalness.

where F t
i and F t

c represent the F0 of target emotions
and converted audio respectively. It is worth noting that
we calculate the F0 values of the entire utterance, which
includes both voiced and unvoiced regions since unvoiced
segments can convey emotions as well.

3) Subjective Results of EVC: We compare our method with
four baseline models, i.e. CycleGAN-EVC [33], StarGAN-
EVC [34], Seq2Seq-EVC [35], and Emovox. Fig. 3 shows the
results of sMOS regarding emotion similarity. The subjects can
obviously discriminate the original emotional speech and neutral
emotion with a minus score of around −1, as shown in the first
bar in each subfigure. In addition, it is also easy to recognize the
original emotional pairs with a score of around 2, as shown in
the last bars. Moreover, Prosody2Vec obtains higher scores than
baselines, which reveals that our method can smoothly transfer
emotional prosody into source audio. In addition, the naturalness
of generated audio by different methods is reported in Fig. 4.
Our method achieves competitive naturalness compared with
previous work. However, it is still not so good as the target
audio.

To further assess the model performance, we also ask the
subjects to recognize the emotion type from a given set (neural,
happy, sad, and angry) during subjective testing. Fig. 5 presents
the confusion matrices for each method, the darker the color, the

higher the accuracy. Prosody2Vec outperforms the four baseline
models with a higher accuracy in all three conversion cases.

4) Objective Results of EVC: As shown in Table VII,
Emovox achieves the best results in both metrics. Prosody2Vec
performs slightly worse than Emovox. By comparing the con-
verted audio with the target audio, we found that the audio
generated by our model sounds more emotional and more ex-
pressive with different intonations or stresses. Most importantly,
the rhythm and syllable duration are changed significantly. The
phenomenon can be observed in the Fig. 5, where the dura-
tion of generated audio is obviously shorter than the original
one. However, both MCD and F0-RMSE metrics are calculated
frame-by-frame, the changes on duration have an important
influence on the results, which leads to a slightly worse objective
result by our method.

We visualize one sample for each emotion class with mel-
spectrograms and F0 contours, where we transfer the expected
emotional prosody from the reference prosody, as shown in
Fig. 6. Our method generates rich variations in formants and
F0 contours in comparison to the baselines.

V. ABLATION STUDY

In this section, we conduct a series of ablation studies to
deeply understand the model architecture.

A. Ablation Study on Speech Units

We conduct ablation studies to verify the effectiveness of
the deduplication process on prosody information filter with a
vocabulary size of 200 units. Specifically, we train several mod-
els based on the ECAPA-TDNN architecture but with different
input features. The models are evaluated on the speech emotion
recognition task.

As shown in Table VIII, the model trained with audio in-
puts achieves better performance than the one trained with the
text modality, since audio modality contains not only semantic
content but also prosody information that is crucial for emotion
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Fig. 5. Confusion matrices of human recognition on the converted audio by different methods. X-axis: classified labels. Y-axis: actual labels.

Fig. 6. Comparison of Mel-spectrograms and F0 contours generated by different methods for angry, happy and sad emotion conversion. Red dotted ellipses
highlight F0 changes to showcase the similarity between the mel-spectrograms generated by our method and the ground truth.

TABLE VIII
COMPARISON OF SER RESULTS USING DIFFERENT INPUTS

recognition. The “Duplicated Units” and “Deduplicated Units”
represent the unit sequence with and without repetitions respec-
tively. The model trained with duplicated units obtains higher
WA than using text. However, the deduplication units after

removing repetitions achieve similar results to the one using text
(45.8% VS 46.2%), which reveals that the deduplication process
can effectively eliminate prosodic information from speech.

B. Ablation Study on U2V

We conduct ablation studies to examine the effect of BiLSTM
in the U2V module. Model performance is evaluated on the
SER task by adding one additional FC layer on top of the
prosody encoder for classification. For a fair comparison, only
the weights in the FC layer are updated while the prosody
encoders are frozen. As shown in Table IX, the WA grows with
the dimension of the BiLSTM layer. We finally choose 256
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TABLE IX
ABLATION STUDY OF THE U2V MODULE ON SER EXPERIMENTS

TABLE X
SEMANTICS PROBING ON THE UNIT AND PROSODY ENCODER INPUTS

dimensions for BiLSTM to trade off the model performance
and computational costs.

C. Ablation Study on Prosody Encoder

To examine to what extent the semantics and speaker infor-
mation leak from the prosody encoder, we conduct semantics
and speaker probing experiments.

1) Semantics Probing: The semantics probing experiments
are conducted on the RAVDESS [74] dataset which is an
emotional speech dataset recorded by 24 actors and contains
1440 utterances. RAVDESS consists of two kinds of semantic
contents, i.e. A-“Kids are talking by the door” and B-“Dogs
are sitting by the door”.

We first generate speech samples by controlling the inputs of
the unit and prosody encoders with different combinations, for
example, AB means feeding utterances with semantics A into the
unit encoder of a pretrained Prosody2Vec model while feeding
inputs B into the prosody encoder. We then use the Whisper [75]
ASR system to transcribe the generated speech signals into text
transcriptions. Finally, The sentence-level accuracy of being
recognized as A, B, or X is calculated. X is neither A nor B,
which is caused by word errors in the results of the Whisper
system.

As shown in Table X, the transcribed texts are consistent
with the prosody encoder input with high accuracy (98.8% and
99.2%), which suggests that the semantics of the generated
speech is controlled by the unit encoder and no linguistic content
is leaked from the prosody encoder.

2) Speaker Probing: We found that the decoder may learn
speaker information from the prosody encoder even if speaker
embeddings are provided. Therefore, we force the prosody en-
coder to learn only prosody-related information by constraining
the dimension of prosody representations. We train Prosody2Vec
with different dimensions of the prosody and the unit encoder,
as shown in Table XI. We conduct speaker verification and
SER experiments to examine the residual speaker information
in prosody and unit representations.
� Speaker Verification. Speaker verification is conducted on

the LibriSpeech subset train-clean-100 [38] which
is randomly split into training and testing sets with the ratio
of 9 : 1 from 251 speakers. The prosody encoder is frozen

TABLE XI
ABLATION STUDY ON THE DIMENSION OF PROSODY AND UNIT

REPRESENTATIONS

and one FC layer is added on top of it to perform classi-
fication and maintain the learned prosodic knowledge. As
shown in Table XI, when the dimension of prosody repre-
sentation is set to 64, we obtain the lowest speaker verifi-
cation accuracy (28.0%). However, the accuracy increases
to 66.7% when the dimension grows to 320, which reveals
that constraining the dimension of prosody representations
can effectively mitigate speaker information leak from the
prosody encoder. In comparison, the vector dimension has
a minor impact on the unit encoder.

� Speech Emotion Recognition. In addition, we also exam-
ine the effect of unit and prosody dimensions on emotion
recognition. The SER experiments are conducted with the
leave-one-session settings on the IEMOCAP dataset. Sim-
ilar to the speaker verification experiments, one additional
FC layer is added on top of the frozen prosody encoder. As
shown in Table XI, the WA goes up and then down as the di-
mension of prosody representations increases. The speaker
verification experiments reveal that high dimensions cause
speaker information leaks, which leads to the poor gener-
alization of prosody representations and degrades the SER
performance. As the unit dimension increases, the SER
accuracy also experiences a slight rise. We finally report
the SER and EVC results with 192-dimensional prosody
and 256-dimensional unit representations respectively in
Section IV. EXPERIMENT to trade-off the performance
of SER and speaker verification.

D. Embedding Visualization

To further straightforwardly understand Prosody2Vec, we
visualize the prosody, speaker, and unit embeddings learned
by the three encoders with t-SNE [76]. We choose the au-
dio samples in the first session of IEMOCAP uttered by two
speakers with 4 emotions, i.e. angry, happy, sad, and neural.
The sentence-level unit embeddings are obtained by averaging
on the time domain. It is noteworthy that all embeddings are
extracted with the pretrained Prosody2Vec without fine-tuning
on the IEMOCAP dataset. As we can observe in Fig. 7, we
color the embeddings in the emotion and speaker dimensions
to explore their representation ability on emotion and speaker
classifications.

For a fair comparison, the representations presented in Fig. 7
come from the pretrained Prosody2Vec which is not fine-tuned
on emotional datasets, since the unit and speaker encoders will
not be fine-tuned on downstream tasks. This is the reason why
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Fig. 7. Visualization of prosody, speaker, and unit embeddings from pretrained models colored with 4 emotion labels and 2 speaker labels on the IEMOCAP
dataset.

Fig. 8. Comparison of pretrained and fine-tuned embeddings colored with 4 emotions on the IEMOCAP dataset.

Fig. 7 does not show separated clusters on the emotion domains.
We found the same phenomenon in the HuBERT model. As
shown in Fig. 8, the first row is the visualization of the represen-
tations from the pretrained models, and the second row shows
the model outputs after fine-tuning on emotion classification
tasks. We can conclude that although the representations ex-
tracted from the pretrained models cannot distinguish emotions,
they demonstrate great potential when fine-tuning on domain-
specific datasets. Moreover, the visualizations also reveal that
Prosody2Vec synergistically integrates with the semantic repre-
sentation model HuBERT. This harmonious integration results
in a noticeably enhanced performance.

Furthermore, to facilitate an intuitive comparison, we employ
Principal Component Analysis (PCA) to reduce the frame-level
HuBERT representations (1024 dimensions) and the outputs
from the attentive pooling layer in Prosody2Vec (3072 dimen-
sions) into a single dimension, as shown in Fig. 9. The audio

Fig. 9. Visualization of HuBERT and Prosody2Vec representations after di-
mension reduction with PCA in the time domain, where sp is short for short
pause. The red dotted ellipses highlight different activation.
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Fig. 10. Overview of five generation tasks presented in this article when changing the inputs of the prosody encoder and the unit encoder.

sample is spoken with breath and laughter, conveying a sense
of happy emotion. Compared with HuBERT, Prosody2Vec can
better represent the timing information, such as short pauses
between words and the durations of segments. In addition,
Prosody2Vec has a different activation on non-verbal areas, for
instance breath and laughter (highlighted with red circles).

VI. POTENTIAL APPLICATIONS AND DISCUSSION

We have shown that our proposed Prosody2Vec can cap-
ture utterance-level prosody information, which significantly
boosts the performance of SER and EVC tasks. As shown in
Fig. 10, we discuss some potential applications of our model on
cross-lingual EVC and speaking, emotional, and singing style
transfer. Cross-lingual EVC transfers an emotional style from a
different language to the source language. Singing style transfer
refers to transforming speaking prosody into a given melody.
Speaking style transfer intends to change prosodic attributes,
for instance, stress position and intensity level in the generated
audio, while keeping the emotion type unchanged. Emotional
style transfer aims to convert one emotion to a different one,
for example, angry to happy. We only present cross-lingual
EVC and singing style transfer in this section. Speaking and
emotional style transfer are discussed in Appendix A and B
respectively. It is worth noting that all potential applications are
conducted without any fine-tuning with task-related datasets.
Lastly, we conclude by discussing the benefits and limitations
of Prosody2Vec.

A. Cross-Lingual Emotional Voice Conversion

We found that Prosody2Vec can perform zero-shot cross-
lingual emotional style transfer. As shown in Fig. 11, we convert
an English neutral utterance into another emotion (angry) by
transferring the prosodic information from a German reference.
We only use English data for pretraining and the model never
sees any German speech.

Compared to the original English neutral audio, the given
German reference is uttered with a relatively fast tempo. As
we can see in the second picture of Fig. 11, Prosody2Vec
successfully transfers the tight rhythm in an unseen German
reference into the English utterance but keeps semantic content
invariant. The middle short pause in the original audio is even
removed to perform a rapid tempo.

B. Singing Style Transfer

We visualize the pitch with Parselmouth3 in each mel-
spectrogram since the spoken intonation and the musical

3https://parselmouth.readthedocs.io/en/stable/

Fig. 11. Cross-lingual emotional voice conversion (German to English). For
a convenient comparison on rhythm and tempo, we pad short sequences to the
length of the original audio.

melody are highly related to pitch variance. From Fig. 12
we can see when feeding a singing voice to the prosody en-
coder, Prosody2Vec can successfully transfer the melody in
the given reference into the source utterance, which suggests
that Prosody2Vec can be used for music synthesis or style
conversion.

C. Discussion

The style transfer tasks shown above further reveal that our
proposed model successfully disentangles prosodic information
which is independent of semantic content and robust to unseen
styles and languages. We highly recommend listening to the
audio samples on our demo website.4

However, we found that the speech quality for emotion con-
version is damaged sometimes. For example, the distortions
around 2000 Hz in the second picture of Fig. 12. The generated
distortions will have a noticeable effect during listening. This
is mainly because, during training, the model always receives
inputs belonging to the same speaker. It is difficult for the model
to only focus on prosodic information when directly replacing
the prosody encoder input with a different speaker since the
model has never seen such combinations during training.

4https://leyuanqu.github.io/Prosody2Vec

https://parselmouth.readthedocs.io/en/stable/
https://leyuanqu.github.io/Prosody2Vec
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Fig. 12. Transferring the melody from a singing voice to a spoken utterance,
where pitch is marked in white color.

Moreover, a surprising finding is that when we randomly
replace a few unit values with random numbers or remove a
few k-means clustering units in the input sequences, the quality
or semantics of the generated audio are only slightly influenced,
which reveals that the discrete units are very robust compared
to the text sequences transcribed by ASR systems. Hence, it
is worth further exploring our system under more challenging
conditions, such as speech with noise or reverberation.

VII. CONCLUSION AND FUTURE WORK

In this article, we propose Prosody2Vec to learn emotional
prosody representations from speech, which consists of three
encoders: a unit encoder to transform speech signals into discrete
units, a speaker encoder to provide speaker identity information,
a prosody encoder to extract utterance-level representations, and
a TTS-based decoder to reconstruct mel-spectrograms by relying
on the aforementioned three information flows. Only the weights
of the prosody encoder and the decoder are trainable in order to
force the prosody encoder to capture prosodic changes when
minimizing the distance between generated and original speech
signals. Prosody2Vec relies neither on paired audio nor on any
emotion or prosody labels. The experimental results on SER
and EVC reveal that the Prosody2Vec structure learns efficient
prosodic features which achieve considerable improvements
compared to the state-of-the-art models for emotion classifica-
tion and emotion transfer.

The current model is trained only for English which is a
non-tonal language. It is worth verifying our methods on some

Fig. 13. Speaking style transfer for the utterance of “You know, it’s a pity
you didn’t have any more brandy. It would have made you just a little less
disagreeable”.

tonal languages, e.g. Mandarin and Thai. Furthermore, since
emotional expressions are highly influenced by languages and
cultures, it would be interesting to investigate the prosodic
patterns and mechanisms across languages. One major reason
limiting the performance of modern SER systems is the lack
of large-scale and high-quality emotional corpora. Augmenting
emotional speech data using Prosody2Vec with EVC would be
a promising approach.

APPENDIX

In addition to cross-lingual EVC and sing style transfer, we
show more applications of Prosody2Vec in the Appendix.

A. Speaking Style Transfer

When feeding a reference with a given emotion type into the
prosody encoder, we found that the model generates emotional
audio with different stress positions or intonations. In addition,
a different emotional intensity can arise through conversion. We
compare the original and generated mel-spectrograms in Fig. 13,
in which some differences on stress to demonstrate the trans-
ferred styles are highlighted with red boxes. This application can
be used to augment emotional speech to mitigate class imbalance
and data scarcity problems in the SER task.

B. Emotional Style Transfer

Inspired by the fact that humans can easily manipulate emo-
tion expressions while not altering the semantic content [77],
here we show that emotion expressions are independent of
semantics from a signal processing perspective. As shown in
Fig. 14, the original utterance “Why is this egg not broken?”
is uttered with angry emotion. We can smoothly convert the
source audio to happy or sad emotions while retaining semantic
information.
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Fig. 14. Samples of converting angry emotion to happy and sad ones.
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