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Abstract. Over the last few years, we have not seen any major develop-
ments in model-free or model-based learning methods that would make
one obsolete relative to the other. In most cases, the used technique is
heavily dependent on the use case scenario or other attributes, e.g. the
environment. Both approaches have their own advantages, for example,
sample efficiency or computational efficiency. However, when combining
the two, the advantages of each can be combined and hence achieve better
performance. The TD-MPC framework is an example of this approach.
On the one hand, a world model in combination with model predictive
control is used to get a good initial estimate of the value function. On the
other hand, a Q function is used to provide a good long-term estimate.
Similar to algorithms like MuZero a latent state representation is used,
where only task-relevant information is encoded to reduce the complex-
ity. In this paper, we propose the use of a reconstruction function within
the TD-MPC framework, so that the agent can reconstruct the original
observation given the internal state representation. This allows our agent
to have a more stable learning signal during training and also improves
sample efficiency. Our proposed addition of another loss term leads to
improved performance on both state- and image-based tasks from the
DeepMind-Control suite.

Keywords: reinforcement learning · model predictive control · Q-Learning
· TD-MPC framework · reconstruction function.

1 Introduction

In the domain of Reinforcement Learning (RL), there are two main categories of
approaches, namely the model-free and model-based learning methods. Model-
free methods are concerned with learning the quality of specific states or pairs
of state and action, whereas model-based methods learn a model of the envi-
ronments dynamics. While model-free approaches evaluate the possible actions
and next states at each time step, model-based methods use a process called
planning. With the help of the world model, the actor can simulate a sequence
of actions by mimicking the real environment and hence create and evaluate
different plans. However, planning is often restrained to short horizons because
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extensive planning is not feasible due to the model becoming less and less accu-
rate the more actions we simulate.

Inherently, both model-free and model-based approaches have their own
strengths and weaknesses, prompting the question of whether the two methods
can be combined to create one framework that leverages the benefits of both.
Although research in this area is still in its early stages, there have already
been encouraging findings indicating an increased performance for these hybrid
learning approaches [14,18,15,6,4,5]. The recently proposed Temporal Difference
Learning for Model Predictive Control (TD-MPC)[9] framework, for example,
demonstrated that the combination of model-free and model-based methods can
combine the advantages of both methods and is able to achieve superior sample
efficiency as well as improved performance when compared to other state-of-the-
art algorithms such as Soft Actor-Critic (SAC)[3] or LOOP [15] on a variety of
tasks. It utilizes a combination of Model Predictive Control (MPC) for short-
horizon planning and a Q-value function for long-term reward estimates. Similar
to other state-of-the-art algorithms like MuZero [14], Dreamer [6] or EfficientZero
[18], latent representations of the environment states are extensively used during
training to provide the agent with an abstract representation and thus reduce
the complexity and focus on task-relevant details.

In this paper, we propose the use of an additional loss term for the training of
the Task-Oriented Latent Dynamics (TOLD)[9] model, which supplements the
already implemented consistency loss. The additional term is calculated with the
help of the reconstruction function, which aims to reconstruct the original obser-
vation from the latent space representation. While the latent space is designed
to omit irrelevant details from the observations, the reconstruction function on
the other hand is used to restore the original observation. The use of a recon-
struction function has already proven to be performance-enhancing in various
other algorithms like PlaNet [7], Dreamer [6], Dreamer-v2 [8] or a modified ver-
sion of MuZero [13]. Similar to the rest of the TOLD model, the parameters of
the reconstruction function are learnt jointly with the representation, dynam-
ics, reward and value functions using Temporal Difference (TD) learning. By
complementing the consistency loss with a reconstruction loss, the aim is to sta-
bilize the learning process of the agent through an enhanced learning signal. We
seek to answer the question of how our version of TD-MPC with Self-supervised
Representation Learning (SRL) compares to the original implementation of the
framework. An implementation of the adopted TD-MPC framework can be found
at https://github.com/Jonas-SM/TD-MPC-SRL/.

2 Background

2.1 Formal Definition

We define an infinite-horizon Markov-Decission Process (MDP) characterized
by the tuple (S,A, T,R, γ, p0) to model the agent-environment interaction. The
set of possible states and actions in the environment are defined as S and A
respectively, where S ∈ Rn and A ∈ Rm are continuous state and action spaces.

https://github.com/Jonas-SM/TD-MPC-SRL/
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The dynamics of the environment can be defined through the transition func-
tion T : S × A × S 7→ [0, 1]. It determines the probability of reaching state
s′ when taking action a in state s. Similarly, we define our reward function as
R : S × A 7→ R. Hence this function maps every pair of state and action to a
scalar value which represents the immediate feedback an agent receives after tak-
ing an action. Additionally, γ : γ ∈ [0, 1) is a discount factor and p0 denotes the
initial state distribution of the environment, which specifies the probability dis-
tribution of the agent starting in each possible state. This tuple constitutes the
complete MDP and serves as the formal framework for the TD-MPC algorithm.
Another essential component of an RL agent is the policy π : S 7→ A, which is a
mapping from states to actions that is iteratively updated throughout training.
At every timestep, this policy determines which action the agent executes and
thus defines the agent’s behaviour. Over the course of training, we aim to learn
a parameterized mapping πθ, such that the agent achieves a maximum reward.

2.2 TOLD model

The purpose of the TOLD model is to provide the agent with an abstract model
of the world, that excludes all information irrelevant to the task [9]. We will
also often refer to this abstract representation of the world as the latent space.
Additionally, as a result of removing unnecessary details and, thus in most cases,
significantly simplifying the environment’s complexity, the training process will
also become less complicated for the agent [2]. With the help of the models’
different components, a number of quantities can be predicted that steer the
learning process. The model itself consists of five components [9]:

1. Representation function: zt = hθ(st), simple encoder that encodes an
observation st into its respective latent state zt.

2. Dynamics function: zt+1 = dθ(zt, at), model of the world used to predict
the subsequent latent state zt+1.

3. Reward function: r̂t = Rθ(zt, at), predicts the expected reward r̂t for a
latent state zt and action at.

4. Value function: q̂t = Qθ(zt, at), calculates an estimate of the expected
return q̂t given latent state zt and action at.

5. Policy function: ât = πθ(zt), predicts the best action ât to take for a given
latent state zt.

All components are implemented using purely deterministic Multilayer Per-
ceptrons (MLPs) and θ denotes the current parameterization of the TOLD model
[9]. Similar to other approaches like the MuZero algorithm [14] that also utilizes
both a model of the world and a value function, TD-MPC learns a policy πθ
additional to the model of the environment [9]. This policy is involved in the
evaluation of the TOLD model, as well as the planning process of the agent to
generate sample trajectories. In addition to the regular TOLD model, TD-MPC
utilizes a target network, which is essentially a regular copy of the TOLD model,
whose parameters θ− are a slow-moving average of θ [9]. The use of a target net-
work can help with preventing the learning process from becoming unstable and
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is used in many Deep-Q RL algorithms such as Deep Q-learning [11], TD3 [1]
and DDPG [10]. As it is a slow-moving average of θ it is also updated at the
same time according to the following rule with ζ ∈ [0, 1) being a constant [9]:

θ−t+1 = (1− ζ)θ−t + ζθt. (1)

During training, the TOLD model is updated by minimizing the loss

J (θ) =

t+H∑
i=t

λi−tL(θ;Γi), (2)

where J defines the total loss computed as the sum of the single-step loss L(θ;Γi)
and a discount factor λ, which controls the influence of predictions far in the
future [9]. Γ ∼ B defines a trajectory sampled from the replay buffer B, and the
single-step loss L(θ;Γi) is defined as [9]:

L(θ;Γi) = c1l
r
i + c2l

v
i + c3l

c
i , (3)

where lri , l
v
i , l

c
i are the reward loss, value loss and consistency loss, respectively

and defined as in [9]:

lri = ||Rθ(zi, ai)− ri||22. (4)

lvi = ||Qθ(zi, ai)− (ri + γQθ−(zi+1, πθ(zi+1)))||22. (5)

lci = ||dθ(zi, ai)− hθ−(si+1)||22. (6)

The single-step loss is then used to jointly optimize the reward, value, and
dynamics functions with coefficients c1, c2 and c3 balancing the weight of the 3
terms [9]. During training, prioritized experience replay [12] is used to store all
experiences (st, at, rt, st+1) of the agent in a replay buffer, so that they can be
used to train the TOLD model [9]. Using the collected experiences, the TOLD
model is iteratively updated throughout training to improve the predictions
made by the value, reward, dynamics and policy functions. Given a sample tra-
jectory Γ ∼ B from the replay buffer B of length H, we start at observation st
and consider this as the starting point. At first, st is encoded into latent state
zt using hθ. Next, using the dynamics function dθ, an H time steps are unrolled
by predicting the next latent state given the previous latent state and action.
At each time step, the TOLD model predicts (r̂t, q̂t, ât), and the single-step loss
L(θ;Γt) is calculated using Equation 3. At the end, the total loss J is computed
by summing the single-step losses over the H time steps as indicated by Equa-
tion 2, which is then used to perform one update of the model parameters. Then,
the policy πθ is updated by minimizing the objective

Jπ(θ;Γi) = −
t+H∑
i=t

λi−tQθ(zi, πθ(zi)), (7)

which is a time-weighted summation of the policy objective widely used in actor-
critic methods [3,10].
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2.3 Planning

During planning, the TD-MPC framework makes use of a slightly adopted ver-
sion of Model Predictive Path Integral (MPPI)[17] control, which is a sampling-
based model predictive control algorithm. We introduce (µ0, σ0)t:t+H , µ0, σ0 ∈
Rm, A ∈ Rm, which defines parameters for a normal distribution N used to
sample trajectories for planning [9]. Besides the trajectories sampled from the
normal distribution, a small number of trajectories are included generated by the
learned policy πθ. Using the dynamics function dθ, all the sampled trajectories
are unrolled and evaluated by estimating the total return as follows:

GΓ = E

[
γHQθ(zH , aH) +

H−1∑
t=0

γtRθ(zt, at)

]
. (8)

The terminal Q-function Qθ(zH , aH) provides an estimation of the return
beyond the planning horizon H which supplements the short-term estimation
provided by the reward function Rθ. Selecting only the best k trajectories Γ ∗

based on their return, parameters µj and σj at iteration j are iteratively updated
using the following estimates which are normalized in terms of the top-k returns:

µj =

∑k
i=1ΩiΓ

∗
i∑k

i=1Ωi
, σi = max


√√√√∑k

i=1Ωi(Γ
∗
i − µj)2∑k

i=1Ωi
, ε

 , (9)

where Ωi = τ ∗(Gi−G∗) [9]. Additionally, Gi denotes the return of trajectory Γi,
G∗ represents the maximum return, τ is a temperature parameter regulating the
influence of the best trajectories and ε is a linearly decayed constant that enforces
constant exploration [9]. This process of sampling trajectories and afterwards
updating parameters µ and σ is repeated for a total of J iterations during one
time step [9]. Subsequently, one trajectory Γ is sampled from the final return-
normalized distribution N and the first action at is executed. Afterwards, this
planning process is repeated at the next time step t+1 with a 1-step shifted
mean µ from the previous time step [9]. This prevents the agent from starting at
0 every time and instead provides a good starting point which also includes the
learnt knowledge from previous experiences [9]. However, a fairly high variance
is chosen to avoid local minima.

3 TD-MPC with SRL

3.1 Reconstruction Function

While in TD-MPC, the latent state representation is mainly learned and in-
fluenced by the consistency loss, we propose to add another loss term to the
single-step loss L(θ;Γi) which aims to provide the agent with a richer learning
signal and thus should also improve the performance of the entire model and
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...

Fig. 1: Updated TOLD model [9]

algorithm. We extend the TOLD model by another learnable component h−1θ
(shown in Fig. 1) defined as:

Reconstruction function : s̃t = h−1θ (zt),

where h−1θ represents the inverse of the latent state representation function hθ.
We denote the result of h−1θ (zt) as s̃t which represents an estimate of the respec-
tive ground truth observation st since in most cases the real observation st cannot
be fully reconstructed. The reason for this is that the task-oriented latent state
representation zt will most likely be far less complex and thus it would be chal-
lenging, if not even impossible, to reconstruct the original state st entirely with
only being given the latent state. As denoted by parameters θ, this additional
function will be learnt together with the other components of the TOLD model.
Hence, error gradients from all 4 terms lr, lv, lc and lh

−1

are back-propagated
through time to update each component. This also means that the other func-
tions are forced to include information which is important for the reconstruction
of the latent representation. Given a trajectory Γ = (st, at, rt, st+1)t:t+H sam-
pled from our Replay Buffer B and latent state representation zt = hθ(st), we
supplement the loss L(θ;Γi) (Equation 3) with the following self-supervised re-
construction loss term:

lh
−1

i = ||h−1θ (zi)− si||22. (10)

Similar to the reward loss (see Equation 4), the true observation st from Γ
is being compared to the reconstructed observation s̃t = h−1θ (zt) by computing
the mean squared error. Thus, the new single-step loss L(θ;Γi), is defined as:

L(θ;Γi) = c1l
r
i + c2l

v
i + c3l

c
i + c4l

h−1

i , (11)

where, c4 is the reconstruction loss coefficient. As a result, the reconstruction
function will not be used in any form within the planning process of the agent,
but instead only utilized to stabilize the learning process. When considering a
sparse reward signal, the learning process can be inherently challenging due to
the reward serving as the primary learning signal in most cases. Thus, if rewards
are sparse, so is the learning signal, and as a result, the agent potentially misses
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out on key insights about the environment dynamics or simply forgets about pre-
viously acquired knowledge. By including the term lh

−1

in the single-step loss,
we aim to further enhance the learning signal and thereby improving the robust-
ness of the learning process, especially in sparse and noisy environments. Since
the reconstruction function is also jointly trained with the other components,
error gradients are propagated through the other functions, resulting in shared
behaviours and features. Thus, both the representation and dynamics functions
will be forced to retain information essential to reconstruct the original obser-
vation. Including a reconstruction loss can potentially lead to the representa-
tion and dynamics functions gaining a better understanding of the environment
beyond just the reward signal. Key features or other characteristics that help
distinguish different states could be incorporated to further improve the learning
process. The goal of the reconstruction loss is to augment the learning signal,
without dominating the other loss terms.

Another possible advantage of our proposed change to the TD-MPC frame-
work is the ability to pre-train the world model in a self-supervised manner.
Essentially, we can enable the agent to explore the environment without any
reward or goal and use the reconstruction loss as the primary learning signal. As
a result, the agent can acquire knowledge about the environments dynamics and
construct a world model before the actual training process begins. This approach
can be advantageous as having a pre-trained model of the environment allows
for better estimates from the start and thus for reduced training times.

4 Experiments

4.1 Setup

Similar to the experiments conducted in the TD-MPC paper, we run all envi-
ronments with different random seeds and average the results [9]. As the original
TD-MPC has already been thoroughly compared to other state-of-the-art algo-
rithms, we consider it sufficient to limit our comparison to the original TD-MPC
framework. We use the documented results from the official GitHub repository1

for comparison of state-based environments, whereas we generate the data for
image-based environments on our own using the official implementation, due to
no data being available for most image-based tasks. We follow the same approach
as in [9] and conduct experiments on various environments from the DeepMind
Control suite (DMControl)[16]. Hyperparameter values that are not explicitly
stated are set to the values in [9].

We adopt the TD-MPC framework as described in Section 3. Similar to
the other components of the TOLD model, we employ a deterministic MLP
to learn the reconstruction function. For state-based tasks, the architecture of
the MLP consists of two simple fully-connected layers together with an ELU
activation function, chosen intentionally to resemble the encoder architecture of
the latent state representation function. The MLP architecture for image-based

1 https://github.com/nicklashansen/tdmpc

https://github.com/nicklashansen/tdmpc
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tasks is slightly more intricate due to the need of upsampling the given latent
representation to match the original input size of 84x84 pixels. The initial layer
is a Linear Layer, used to preprocess the input for the subsequent, whereas
the next four hidden layers are deconvolutional layers, with all except the last
being followed by a batch normalization layer to enhance the stability of the
learning process. In terms of activation functions, we chose the ReLU function
for all layers, except for the final layer, where we used a sigmoid function to
ensure that the outputs fall within the range of [0, 1]. Additional to normalizing
the images, a pixel shift augmentation of ±4 is used to prevent overfitting of the
TOLD encoder hθ [9]. For the training of our introduced reconstruction function,
we use the original images instead of the augmented ones within the respective
loss lh

−1

because we aim to reconstruct the original observation as provided by
the environment. We empirically choose a reconstruction coefficient of 2.0, 0.25,
0.275 for the state-based Finger Turn Hard, Cheetah Run, and Acrobat-Swingup,
and of 0.15, 0.275, 0.15 for the image-based Finger Turn Hard, Cheetah Run,
and Reacher Easy environments respectively.

4.2 Results

To evaluate the performance of the two algorithms we conduct a periodic perfor-
mance evaluation during training after every 20k environment steps. We evaluate
the agent after every 20k environment steps, averaging over 10 episodes, then the
averaged return is calculated. In the description of the results and conclusion, the
term TD-MPC agent is used to refer to the agent using the original TD-MPC
framework, while the TD-MPC framework with the additional reconstruction
function is referred to as the reconstruction agent. Additionally, we measure the
performance for image-based tasks after 100k and 500k environment steps to
compare the initial learning speed, asymptotic performance as well as sample
efficiency and robustness of the algorithms.

For state-based environments, the reconstruction agent outperforms the reg-
ular TD-MPC agent on two of the three selected tasks (see Fig. 2). For the
tasks Finger Turn Hard and Cheetah Run, the additional reconstruction func-
tion yields an increased learning speed and improved overall performance. In the
Acrobot Swingup environment the reconstruction agent achieves a better initial
learning speed, but worse asymptotic performance, while in terms of stability, we
achieve comparable results in all three environments. Looking at the overall per-
formance averaged over all three tasks, our changes to the TD-MPC framework
slightly increase the learning speed and performance but seem to be slightly less
stable when compared to the TD-MPC agent (see Fig. 3).

In the selected image-based environments, the changes made to the single-
step loss term and the additional reconstruction function do not appear to have
a significant impact on the overall learning speed of our agent (see Fig. 2).
Based on the results in Table 1, the reconstruction agent demonstrated improved
performance and stability after 100k environment steps on two of the tasks, which
suggests a faster initial learning process and enhanced stability, while achieving
comparable performance on the others. After 500k steps, our agent outperformed
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Fig. 2: Episode return comparison of our method (TD-MPC with SRL) and the
original TD-MPC framework on state-based (top row) and image-based (bottom
row) environments. We follow the approach from the original TD-MPC paper
[9] and average the return over 5 runs.

the original framework in only one of the tested environments but showed a
significant improvement in terms of stability (lower standard deviation) on two of
the three evaluated tasks. In general, our framework achieved comparable episode
returns in most image-based environments, as shown in Fig. 3, which displays
the average reward of the three image-based environments: Finger Turn Hard,
Cheetah Run, and Reacher Easy. Overall, however, the modified agent exhibited
improved stability after 500k environment steps in two of the three evaluated
environments (Reacher Easy, Finger Turn Hard), as indicated in Table 1.

4.3 Discussion

The state-based environments, especially Finger Turn Hard and Cheetah Run,
showed the most significant improvements in terms of overall performance. The
introduction of the reconstruction function and its associated loss term appears
to help the agent with learning a more accurate TOLD model at a faster pace
than its original counterpart. Learning the reconstruction function together with
the other components also results in more frequent updates to the other com-
ponents like the value and dynamics functions which could possibly achieve an
increased learning speed and stability. However, the modified agent did not show
significant improvements in stability, but rather a slight decrease, especially in
simple low-dimensional environments like Finger Turn Hard or Acrobot Swingup,
where the learning process was less robust and instead more susceptible to ran-
dom seeds. This is potentially due to the unnecessary additional information
being encoded in the latent state. On the other hand, for more complex environ-
ments like Cheetah Run, we observed a significantly more robust and slightly
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Fig. 3: Episode return comparison of our method (TD-MPC with SRL) and the
original TD-MPC framework. The left plot represents the average return over
all three state-based environments, while the right does the same for the three
image-based environments from Fig. 2.

100K STEP SCORES TD-MPC TD-MPC with SRL

Cheetah Run 246 ± 73 191 ± 93

Reacher Easy 256 ± 116 319 ± 82

Finger Turn Hard 50 ± 100 55.3 ± 108

500K STEP SCORES TD-MPC TD-MPC with SRL

Cheetah Run 561 ± 35 435 ± 79

Reacher Easy 668 ± 217 768 ± 178

Finger Turn Hard 442 ± 187 392 ± 132

Table 1: Episode return comparison for image-based environments after 100k
and 500k environment steps with the respective standard deviations. The column
with bold numbers indicates better results in terms of return.

faster learning process, suggesting that the information needed for reconstruction
is useful in this domain and can help with strengthening the learning signal.

Learning from pixels proves to be more challenging for our agent, which
may be due to their inherent noisy and high-dimensional nature. In the con-
text of noisy environments, the role of the latent state is crucial as it reduces
the complexity of the observation by encoding only the task-relevant details,
thereby filtering out irrelevant information. Therefore, our modifications to the
TD-MPC algorithm allow for a more efficient and stable learning process by en-
hancing the learning signal and updating the model components more frequently.
This is important since the agent may miss out on important information due to
sparse rewards when only trained on the reward signal. The increase in perfor-
mance and stability are most likely attributed to the reduced susceptibility to
noise and random seeds, resulting in a more consistent and steady learning pro-
cess. However, in more complex environments such as Cheetah Run, the overall
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performance return-wise may still be slightly worse, due to the lack of hyperpa-
rameter tuning. To further validate our findings, a more diverse comparison of
performance would include a variety of other complex environments, such as the
Humanoid or Dog tasks.

One aspect that we have not yet explored is the ability of the modified TD-
MPC with self-supervised representation learning to pre-train a model of the
environment, which could supply the agent with better initial estimates through-
out training. Therefore, this could potentially be another valuable opportunity
to further improve the performance and stability of our modified agent. We leave
this open for future work.

5 Conclusion

In this paper, we proposed a modification of the TD-MPC framework, specif-
ically the TOLD model. This included an additional self-supervised loss term,
as well as a new component aimed at reconstructing the original observation
given a latent state and thus providing the agent with an enhanced learning
signal. We assessed the modified agent’s performance in various experiments
from the DMControl suite and compared it to the original version. Our findings
showed that the modified agent performed better on the majority of state-based
environments while achieving comparable stability. In image-based tasks, which
inherently have high noise levels, the reconstruction agent proved to have a faster
initial learning speed in most experiments, and despite struggling with the overall
learning speed in most environments, the modified agent demonstrated a more
robust learning process in the majority of tasks. Especially for high-dimensional
environments, the agent is still struggling in terms of episode return and stabil-
ity. Nevertheless, most importantly, we do not observe a significant decrease in
terms of performance on any of the tasks. These results indicate the potential
benefits of the reconstruction function and its associated loss term in generat-
ing an enhanced learning signal and consistent updating of the TOLD model
components that is not dependent on reward.
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