
EXPLAINABLE LIFELONG STREAM LEARNING BASED ON
“GLOCAL” PAIRWISE FUSION

Chu Kiong Loo ∗

Faculty of Computer Science and Information Technology
Universiti Malaya

Kuala Lumpur, Malaysia
ckloo.um@um.edu.my

Wei Shiung Liew
Faculty of Computer Science and Information Technology

Universiti Malaya
Kuala Lumpur, Malaysia

liew.wei.shiung@um.edu.my

Stefan Wermter
Knowledge Technology

Department of Informatics
Universität Hamburg
Hamburg, Germany

stefan.wermter@informatik.uni-hamburg.de

ABSTRACT

Real-time on-device continual learning applications are used on mobile phones, consumer robots, and
smart appliances. Such devices have limited processing and memory storage capabilities, whereas
continual learning acquires data over a long period of time. By necessity, lifelong learning algorithms
have to be able to operate under such constraints while delivering good performance. This study
presents the Explainable Lifelong Learning (ExLL) model, which incorporates several important
traits: 1) learning to learn, in a single pass, from streaming data with scarce examples and resources;
2) a self-organizing prototype-based architecture that expands as needed and clusters streaming
data into separable groups by similarity and preserves data against catastrophic forgetting; 3) an
interpretable architecture to convert the clusters into explainable IF-THEN rules as well as to justify
model predictions in terms of what is similar and dissimilar to the inference; and 4) inferences at
the global and local level using a pairwise decision fusion process to enhance the accuracy of the
inference, hence “Glocal Pairwise Fusion.” We compare ExLL against contemporary online learning
algorithms for image recognition, using OpenLoris, F-SIOL-310, and Places datasets to evaluate
several continual learning scenarios for video streams, low-sample learning, ability to scale, and
imbalanced data streams. The algorithms are evaluated for their performance in accuracy, number of
parameters, and experiment runtime requirements. ExLL outperforms all algorithms for accuracy in
the majority of the tested scenarios.

Keywords Explainable AI · Interpretability · Prototype-Based Models · Lifelong Learning · Streaming Learning ·
Transfer Learning · Knowledge Engineering · Self-Organizing Neural Networks

1 Introduction

In most real-world applications, data arrives continuously in real-time and is often non-repeating unless it is memorized.
From this phenomenon, two paradigms are coined: continuous learning and streaming learning. Continuous learning,
also known as lifelong learning [1] refers to the ability to acquire knowledge continuously over a long period of
time while retaining previously-learned knowledge. Streaming learning [2] on the other hand is the ability to acquire
knowledge from sequential and continuously-arriving data streams. The former encompasses machine learning

∗Corresponding author

ar
X

iv
:2

30
6.

13
41

0v
1

 [
cs

.L
G

]
 2

3
Ju

n
20

23

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

techniques to adapt and reconcile old and new knowledge while minimizing loss of information and the latter prioritizes
quick and efficient knowledge acquisition from high-velocity data streams.

When developing machine learning applications for use in embedded systems such as portable digital devices, robots,
autonomous vehicles, and smart appliances, not only it is necessary for the applications to have both continuous and
streaming learning capabilities, but also the ability to operate in resource-limited environments. Portable devices
prioritize compactness which limits how much hardware can be installed on-board the device, thus limiting its processing
power, memory storage, and energy storage capabilities. Example applications include portable medical devices which
use continuous learning to personalize the diagnosis based on long-term monitoring of a patient’s vital signs [3].
Personalized action recognition systems adapt to individual variances in body movements [4]. On-device learning is
preferable to ensure greater customization based on the consumer’s needs, as opposed to cloud-based learning where a
consumer’s personalized data may be considered an insignificant detail among many other consumers’ data. There are
several other benefits to continual on-device learning, such as decreased bandwidth requirements, better control over
the consumer’s privacy, and less dependence on big data.

Conventional learning strategies minimize empirical risk by assuming a given dataset consists of independent and
identically-distributed (iid) samples and shuffling them before training. In continuous learning however, this may
sometimes cause catastrophic forgetting whereby learning new knowledge causes older learned knowledge to be
forgotten [5]. While there have been many research studies to address catastrophic forgetting, not all are suitable for
embedded applications.

Recent research also stresses the need for interpretability or explainability especially for machine learning algorithms
used in critical applications that directly affect human well-being. The main criterion of an explainable learning model
is being able to show its thought-processes step-by-step from the input to the final decision, improving human trust
in the system [6] [7] and debug potentially problematic decisions [8]. The current generation of continual learning
systems lacks the ability to self-diagnose their decisions. A common problem involving self-supervised or unsupervised
learning systems is when the data stream consists of undetected bias or garbage data, which would negatively impact
the model. By implementing explainability in continual learning models, it would be possible to debug the learning
process and identify problematic data before use. As of the time of writing this paper, state-of-the-art continual learning
architectures such as Streaming Linear Discriminant Analysis (SLDA) [9] did not have explainability capabilities while
explainable learning architectures such as the eXplainable Deep Neural Networks (xDNN) [10] have been tested with
several continuous learning scenarios but not under streaming learning conditions [11].

We argue the need for the following capabilities in streaming, explainable, continually learning architectures:

1. Learn from a continuous data stream in a single pass in environments where computational resources and data
storage is highly constrained.

2. Acquire knowledge from data in any order while maintaining resilience against loss of previously learned
information.

3. Learn efficiently and generalize well with minimal labeled examples.
4. Explain model decisions at the intermediate and final stages of the decision-making process.

This study investigates explainable continual and streaming learning specifically for embedded devices. The paper
presents several research contributions in this field.

1. We propose a modified SLDA architecture to utilize a prototype-based architecture to address the issues of
catastrophic forgetting and the stability-plasticity dilemma, the balancing between the network’s ability to
retain and integrate knowledge.

2. We introduce a collective inference strategy to enhance classification accuracy by combining inferences from
two levels: local inferences at the prototype level (i.e. "Among the examples in Class A, which example is the
closest match to the input?") and global inferences at the class level (i.e. "Among all the classes, which is the
closest match to the input?").

3. We formulate an explainable lifelong stream learning model with single-pass learning.
4. We conduct a series of benchmark tests and observe how the proposed model performed relative to other

continual learning models using established datasets and continual learning scenarios.

2 Problem Definition

Integrating explainability with online continual learning applications is challenging due to a number of factors. In
online continual learning, examples are only presented once and may not be repeated unless they are stored in memory.

2

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Online continual learning models receive limited data and have a short time to learn from them. Given the scarcity of
training data and learning time, it is difficult for most explainable algorithms to accurately model the concept enough to
generate adequate explanations [12].

In addition, the data obtained from the continuous learning process is constantly changing. This means that the
information learned by the models may also change over time and lose relevance. While deep learning models
are capable of achieving high accuracy, their opaque nature makes it a challenge to generate explanations for their
predictions [13] [14].

Another major challenge is implementing online continual learning algorithms on embedded devices with limited
memory capacity and processing power. This restriction makes it difficult to deploy complex algorithms or algorithms
that take up a lot of storage space [15] [16].

Models that provide understandable explanations typically compromise on the accuracy of the results. Balancing
between explainability and accuracy is a challenge when employing explainable methods in online continual learning
applications [17].

3 Related Work

3.1 Streaming Learning

In streaming learning scenarios, machine learning algorithms are required to learn from a continuous stream of non-
repeating training samples in a single pass. The algorithms must also be capable of being evaluated at any point during
the stream and prior training samples are not stored for retraining. In real-life applications, contextual information
may not always be available. Several prototype-based classifiers such as ARTMAPs [18] were developed to learn from
non-stationary data. However, the presentation order of training data significantly affects the performance of ARTMAPs.
Various methods were developed to optimize ARTMAP performance [19, 20, 21] but they were computationally
intensive and therefore unsuitable for real-time applications.

Streaming Linear Discriminant Analysis (SLDA) [9] extends the conventional Linear Discriminant Analysis (LDA)
architecture to support incremental learning from data streams. SLDA stores a running mean for each unique class
and a shared covariance matrix. During inference, SLDA classifies a given input to the most likely class using the
class means and covariance matrix. The softmax methods used with conventional neural networks are analogous to the
LDA’s estimated posterior distribution [22]. Deep-SLDA [23] pairs SLDA with a convolutional neural network (CNN)
acting as a feature extractor for high-dimensional inputs such as images. The performance of the model surpasses that
of state-of-the-art streaming learning and incremental batch learning algorithms.

3.2 Continual Embedded / On-Device Learning

Although streaming learning algorithms have been developed to reduce catastrophic forgetting, they don’t meet certain
requirements for embedded applications. Disqualifying criteria include the high storage and computation requirements
of batch learning techniques, and needing task labels during inference [23] [24]. Another requirement for continual
embedded learning is the ability to generalize from a very small number of training samples. Algorithms with this
capability are commonly known as “low-shot” continual learning algorithms [25, 26, 27, 28].

Several CNNs were made to meet the need for on-device learning, balancing accuracy of classification with speed
of processing. Networks with efficient computation and reduced memory requirements include MobileNet [29],
SqueezeNet [30], ShuffleNet [31] and CondenseNet [32]. Other methods to reduce memory requirements include
deep network pruning [33, 34, 35, 36], quantization [37, 38, 39, 40, 41, 42, 43], and model compression or network
distillation [44] [45].

A comprehensive study was performed to compare several continual learning algorithms and CNNs as feature extractors
in multiple scenarios [11]. The models were tested on their robustness to scale, on imbalanced class distribution, and on
temporally correlated video streams. The models were then evaluated on the basis of classification accuracy, number
of parameters, and experiment runtime. We use the same experiment protocols to evaluate the performance of our
proposed continual learning model against other algorithms.

3.3 Explainable Prototype-Based Learning Models

The architecture of CNNs is designed to maximize predictive accuracy through a series of convolutional steps. CNNs
are considered “black box” models due to how difficult it is to explain how they arrive at a specific classification
decision for a given input. CNNs are typically interpreted post hoc: the model’s decisions are obtained first before

3

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Fully-connected
layer

M
o

b
ile

N
e

tV
3

, E
ff

ic
ie

n
tN

e
t,

 R
e

st
N

e
t1

8

P
re

-t
ra

in
ed

 o
n

 Im
ag

en
et

. .
 .

f1

f2

fN1

p1

p2

. .
 .

pN2

Prototype
layer

MCC

D1

D2

. .
 .

DN2

Density
layer

. .
 .

MegaCloud
layer

Glocal
Pairwise
Fusion

Label
Prediction

Prototype-
based Local
Inference

MegaCloud-
based Global

Inference

TRAINING module

INFERENCE module

MC1

MCC

Time
ሺ𝒙𝟏 , 𝒚𝟏ሻ

ሺ𝒙𝟐 , 𝒚𝟐ሻ

ሺ𝒙𝟑 , 𝒚𝟑ሻ

ሺ𝒙𝟒 , 𝒚𝟒ሻ

Figure 1: Explainable Lifelong Learning architecture. Training images produce feature vectors in the fully-connected
layer of a pre-trained CNN. Density of the feature vectors are then computed to determine if the training images should
be assigned to an existing prototype or to initialize a new prototype. All prototypes belonging to one class label are
assigned to one MegaCloud. Inference is performed once at the local level, another at the global level. Local inference
matches the inferenced image to the most similar prototype while global inference matches the image to the most
similar MegaCloud. Both inference decisions are then combined using a glocal pairwise fusion matrix to obtain the
final model decision.

backtracking and generating justifications [46]. A popular explainable technique uses class activation mappings (CAMs)
and gradient-weighted CAMs (Grad-CAMs) [47] [48] to highlight discriminative features on input images. Such post
hoc interpretability techniques are usually approximations as opposed to in-depth explanations of the cause-and-effect
relations and reasoning.

Prototype-based classifiers such as ARTMAPs [18] and self-organizing networks [49] group training samples according
to their proximity in the feature space [50]. Each group or cluster of training samples can be represented by the closest
centroid or prototype [51].

xDNN [10] is a prototype-based classifier with the ability to generate explanations for deep neural networks. The
prototypes in the architecture are used to generate linguistic IF-THEN rules. xDNN employs empirically derived
probability distribution functions based on local densities and global multivariate generative distributions [52]. The
prototype-based architecture and algorithm are suitable for transfer learning and continuous learning without retraining.
xDNN outperforms state-of-the-art approaches in accuracy and computational simplicity in benchmark tests [10] [53].
To summarize, xDNN is an explainable feed-forward neural network with an incremental learning algorithm adding
new prototypes to reflect the dynamic data stream [54].

4 Methodology

The proposed Explainable Lifelong Learning (ExLL) model is a feed-forward neural network with an incremental
learning algorithm and a self-organizing topology. Inputs to the network are typically images passed through a
convolutional neural network to extract both abstract and discriminative features from the fully-connected layer. The
architecture of ExLL enhances the functionality of the xDNN [10] with a few modifications for implementing a variant
of SLDA [9], namely MegaCloud-based global inference and prototype-based local inference. A pairwise fusion
method [55] is used to combine the global and local inferences into a “glocal” inference.

4.1 Training the Explainable Continual Learning Model

Figure 1 shows the ExLL model’s layers. CNN weights are pre-trained with image datasets such as ImageNet. Images
are passed through the CNN, and the activations of the last hidden fully-connected layer in the CNN are taken as the
discriminative feature vectors to be learned by the ExLL.

4

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Similar to xDNN, the two main components of the proposed model are the Prototypes Layer and the MegaClouds Layer
[10]. Input feature vectors are represented as data points in a multi-dimensional topology. Data points that are close to
each other can be considered as a “data cloud” encompassing an area of influence between the data points. A data cloud
can be represented by a composite feature vector known as a centroid or “prototype”, calculated as the average of all
points in the data cloud. A prototype is typically assigned a class label based on the labels of the majority points in
the data cloud. Each prototype is independent and distinct from each other, representing the local peaks of the data
distribution sharing the same class label.

Furthermore, adjacent data clouds sharing the same class label can be grouped into a larger structure known as a
“MegaCloud”. Where a prototype represents an instance-based prototype of a class label, a MegaCloud is a category-
based prototype of the class label.

Training the ExLL takes place as follows:

1. An image Ii at time stamp i and belonging to class k is passed through a CNN. The subsequent feature vector
x̃i is obtained from the fully-connected layer, and then normalized:

xi =
x̃i

∥x̃i∥
(1)

where ∥ · ∥ is the vector norm.

2. The ExLL’s global meta-parameters are updated:

µ̂i =
i− 1

i
µ̂i−1 +

1

i
xi

µ̂1 = x1

(2)

σ̂i =
i− 1

i
σ̂i−1 +

1

i
∥xi∥2

σ̂1 = ∥x1∥2 = 1
(3)

ξ̂i =
i− 1

i
ξ̂i−1 +

1

i
(xi − µ̂i)(xi − µ̂i)

T

ξ̂1 = (x1)(x1)
T

(4)

where µ̂ is the global average of all training samples, σ̂ is the global variance, and ξ̂ is the inter-class global
covariance matrix.

3. While the global meta-parameters represent the cross-class topology of the ExLL, local meta-parameters
represent the within-class topologies for each class. If xi has a novel class, the number of unique class labels
is incremented, k ← k + 1, and the local meta-parameters for the new class k are initialized as follows:

ik ← 1

gk ← 1

µk,1 ← xi

σk,1 ← ∥xi∥2

Ek,1,1 = 0

(5)

Here ik denotes the number of inputs where class k was observed during training, gk counts the prototypes
in class k, µk,1 is the class mean, σk,1 is the class scalar product, and Ek,1,1 is a topological map of edge
connections between within-class prototypes.
Additionally, the novel class is used to initialize the first prototype of a new MegaCloud:

pk,1 ← xi

Sk,1 ← 1

rk,1 ← r∗

Îk,1 ← Ii

(6)

where pk,1 is the first prototype for class k, Sk,1 is the number of training samples associated with the
prototype, rk,1 is the prototype’s radius of influence initialized to a default value r∗ =

√
2− 2 cos 30◦ [52],

5

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

and Îk,1 keeps a record of all input images associated with this prototype, without actually storing the images
themselves. The network then waits for the next input.
However, if the input presents a known class, then the prototype layer is updated in response. The local
meta-parameters are updated similar to the global meta-parameters as follows:

µk,ik =
ik − 1

ik
µik−1 +

1

ik
xi (7)

σk,ik =
ik − 1

ik
σik−1 +

1

ik
∥xi∥2 (8)

Class k’s mean µk,ik and scalar product σk,ik are updated online. The input xi is then passed to the density
layer.

4. Density layer. This layer defines the mutual proximity of the training images relative to the data space defined
by the feature vectors. The density of input xi relative to class k, D(k, xi) can be computed online [56]:

D(k, xi) =
1

1 + ∥xi − µk,ik∥2 + σk,ik − ∥µk,ik∥2
(9)

5. Prototype layer. When an input xi is presented, the nearest and second-nearest within-class prototypes, b1
and b2, are identified using Mahalanobis distance [57]:

b1 = argmin
j=1,...,gk

(xi − pj)
T (xi − pj)

ξ̂
(10)

b2 = argmin
j=1,...,gk;j ̸=b1

(xi − pj)
T (xi − pj)

ξ̂
(11)

A density condition then tests if xi is inside the distribution of existing prototypes:

IF D(k, xi) > max
j=1,...,gk

D(k, pj)

OR D(k, xi) < min
j=1,...,gk

D(k, pj)

THEN add a new data cloud (gk ← gk + 1)

(12)

If Condition 12 is met, then the input xi is considered outside the influence radius of the current prototypes
and is sufficiently novel. xi is then used to initialize a new data cloud:

gk ← gk + 1

Sk,gk ← 1

pk,gk ← xi

rk,gk ← r0

Îk,gk ← Ii
Ek,gk,b1 ← 1;Ek,b1,gk ← 1;

(13)

Otherwise, if Condition 12 is not met, the parameters are updated for the closest matching prototype b1:

Sk,b1 ← Sk,b1 + 1;

pk,b1 ←
Sk,b1 − 1

Sk,b1

pk,b1 +
1

Sk,b1

xi;

rk,b1 ←

√
r2k,b1 + (1− ∥pk,b1∥2)

2

Îk,b1 ← Îk,b1 + Ii
Ek,b1,b2 ← Ek,b1,b2 + 1

Ek,b2,b1 ← Ek,b2,b1 + 1

(14)

Ek is a square matrix sized gk for encoding the edges between local prototypes. Whenever a training sample
activates the closest prototype b1 and second-closest prototype b2, Ek,b1,b2 and Ek,b2,b1 are incremented. The

6

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

MegaCloud1 = Ball MegaCloud2 = Marker

 New unlabeled image

Fully-connected layer

MobileNetV3, EfficientNet, RestNet18

Pre-trained on Imagenet

 … …

𝒑𝟏,𝟏 𝒑𝟏,𝟐 𝒑𝟐,𝟏 𝒑𝟐,𝒈𝟐 𝒑𝟏,𝒈𝟏 𝒑𝟐,𝟐

Prototype-based Inference

�̃�(𝑦 = 𝑘|𝑥𝑖) =

exp(�̃�𝑘
𝑇𝑥𝑖 + �̃�𝑘

𝑇)

∑ exp(�̃�𝑘
𝑇𝑥𝑖 + �̃�𝑘

𝑇)𝐶
𝑘=1

𝑙 = argmax �̃�(𝑥𝑖)

Label is “Ball”

MegaCloud-based Inference

�̂�(𝑦 = 𝑘|𝑥𝑖) =

exp(�̂�𝑘
𝑇𝑥𝑖 + �̂�𝑘

𝑇)

∑ exp(�̂�𝑘
𝑇𝑥𝑖 + �̂�𝑘

𝑇)𝐶
𝑘=1

𝑙 = argmax �̂�(𝑥𝑖)

Label is “Ball”

Glocal Pairwise Fusion

𝑃(𝑦 = 𝑘|𝑥𝑖 , 𝑙, 𝑙) =

Φ(𝑘, 𝑙, 𝑙)

∑ (𝑘, 𝑙, 𝑙)𝐶
𝑘=1

Label is “Ball”

Figure 2: The process of image inference for the proposed ExLL.

map Ek can then be used for visual evaluation of the spatial relationship between prototypes or for encoding
frame of reference transformations [58] with each prototype representing one frame of reference.
The prototype layer is the basis of local explainability of the ExLL model. Each prototype is an independent
and distinct centroid shaped by associated training inputs. As each prototype records the associated training
images in Î , a set of linguistic IF-THEN rules are formulated as:

Rc : IF (I∼Îk,1) OR ... OR (I∼Îk,gk)
THEN (class is k)

(15)

where ∼ indicates similarity or fuzzy degree of membership to a prototype, k = {1, ..., C} is the class, and Ii
denotes an input image.

6. MegaClouds layer. This layer is the basis of global explainability of the ExLL model. Each MegaCloud is
used to facilitate explainability at the class level. Explainable rules generated from MegaClouds have the
following format:

Rk : IF (xi∼MCk) THEN (class is k) (16)
where MCk is the MegaCloud for the class k.

4.2 Inferring the Explainable Continual Learning Model

Figure 2 illustrates the process where a given image is inferred. Prototype-based inference (PrInf) considers the local
discriminative ability between individual prototypes while MegaCloud-based inference (McInf) globally discriminates
between classes. Both types of inference have their strengths and weaknesses which adapt depending on the class
distribution of the used dataset.

Pairwise fusion (PF) is used as a method for combining local and global inferences to achieve better performance than
either technique alone, hence the term “glocal pairwise fusion”. A PF matrix encodes the association between PrInf and
McInf during training without prior knowledge of the performance of either technique or the distribution of the dataset.

1. Shrinkage regularization is used to compute the precision matrix from the covariance matrix ξ̂:

Λ = [(1− ϵ)ξ̂ + (ϵ)I]−1 (17)

7

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

where I is an identity matrix and ϵ = 1e−4 regulates shrinkage.

2. Prototype-based inference assembles the prototypes of a class k, p̃k = {p1,1, ..., pk,gk}, and Λ to construct
local weights W̃k and local bias b̃k:

W̃k = Λp̃k

b̃k = −1

2
(p̃k · W̃k)

(18)

Subsequently, the posterior distribution P̃ and label prediction l̃ are formulated as follows:

P̃ (y = k|xi) =
exp(W̃T

k xi + b̃Tk)

ΣC
k=1 exp(W̃

T
k xi + b̃Tk)

l̃ = argmax
k=1,...,C

P̃ (y = k|xi)
(19)

3. MegaCloud-based inference assembles all class mean vectors µ̂ = {µ1, ..., µC}, and Λ to construct global
weights Ŵ and bias b̂:

Ŵ = Λµ̂

b̂ = −1

2
(µ · Ŵ)

(20)

and the subsequent posterior distribution P̂ and label prediction l̂ are formulated as follows:

P̂ (y = k|xi) =
exp(ŴT

k xi + b̂Tk)

ΣC
k=1 exp(Ŵ

T
k xi + b̂Tk)

l̂ = argmax
k=1,...,C

P̂ (y = k|xi)

(21)

4. Glocal pairwise fusion [55] is used for combining the two inferences. During training, given an input vector’s
class ki, the local class prediction l̃, and the global class prediction l̂, pairwise fusion encodes the relationship
as:

Φ(ki, l̂, l̃)← Φ(ki, l̂, l̃) + 1 (22)

where Φ is a 3-dimensional matrix encoding the cumulative interactions between the actual label and the
predicted labels from the local PrInf predictions and from the global McInf predictions. Φ is updated online as
additional training inputs are presented. Other rules for updating the matrix, such as using confidence-based
increments [55], can be applied instead of simplified increments.
When performing inference on an object xi with an unknown class, global inference l̂, local inference l̃, and Φ

are used for estimating the glocal class probabilities P (y = k|xi, l̂, l̃) and glocal label prediction L:

P (y = k|xi, l̂, l̃) =
Φ(k, l̂, l̃)

ΣC
k=1Φ(k, l̂, l̃)

L = argmax
k=1,...,C

(P (y = k|xi, l̂, l̃))

(23)

4.3 Explainability: Inference and Rule Generation

ExLL incorporates the element of explainability at the inference stage, so that label predictions can be explained in
terms of “Hits”, “Near Hits” and “Near Misses” [59]. Given an image with a known label k to be classified, Equation
23 produces the best-matching label L1 and second-best matching label L2. Going back to Equations 10 and 11,
the predicted class labels L1 and L2 each have a best-matching prototype (bL1,1 and bL2,1) as well as a second-best
matching prototype (bL1,2 and bL2,2).

As explained in Equations 13 and 14, each prototype gk is updated with a record of all associated training images: Îgk .
When the winning prototype bL1,1 is selected for the winning label L1 during inference, ÎbL1,1

is referenced to retrieve
the images used to train the prototype. The retrieved images are then shown as a visual explanation, i.e. “Hit”, as to why

8

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion
FSIOL dataset: Hit, Near Hit, and Near Miss explanations

Test Image Hits Near Hits Near Misses

“Shampoo”

correctly predicted as
“Shampoo”

“Shampoo”

“Shampoo”

“Lotion”

“Shampoo”

Wrongly predicted as
“Lotion”

“Lotion”

“Lotion”

“Toothpaste”

“Toothpaste”

Wrongly predicted as
“Shampoo”

“Shampoo”

“Shampoo”

“Book”

Core50 dataset: Clusters with TSNE

Figure 3: Example of “Hits”, “Near Hits”, and “Near Misses” for the F-SIOL-310 dataset. The test image in the top row
is an example of a True Positive result, the test image in the middle row is a False Negative result, and the test image in
the bottom row is a False Positive result.

Places dataset: Hit, Near Hit, and Near Miss explanations

Places dataset: extracted rules

Rule #1 IF

OR

OR

OR … THEN Class is “Aqueduct”

Rule #2 IF

OR

OR

OR … THEN Class is “Aqueduct”

Rule #3 IF

OR

OR

OR … THEN Class is “Arch”

Rule #4 IF

OR

OR

OR … THEN Class is “Arch”

Figure 4: Explainable rules extracted from prototypes for the classes “Aqueduct” and “Arch” from Places-365. Each
rule is made up of training images associated with the corresponding prototype.

the inferenced image is assigned to the best-matching prototype. Where the best-matching prototype is selected based
on spatial proximity, laymen can observe the retrieved images for visual comparison against the inferenced image.

A similar comparison is made, “Near Hit”, by showing the training images associated with the second-best matching
prototype, ÎbL1,2

. Lastly, “Near Miss” shows the training images associated with the winning prototype bL2,1 for the
next-best label L2: ÎbL2,1

. The visual explanations provided by the “Near Hits” and “Near Misses” describe the decision
boundary of the ExLL’s prediction. In edge cases where the predictions are ambiguous, the visual comparison of “Hits”,
“Near Hits”, and “Near Misses” informs the user of possible alternatives.

Figure 3 demonstrates an example of a correct prediction and two wrong predictions. The top row illustrates the
explanation for a True Positive prediction. An image of a shampoo bottle is correctly classified and the training images
shown under “Hits” justify the selection of the best-matching prototype due to their visual similarity. The training image
from the second-best matching prototype, shown under “Near Hits”, also explains why the prototype is not selected due
to the visual dissimilarity to the inferenced image. Lastly, “Near Misses” show why the test image is almost incorrectly
classified as “Lotion” by showing the associated training images of the best prototype from the next-best class label.
Given an incorrect prediction such as the False Negative result in the middle row and the False Positive result in the
bottom row, the training images shown for “Hits”, “Near Hits”, and “Near Misses” explain why the ExLL made the
mistake.

9

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

The records Îgk are used for visualizing explainable rules. One rule is generated from one prototype. The visualization
of explainable rules reveal hidden information in each clustered prototype, as shown in Figure 4. For example, the
prototype associated with Rule 1 consisted of aqueducts with clear blue skies in the background. In comparison, the
training images associated with the prototype for Rule 2 do not have a visible background. Similarly, the prototype used
for generating Rule 3 consists of images of arches over long hallways while the prototype for Rule 4 mainly contains
images of arches with people in it. This information is not immediately visible to users since the images have been
converted into feature vectors, but can be shown when the images are retrieved after training the model.

5 Experiment Setup

Given a continuous stream of images where Xt is an image at time t, a neural network classifier F (·) is trained
incrementally using supervised online continual learning, producing a predicted label ŷt = F (G(Xt)). The backbone
CNN G(·) is pre-trained on large image datasets such as the ImageNet-1k dataset [60]. Subsequently, feature vectors
are obtained from the last hidden fully-connected layer in response to training images fed to G(·), which are then passed
to F (·) for learning. The intermediate layers in G(·) are frozen after pre-training to prevent knowledge drift, i.e. the
learned representations in F (·) are no longer up-to-date.

With this configuration, eight online continual learning strategies were studied for F (·) and five backbone architectures
were studied for G(·). These studies are detailed in the following subsections.

5.1 Backbone Architectures

Three backbone CNN architectures were selected for comparison for their compact size, effectiveness, and classification
accuracy when trained and tested on the ImageNet dataset.

MobileNet-v3 [61] is the successor of two previous architectures created for mobile and embedded applications
[29] [62]. The CNN incorporates several strategies for efficient and accurate inference under real-time and resource-
constrained scenarios. Depth-wise separable convolutions are used in conjunction with linear bottleneck layers to reduce
computational cost without negatively impacting performance. Two versions are compared in this study. MobileNet-v3
Small (MNet-S) is more efficient but displays worse classification performance compared to MobileNet-v3 Large
(MNet-L) which is more resource-intensive but shows better classification performance.

EfficientNet [63] utilizes neural architecture search (NAS) to automate the selection of an optimal architecture to
achieve a good tradeoff between performance and model complexity. Like MobileNet-v3, EfficientNet utilizes depth-
wise separable convolutions and linear bottleneck layers to reduce computational cost, making it suitable for usage in
embedded and mobile applications with limited computing resources. EfficientNet refers to a family of models with
varying complexity. Two models with the least complexity are compared in this study: EfficientNet-B0 (ENet-B0) and
EfficientNet-B1 (ENet-B1).

ResNet [64] makes use of residual blocks allowing information to skip one or more convolutional layers and is efficient
when involving very deep networks. During training, residual representations measure the differences between the
actual output from each block and the desired output. Learning is performed by updating the convolutional weights to
make the residual representations more accurate. ResNet includes several types of models with varying complexity.
The smallest model, ResNet-18 (RN-18), is selected for this study as the most suitable ResNet candidate to be used in
embedded systems and has been extensively tested in continual learning studies [24] [65, 66, 67, 68].

5.2 Online Continual Learning Models

We assess how well the proposed model performs when compared to seven other online continuous learning techniques
for training the classifier F (·) using the image feature vectors extracted using G(·). The techniques were selected
because of low memory and computation requirements and they can learn incrementally, continuously, and with a single
pass.

Fine-Tune incrementally adjusts a CNN’s fully-connected layer. A stochastic gradient descent optimization strategy is
used and progress is measured using cross-entropy loss of the CNN’s predictions.

Nearest Class Mean (NCM) keeps a cumulative average vector for every unique class it encounters during training.
Each class mean vector is considered a prototype representing a single class. During inference, NCM compares the
input feature vector to the class mean vectors using a similarity metric such as Euclidean distance. The input is assigned
to the class with the most similar feature mean vector.

10

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Streaming One-vs-Rest (SOvR) maintains a series of binary classifiers, one for each unique class it encounters during
training. As each new feature vector continuously arrives in a streaming scenario, the classifier for the relevant class of
the current input is updated incrementally. During inference, each classifier outputs a confidence score on whether the
inferenced feature vector belongs to that class. The final predicted class is selected from the classifier with the best
confidence score.

Streaming Linear Discriminant Analysis (SLDA) [23] is an extension of Linear Discriminant Analysis designed
to support learning from streaming data. The data distribution is modeled using class mean vectors and covariance
matrices. A discriminant function is used to find a linear projection of the input data that maximizes the separation
between classes. Both data distribution and discriminant function are updated incrementally as new feature vectors
arrive from the data stream. During inference, SLDA uses the discriminant function to compute the probabilities of the
inferenced vector belonging to each of the known classes. The final predicted class is selected from the class with the
best probability score.

Streaming Gaussian Naive Bayes is an extension of the Gaussian Naive Bayes algorithm designed to support learning
from streaming data. The model makes use of class-conditional probability distributions to determine if a feature vector
belongs to a specific class. The distribution of each feature is represented by a mean and variance. The probability
distributions are updated incrementally by observing the feature values of the incoming feature vectors from the data
stream. During inference, Bayes’ theorem is applied to obtain the posterior probability of each class based on the
observed input feature. The predicted class is selected with the highest probability score.

Online Perceptron keeps a class vector for every unique class it encounters during training. When a feature vector is
received, prediction is performed by taking the dot product of the input and the stored class vectors. The final predicted
class is selected from the class with the best score. During training, no action is performed if the prediction matches the
actual class. However if the prediction is a mismatch, the vector of the actual class is adjusted towards the input while
the vector of the mismatched class is adjusted away from the input. This process is repeated continuously as the model
receives additional feature vectors from the data stream.

Replay is a technique to reduce catastrophic forgetting by storing some of the previous training feature vectors in
a memory replay buffer. During training, the model samples from incoming feature vectors equally alongside the
stored feature vectors. Training examples can be selected from the buffer at random or by using specific strategies to
mitigate issues such as imbalanced class representation. By incorporating past knowledge, the replay model balances
the learning process to reduce catastrophic forgetting while giving equal attention to new knowledge. As training
progresses, the memory buffer can be updated by replacing randomly-selected feature vectors with the current input, or
by using specific strategies to retain important feature vectors. Replay can be memory intensive depending on how
much storage is allocated for the memory buffer.

Explainable Lifelong Learning (ExLL) is the proposed model of this study. Three variations of the model were tested.
ExLL-P uses Prototype-based Inference as per Equation 19 where label predictions are based on the closest prototype
mean. ExLL-M uses MegaCloud-based Inference as per Equation 21 where label predictions are based on the closest
class mean. Lastly, ExLL-F uses pairwise fusion to combine the label predictions from ExLL-M and ExLL-P, as per
Equation 23.

5.3 Datasets

Online continual learners are evaluated using the following image classification datasets.

OpenLORIS [69] consists of videos of 40 different household items recorded from varying angles and distance, and
121 object instances across all items. Each object instance is recorded under one of the following environmental
conditions: the object is surrounded by clutter; the object is illuminated by several light sources; the object is partially
occluded; and the object is nearer to or further away from the camera. A total of 9 sessions are recorded for each
condition and object instance. This dataset is suitable for testing a model’s ability to learn and recognize objects from
dynamic and sequential image streams as well as to apply its acquired knowledge to recognize known objects under
different environments.

Places-365 [70] consists of 1.8 million images of locations divided into 365 categories. The dataset is segmented into
a training and validation set. This dataset is suitable for evaluating a model’s ability to learn from a large number of
classes and diverse images per class.

Places-Long-Tail (Places-LT) is a subset of Places-365 with a skewed distribution of images across all classes, designed
to evaluate a model’s ability to generalize from highly-imbalanced data distributions. Each of the 365 classes may
consists of anywhere between 5 to thousands of images, while the validation set is identical to the validation set used by
Places-365.

11

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Few-Shot Incremental Object Learning (F-SIOL-310) [26] consists of static images of 22 household items. There
are multiple instances of each item, totaling 310 object instances and 620 static images. This dataset uses two learning
scenarios. The 5-shot learning scenario trains a model using only five images per class, selected at random, and tests
with all other images. Likewise for the 10-shot learning scenario, only ten randomly-chosen images are used for training
the model while all others are reserved as the testing set. Typically this dataset is used with multiple permutations of
class orders and training images. This dataset is suitable for evaluating a model’s ability to learn from few training
samples.

5.4 Experiment Protocol

One of the factors impacting the performance of an online continual learner is the order in which training data is
presented. This study presents several different orderings of each dataset and we observe the effects on the learners.

Two variants of instance data orderings are used for the OpenLORIS dataset [71]. Instance ordering shuffles object
instances before presenting all training videos to the learner for training. On the other hand, low-shot instance ordering
presents only one training video from each object instance and category to the learner during training. Having learned
from the object instances, the learners are then tested on all testing videos of known objects. The low-shot ordering
method evaluates how well the learner generalizes from a limited labeled dataset to identify known objects under
various environmental conditions.

For the two Places datasets, two data ordering methods are used. Independent and identical distribution (IID) shuffles
the order of the images. Class-IID on the other hand organizes all the images by class; the order of the images is
shuffled within each class, as well as the order of the classes. Class-IID is designed to test the learner’s ability to handle
catastrophic forgetting, and is commonly used as a continual learning metric [65] [66] [68] [72]. Some learners perform
poorly with Class-IID ordering if they do not have catastrophic forgetting mitigation, but are still able to perform well
using IID ordering.

Lastly, F-SIOL-310 is run using Class-IID ordering for each low-shot learning scenario. The experiment is run using
three permutations of class orders and the averaged results are reported over all permutations.

5.5 Performance Metric

Online continual learners are evaluated on three axes: classification accuracy, number of parameters, and experiment
runtime. The performance of an online learnerM is computed as a modified NetScore metric [73] combining all three
metrics into one score as follows:

Ω(M) = s log(
a(M)α

p(M)βc(M)γ
) (24)

where a(M) is the learner’s testing accuracy, p(M) is the learner’s size, c(M) is the time taken to complete the
experiment from start to finish, and α, β, γ are user-defined constants for controlling the contributions of accuracy,
number of parameters, and the experiment runtime towards computing the NetScore Ω.

The NetScore parameters follow the original parameter settings as suggested by Hayes et al. [11]. s = 20 and α = 2
to prioritize classification accuracy, and β = γ = 0.25 to moderate the large values of p(M) and c(M) [73]. Higher
NetScores indicate better performance.

6 Results

For OpenLORIS and Places-LT, the results are reported from the average performance across three permutations for
each data ordering technique. On the other hand, Places-365 is run only once for each ordering due to the long time
needed to complete the experiment. Meanwhile, classifiers such as SOvR and NCM are relatively unaffected by data
ordering permutations due to the usage of running class mean vectors. As for the Replay method, two buffer sizes were
compared: one storing 20 training samples per class (20pc) and the other storing 2 training samples per class (2pc).

6.1 Results on OpenLORIS

Online continual learners are evaluated on OpenLORIS using two data ordering methods. Instance ordering trains
learners on all object instances while low-shot instance ordering trains learners on one object instance from each
object class. Performance is evaluated by combining the top-1 accuracy scores of the top-ranked choice for each learner.
The scores are then averaged across all CNN architectures to compare how various orderings affect learner performance,
as shown in Figure 5.

12

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

86.9 89.6

48.3
53.1

80.8

95.2 97.2 96.4 96.9 99.2

18.0
12.1

28.7
34.2

48.1 48.8
45.4 47.7 48.5 49.8

0

20

40

60

80

100

Perceptron Fine-Tune Naive Bayes SOvR NCM Replay (20pc) SLDA ExLL-M ExLL-P ExLL-F

A
vg

. F
in

al
 A

cc
u

ra
cy

 [
%

]

Instance Low-Shot Instance

Figure 5: Accuracy results averaged across CNN architectures comparing online continual learners’ performance on
OpenLORIS with instance ordering and low-shot instance ordering.

Table 1: NetScores on OpenLORIS with the low-shot instance ordering. Higher values are better. Results are
highlighted as follows for the first, second, and third best results.

Method MNet-S MNet-L ENet-B0 ENet-B1 RN-18 Mean
Perceptron -115.9 -106.5 -91.0 -96.5 -147.8 -111.5
Fine-Tune -149.0 -142.9 -96.3 -103.7 -187.8 -135.9

Naive Bayes -83.7 -77.3 -75.8 -84.2 -204.5 -105.1
SOvR -80.0 -83.9 -74.0 -78.7 -111.4 -85.6
NCM -55.5 -64.7 -65.3 -72.5 -78.7 -67.3

Replay (20pc) -58.9 -66.5 -66.6 -72.8 -80.5 -69.1
SLDA -58.3 -69.1 -72.3 -79.3 -80.8 -72.0
ExLL -75.3 -91.4 -99.5 -106.8 -108.1 -96.2

All models displayed lower accuracy when using low-shot instance ordering. Perceptron and Fine-Tune in particular
showed a much bigger drop in accuracy for the low-shot instance ordering, relative to other continual learning
models. The models generalized poorly when tested against images from domains not encountered during training. In
comparison, Naive Bayes, SOvR, and NCM were less accurate than Perceptron and Fine-Tune for the full instance
ordering, but outperformed them for the low-shot condition. The ExLL models showed the best balance between the
two ordering methods, while ExLL-F outperformed all other models for both orderings.

6.1.1 NetScore Performance

In Table 1, NetScores were used for evaluating continual learning methods in terms of performance as well as memory
and computational requirements. The NetScore values were obtained by evaluating all methods on the same hardware
for consistency. Higher Netscore values are better.

The top three performing online continual learners are NCM, Replay 20pc, and SLDA. The NCM algorithm is the most
efficient in terms of memory and computation requirements since it only stores and updates the class mean vectors.
Replay 20pc needed additional computation and memory for replaying stored samples, while SLDA needed additional
computation and memory for the covariance matrix. Meanwhile, ExLL was placed fifth among the eight algorithms.
While ExLL is nominally similar to SLDA, ExLL required significantly more memory to store prototype mean vectors
in addition to class mean vectors. In addition, ExLL stores training records to be able to recall the information for
explaining inferences.

6.1.2 Backbone CNN Comparisons

Table 2 presents the best accuracy scores of online continual learning models across different CNN backbones when
trained using instance ordering. The EfficientNet architectures showed the best results overall while ResNet-18 showed
the worst results in eight of the ten datasets.

13

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Table 2: Accuracy results on OpenLORIS with the instance ordering. Results are highlighted as follows for the first,
second, and third best results.

Method MNet-S MNet-L ENet-B0 ENet-B1 RN-18 Mean
Perceptron 0.793 0.880 0.935 0.942 0.796 0.869
Fine-Tune 0.835 0.915 0.958 0.963 0.809 0.896

Naive Bayes 0.311 0.526 0.780 0.787 0.015 0.483
SOvR 0.374 0.477 0.739 0.723 0.346 0.531
NCM 0.729 0.789 0.859 0.867 0.797 0.808

Replay (20pc) 0.921 0.956 0.977 0.978 0.929 0.952
SLDA 0.956 0.982 0.988 0.988 0.950 0.972

ExLL-M 0.944 0.973 0.982 0.982 0.940 0.964
ExLL-P 0.951 0.968 0.982 0.983 0.961 0.969
ExLL-F 0.987 0.993 0.996 0.996 0.988 0.992

Table 3: Accuracy results on OpenLORIS with the low-shot instance ordering. Results are highlighted as follows for
the first, second, and third best results.

Method MNet-S MNet-L ENet-B0 ENet-B1 RN-18 Mean
Perceptron 0.098 0.167 0.272 0.283 0.082 0.180
Fine-Tune 0.043 0.066 0.238 0.232 0.030 0.121

Naive Bayes 0.232 0.366 0.421 0.399 0.021 0.287
SOvR 0.259 0.323 0.449 0.459 0.224 0.342
NCM 0.442 0.474 0.516 0.514 0.463 0.481

Replay (20pc) 0.453 0.480 0.529 0.532 0.446 0.488
SLDA 0.445 0.454 0.472 0.460 0.442 0.454

ExLL-M 0.463 0.493 0.504 0.487 0.440 0.477
ExLL-P 0.470 0.501 0.500 0.482 0.475 0.485
ExLL-F 0.481 0.511 0.511 0.495 0.492 0.498

Table 3 presents the performance of the models across different CNN architectures for low-shot instance ordering.
Compared to the previous table, classification accuracy was significantly lower due to fewer training samples. The
EfficientNet backbone CNNs again outperformed the other backbone CNNs.

6.2 Results on Places-365 and Places-LT

In this section, online continual learners were compared in terms of performance, regardless of which CNN architecture
was used. Tables 4 and 5 show the average top-1 accuracy for Places-365 and Places-LT, respectively, for all online
continual learners across all CNNs. In almost every case, SLDA outperformed ExLL-M and ExLL-P.

However, when pairwise fusion was used for combining the results from the two ExLL methods, ExLL-F was able to
outperform SLDA, ExLL-M, and ExLL-P by a significant margin. This suggests that the local and global inferences in
ExLL-F contain complementary information and were able to address each other’s weaknesses when pairwise fusion is
used.

Perceptron and Fine-Tune show a significant drop in accuracy in Class-IID compared to IID, due to catastrophic
forgetting. When training using Class-IID, known classes are not revisited and are thus negatively impacted when new
classes are introduced. Other online continual learning models, including ExLL, are not as affected by catastrophic
forgetting.

Both Places datasets use the same set of images for testing but with different training sets. While Places-365 tests
generalization for 365 location-based classes with 1.8 million images, Places-LT tests how well models perform with
severe imbalance, with classes consisting of anywhere between 5 to 4,980 training images. Therefore, comparing the
performance of the models for the two datasets is one way to observe their robustness against dataset imbalance. Of the
three ExLL methods, MegaCloud-based inference was the least affected by dataset imbalance while prototype-based
inference and pairwise fusion showed a 7.4% and 12.1% loss in performance respectively when trained with Places-LT.
ExLL-F in particular showed worse performance compared to either ExLL-M and ExLL-P, demonstrating a significant
vulnerability to imbalance.

A visualization of the topology of prototypes is provided as a supplementary material (Figure 7).

14

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Table 4: Accuracy results on Places-365 for two data ordering methods iid and class-iid. Results are highlighted as
follows for the first, second, and third best results.

Method IID MeanMNet-S MNet-L ENet-B0 ENet-B1 RN-18
Perceptron 0.303 0.344 0.352 0.340 0.294 0.326
Fine-Tune 0.214 0.252 0.293 0.280 0.217 0.251

Naive Bayes 0.028 0.093 0.250 0.249 0.003 0.124
NCM 0.285 0.332 0.361 0.356 0.322 0.331

Replay (20pc) 0.289 0.323 0.354 0.348 0.261 0.315
SLDA 0.362 0.397 0.412 0.405 0.362 0.387

ExLL-M 0.375 0.347 0.392 0.336 0.312 0.352
ExLL-P 0.354 0.380 0.381 0.370 0.343 0.365
ExLL-F 0.444 0.478 0.488 0.476 0.440 0.465

Method Class-IID MeanMNet-S MNet-L ENet-B0 ENet-B1 RN-18
Perceptron 0.004 0.003 0.012 0.013 0.005 0.007
Fine-Tune 0.003 0.003 0.006 0.006 0.003 0.004

Naive Bayes 0.028 0.093 0.250 0.249 0.003 0.124
NCM 0.265 0.309 0.336 0.329 0.300 0.307

Replay (20pc) 0.251 0.279 0.297 0.295 0.235 0.271
SLDA 0.362 0.397 0.412 0.405 0.362 0.387

ExLL-M 0.347 0.362 0.381 0.367 0.349 0.361
ExLL-P 0.352 0.378 0.381 0.373 0.343 0.365
ExLL-F 0.444 0.473 0.486 0.479 0.439 0.464

Table 5: Accuracy results on Places-LT for two data ordering methods iid and class-iid. Accuracy scores are averaged
over three runs with different data permutations. Results are highlighted as follows for the first, second, and third best
results.

Method IID MeanMNet-S MNet-L ENet-B0 ENet-B1 RN-18
Perceptron 0.152 0.185 0.213 0.206 0.149 0.181
Fine-Tune 0.136 0.163 0.197 0.191 0.141 0.165

Naive Bayes 0.015 0.050 0.199 0.213 0.100 0.115
SOvR 0.089 0.149 0.262 0.245 0.146 0.178
NCM 0.265 0.309 0.336 0.329 0.300 0.306

Replay (20pc) 0.239 0.267 0.290 0.282 0.223 0.260
SLDA 0.290 0.318 0.338 0.328 0.300 0.315

ExLL-M 0.356 0.392 0.407 0.400 0.360 0.383
ExLL-P 0.265 0.297 0.315 0.305 0.277 0.292
ExLL-F 0.324 0.349 0.362 0.351 0.331 0.343

Method Class-IID MeanMNet-S MNet-L ENet-B0 ENet-B1 RN-18
Perceptron 0.017 0.028 0.071 0.073 0.015 0.041
Fine-Tune 0.015 0.021 0.071 0.075 0.004 0.037

Naive Bayes 0.015 0.050 0.199 0.213 0.001 0.096
SOvR 0.089 0.149 0.262 0.245 0.146 0.178
NCM 0.265 0.309 0.336 0.329 0.300 0.308

Replay (20pc) 0.241 0.268 0.306 0.295 0.193 0.261
SLDA 0.290 0.319 0.338 0.328 0.300 0.315

ExLL-M 0.311 0.331 0.338 0.331 0.345 0.331
ExLL-P 0.265 0.300 0.314 0.303 0.273 0.291
ExLL-F 0.325 0.351 0.359 0.350 0.330 0.343

15

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Table 6: Accuracy results on F-SIOL-310 using class-iid data ordering for 5-shot learning and 10-shot learning
scenarios. Accuracy scores are averaged over three runs with different data permutations. Results are highlighted as
follows for the first, second, and third best results.

Method 5-Shot
MNet-S MNet-L ENet-B0 ENet-B1 RN-18 Mean

Perceptron 0.181 0.177 0.406 0.454 0.049 0.253
Fine-Tune 0.183 0.205 0.416 0.460 0.090 0.270

Naive Bayes 0.344 0.554 0.816 0.828 0.035 0.515
SOvR 0.592 0.666 0.679 0.693 0.428 0.611
CBCL 0.853 0.878 0.886 0.838 0.848 0.860
NCM 0.853 0.871 0.886 0.885 0.885 0.876

Replay (20pc) 0.541 0.632 0.594 0.612 0.624 0.600
SLDA 0.880 0.899 0.912 0.903 0.854 0.889

ExLL-M 0.842 0.873 0.863 0.847 0.851 0.855
ExLL-P 0.827 0.832 0.799 0.755 0.803 0.803
ExLL-F 0.889 0.905 0.887 0.854 0.885 0.884

Method 10-Shot
MNet-S MNet-L ENet-B0 ENet-B1 RN-18 Mean

Perceptron 0.158 0.223 0.354 0.458 0.051 0.248
Fine-Tune 0.127 0.199 0.389 0.453 0.090 0.251

Naive Bayes 0.320 0.537 0.806 0.854 0.015 0.506
SOvR 0.561 0.702 0.650 0.752 0.504 0.633
CBCL 0.883 0.906 0.888 0.892 0.869 0.887
NCM 0.883 0.906 0.893 0.913 0.896 0.898

Replay (20pc) 0.625 0.694 0.714 0.722 0.731 0.697
SLDA 0.924 0.948 0.938 0.936 0.910 0.931

ExLL-M 0.926 0.942 0.938 0.928 0.948 0.936
ExLL-P 0.927 0.934 0.897 0.879 0.930 0.913
ExLL-F 0.961 0.966 0.952 0.943 0.968 0.958

6.3 Results on F-SIOL-310

F-SIOL-310 was selected to observe how the online continual learning methods perform in low-shot continuous learning
applications. Table 6 presents the performance for all continual learning methods, backbone CNNs, and learning
scenarios. For the 5-shot scenario, ExLL-F is slightly outperformed by SLDA (0.884 vs. 0.889 respectively). On the
other hand, for the 10-shot scenario, ExLL-F significantly outperformed the next-best methods, ExLL-M and SLDA
(0.958 vs. 0.936 and 0.931 respectively).

A visualization of the topology of prototypes is provided as a supplementary material (Figure 8).

6.4 Overall Results

Spider plots were generated to visualize the performance metrics of online continual learners in terms of several
factors: (NetScore), an index representing the learner’s accuracy and memory and runtime requirements; (Video), the
learner’s ability to learn from sequential images or videos, evaluated based on its performance for the instance-ordered
OpenLORIS dataset; (Low-Shot), the learner’s ability to learn from a very small set of training inputs, evaluated using
low-shot instance-ordered OpenLORIS; (Scale), its scalability to large-scale data, evaluated from Places-365; and
(Imbal.), the learner’s performance on imbalanced datasets, evaluated using Places-LT. To construct the plots, the
performance metrics of learners were averaged for all backbone architectures and then normalized by assigning 0 to the
worst score and 1 to the best score.

Figure 6 illustrates the generated spider plots. The online continual learner’s name is presented at the top of each plot
along with the averaged score for all five metrics. ExLL-F (0.91) showed the best overall performance. Replay 20pc
(0.88) and SLDA (0.88) outperformed the second-best ExLL model, ExLL-P (0.84). The worst-performing ExLL
model, ExLL-M (0.78) is also outperformed by NCM (0.81).

The ExLL models performed poorly due to having low NetScores despite having better scores in the other four
metrics. While sharing some similarities with SLDA, ExLL is less efficient with respect to computation and memory

16

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

PERCEPTRON (0.29)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

FINE-TUNE (0.25)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

NAIVE (0.18)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

SOVR (0.39)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

NCM (0.81)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

REPLAY 20PC (0.88)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

SLDA (0.88)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

EXLL-M (0.78)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

EXLL-P (0.84)

0.00

0.20

0.40

0.60

0.80

1.00
NetScore

Video

Low-ShotScale

Imbal.

EXLL-F (0.91)

Figure 6: The normalized performance metrics of online continual learners for accuracy and memory and computation
requirements (NetScore); learning from temporally correlated videos (Video); generalizing from few data samples
(Low-Shot); scalability (Scale); and learning from imbalanced data distributions (Imbal.). The learner’s average
performance across all metrics is shown at the top of each plot. Higher values are better.

requirements. In addition to class vector means, ExLL models store prototype vector means as well as records of
training samples to facilitate post hoc explainability during inference.

7 Conclusion

We propose an explainable neural network architecture suitable for online and continual learning applications on
embedded devices. The Explainable Lifelong Learning (ExLL) model is a prototype-based classifier inspired by SLDA
and is robust against catastrophic forgetting and mitigates the stability-plasticity dilemma. ExLL was designed to
facilitate single-pass learning from a continuous data stream. The design of the architecture also makes it easy to
generate IF-THEN rules and justify the classifier decisions with highly interpretable explanations. A collective inference
strategy was implemented to combine the global MegaCloud inference with the local prototype-based inference using
glocal pairwise decision fusion to enhance predictive accuracy.

The classifier’s performance was benchmarked against state-of-the-art online learning models using several different
CNN backbones, object recognition datasets, and evaluation metrics. In terms of video classification accuracy, low-shot
learning, scalability, and imbalanced data learning, ExLL outperformed other online learning models in nearly every
scenario. However, in terms of metrics to quantify the model’s storage and computational requirements, ExLL did not
rank as high as Replay 20pc, SLDA, and NCM. One factor is due to these methods maintaining only one class mean per
class while ExLL maintains a small topology of centroids per class as well as additional memory storage to facilitate
explainability. Overall, ExLL showed state-of-the-art classification accuracy in continual learning scenarios. As for
suitability for embedded applications, ExLL outperformed Perceptron, Fine-Tune, and Naive Bayes, but was ranked

17

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

below SOvR, NCM, Replay, and SLDA. This is one of the trade-offs between number of parameters and experiment
runtime requirements, and the need for a prototype-based architecture for explainability.

There are several strategies that can be considered to improve ExLL’s efficiency. Pruning strategies may help identify low-
utility prototypes that can be pruned without significant catastrophic forgetting, thus reducing the number of parameters
requirement of the model [74, 75, 76]. Other explainability techniques can be applied to enhance interpretability,
including the use of gradient class activation maps to visualize discriminative image features [47] [77]. Combined with
selective feature weighing to ignore redundant features [78], this may help reduce the dimensionality and computation
required by the model.

In conclusion, our research has shown that the proposed ExLL model achieved a very good performance when tested
under diverse continual learning scenarios, even when compared against state-of-the-art continual learning models.
Introducing the ability to explain and justify the model predictions is a necessary and important contribution for all
online continual learning algorithms and that we have shown the merits of doing so.

Acknowledgments

The authors acknowledge the support from the German Research Foundation (Deutsche Forschungsgemeinschaft/DFG)
under project CML (TRR 169), the TRAnsparent, InterpretabLe Robots (TRAIL) EU project, and from the BMWK
under project VeriKAS.

References

[1] Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and Autonomous Systems, 15(1-2):25–46,
1995.

[2] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 71–80, 2000.

[3] David Castiñeira, Katherine R Schlosser, Alon Geva, Amir R Rahmani, Gaston Fiore, Brian K Walsh, Craig D
Smallwood, John H Arnold, and Mauricio Santillana. Adding continuous vital sign information to static clin-
ical data improves the prediction of length of stay after intubation: A data-driven machine learning approach.
Respiratory Care, 65(9):1367–1377, 2020.

[4] German I Parisi, Sven Magg, and Stefan Wermter. Human motion assessment in real time using recurrent
self-organization. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), pages 71–76. IEEE, 2016.

[5] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning
with neural networks: A review. Neural Networks, 113:54–71, 2019.

[6] Tatsuya Nomura and Kayoko Kawakami. Relationships between robot’s self-disclosures and human’s anxiety
toward robots. In 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology, volume 3, pages 66–69. IEEE, 2011.

[7] Or Biran and Courtenay Cotton. Explanation and justification in machine learning: A survey. In IJCAI-17
Workshop on Explainable AI (XAI), volume 8, pages 8–13, 2017.

[8] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. Principles of explanatory debugging to
personalize interactive machine learning. In Proceedings of the 20th International Conference on Intelligent User
Interfaces, pages 126–137, 2015.

[9] Shaoning Pang, Seiichi Ozawa, and Nikola Kasabov. Incremental linear discriminant analysis for classification of
data streams. IEEE Transactions on Systems, Man, and Cybernetics, 35(5):905–914, 2005.

[10] Plamen Angelov and Eduardo Soares. Towards explainable deep neural networks (xDNN). Neural Networks,
130:185–194, 2020.

[11] Tyler L Hayes and Christopher Kanan. Online continual learning for embedded devices. In Proceedings of The
1st Conference on Lifelong Learning Agents, volume 199, pages 744–766, 2022.

[12] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, and Koray Kavukcuoglu. Matching networks
for one shot learning. Advances in Neural Information Processing Systems, 29, 2016.

[13] Arun Rai. Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48:137–141,
2020.

18

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

[14] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ‘Why should I trust you?’ Explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1135–1144, 2016.

[15] Nicholas D Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev, Claudio Forlivesi, and Fahim Kawsar.
Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Computing, 16(3):82–88, 2017.

[16] Helena Holmström Olsson. Challenges and strategies for undertaking continuous experimentation to embedded
systems: Industry and research perspectives. Agile Processes in Software Engineering and Extreme Programming,
pages 277–292, 2018.

[17] Gintare Karolina Dziugaite, Shai Ben-David, and Daniel M Roy. Enforcing interpretability and its statistical
impacts: Trade-offs between accuracy and interpretability. arXiv preprint arXiv:2010.13764, 2020.

[18] Gail A Carpenter, Stephen Grossberg, and John H Reynolds. ARTMAP: Supervised real-time learning and
classification of nonstationary data by a self-organizing neural network. Neural Networks, 4(5):565–588, 1991.

[19] Ramaswamy Palaniappan and Chikkanan Eswaran. Using genetic algorithm to select the presentation order of
training patterns that improves simplified fuzzy ARTMAP classification performance. Applied Soft Computing,
9(1):100–106, 2009.

[20] Masoud Yaghini and Mohammad Ali Shadmani. GOFAM: A hybrid neural network classifier combining fuzzy
ARTMAP and genetic algorithm. Artificial Intelligence Review, 39:183–193, 2013.

[21] Wei Shiung Liew, Manjeevan Seera, Chu Kiong Loo, and Einly Lim. Affect classification using genetic-optimized
ensembles of fuzzy ARTMAPs. Applied Soft Computing, 27:53–63, 2015.

[22] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. Advances in Neural Information Processing Systems, 31, 2018.

[23] Tyler L Hayes and Christopher Kanan. Lifelong machine learning with deep streaming linear discriminant analysis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages
220–221, 2020.

[24] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind your neural
network to prevent catastrophic forgetting. In Computer Vision: 16th European Conference, ECCV 2020, pages
466–483. Springer, 2020.

[25] Ali Ayub and Alan R Wagner. Cognitively-inspired model for incremental learning using a few examples.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages
222–223, 2020.

[26] Ali Ayub and Alan R Wagner. F-SIOL-310: A robotic dataset and benchmark for few-shot incremental object
learning. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 13496–13502. IEEE,
2021.

[27] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-shot class-
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12183–12192, 2020.

[28] Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei, and Yihong Gong. Topology-preserving class-
incremental learning. In Computer Vision: 16th European Conference, ECCV 2020, pages 254–270. Springer,
2020.

[29] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

[30] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv preprint
arXiv:1602.07360, 2016.

[31] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6848–6856, 2018.

[32] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. CondenseNet: An efficient DenseNet
using learned group convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2752–2761, 2018.

[33] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. Advances in Neural
Information Processing Systems, 29, 2016.

19

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

[34] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250, 2016.

[35] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient ConvNets.
In International Conference on Learning Representations, pages 1–13, 2017.

[36] Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through L0 regulariza-
tion. In International Conference on Learning Representations, pages 1–13, 2018.

[37] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks.
In Advances in Neural Information Processing Systems, volume 29, pages 4114–4122, 2016.

[38] Minje Kim and Paris Smaragdis. Bitwise neural networks. arXiv preprint arXiv:1601.06071, 2016.

[39] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional neural networks
for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4820–4828, 2016.

[40] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-Net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[41] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization: Towards
lossless CNNs with low-precision weights. In International Conference on Learning Representations, pages 1–14,
2017.

[42] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and
Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only inference.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2704–2713, 2018.

[43] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

[44] Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 535–541, 2006.

[45] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[46] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning through prototypes:
A neural network that explains its predictions. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[47] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for
discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2921–2929, 2016.

[48] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the
IEEE International Conference on Computer Vision, pages 618–626, 2017.

[49] German I Parisi, Jun Tani, Cornelius Weber, and Stefan Wermter. Lifelong learning of spatiotemporal representa-
tions with dual-memory recurrent self-organization. Frontiers in Neurorobotics, page 78, 2018.

[50] Michael Biehl, Barbara Hammer, and Thomas Villmann. Prototype-based models in machine learning. Wiley
Interdisciplinary Reviews: Cognitive Science, 7(2):92–111, 2016.

[51] Chen Liu, Guillaume Bellec, Bernhard Vogginger, David Kappel, Johannes Partzsch, Felix Neumärker, Sebastian
Höppner, Wolfgang Maass, Steve B Furber, Robert Legenstein, and Christian G Mayr. Memory-efficient deep
learning on a SpiNNaker 2 prototype. Frontiers in Neuroscience, 12:840, 2018.

[52] Plamen P Angelov and Xiaowei Gu. Empirical approach to machine learning. Springer, 2019.

[53] PlamenP Angelov and Xiaowei Gu. Deep rule-based classifier with human-level performance and characteristics.
Information Sciences, 463:196–213, 2018.

[54] Eduardo Soares and Plamen Angelov. Novelty detection and learning from extremely weak supervision. arXiv
preprint arXiv:1911.00616, 2019.

[55] Albert HR Ko, Robert Sabourin, Alceu de Souza Britto Jr, and Luiz Oliveira. Pairwise fusion matrix for combining
classifiers. Pattern Recognition, 40(8):2198–2210, 2007.

[56] Plamen Angelov. Autonomous learning systems: From data streams to knowledge in real-time. John Wiley &
Sons, 2012.

20

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

[57] Goeffrey J McLachlan. Mahalanobis distance. Resonance, 4(6):20–26, 1999.
[58] Cornelius Weber and Stefan Wermter. A self-organizing map of sigma–pi units. Neurocomputing, 70(13-15):2552–

2560, 2007.
[59] Marvin Herchenbach, Dennis Müller, Stephan Scheele, and Ute Schmid. Explaining image classifications with

near misses, near hits and prototypes: Supporting domain experts in understanding decision boundaries. In Pattern
Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, pages 419–430. Springer,
2022.

[60] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and F.-F. Li. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision, 115:211–252, 2015.

[61] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V.
Le, and H. Adam. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1314–1324, 2019.

[62] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[63] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.

[64] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[65] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. ICaRL: Incremental
classifier and representation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2001–2010, 2017.

[66] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari. End-to-end
incremental learning. In Computer Vision: 15th European Conference, ECCV 2018, pages 233–248, 2018.

[67] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. PODNet: Pooled outputs
distillation for small-tasks incremental learning. In Computer Vision: 16th European Conference, ECCV 2020,
pages 86–102. Springer, 2020.

[68] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large scale
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 374–382, 2019.

[69] Qi She, Fan Feng, Xinyue Hao, Qihan Yang, Chuanlin Lan, Vincenzo Lomonaco, Xuesong Shi, Zhengwei Wang,
Yao Guo, Yimin Zhang, Fei Qiao, and Rosa H. M Chan. OpenLORIS-Object: A robotic vision dataset and
benchmark for lifelong deep learning. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 4767–4773. IEEE, 2020.

[70] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image
database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6):1452–1464,
2017.

[71] Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience replay for streaming
learning. In 2019 International Conference on Robotics and Automation (ICRA), pages 9769–9776. IEEE, 2019.

[72] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier incrementally
via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
831–839, 2019.

[73] Alexander Wong. NetScore: Towards universal metrics for large-scale performance analysis of deep neural
networks for practical on-device edge usage. In Image Analysis and Recognition: 16th International Conference,
ICIAR 2019, pages 15–26. Springer, 2019.

[74] Wei Shiung Liew, Chu Kiong Loo, Vadym Gryshchuk, Cornelius Weber, and Stefan Wermter. Effect of pruning
on catastrophic forgetting in growing dual memory networks. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2019.

[75] Chayut Wiwatcharakoses and Daniel Berrar. SOINN+, a self-organizing incremental neural network for unsuper-
vised learning from noisy data streams. Expert Systems with Applications, 143:113069, 2020.

[76] Aleksej Logacjov, Matthias Kerzel, and Stefan Wermter. Learning then, learning now, and every second in
between: lifelong learning with a simulated humanoid robot. Frontiers in Neurorobotics, 15:669534, 2021.

21

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

[77] Alan H Gee, Diego Garcia-Olano, Joydeep Ghosh, and David Paydarfar. Explaining deep classification of
time-series data with learned prototypes. In CEUR Workshop Proceedings, volume 2429, page 15. NIH Public
Access, 2019.

[78] Eoin M Kenny and Mark T Keane. Explaining deep learning using examples: Optimal feature weighting methods
for twin systems using post-hoc, explanation-by-example in xai. Knowledge-Based Systems, 233:107530, 2021.

[79] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(11):2579–2605, 2008.

[80] Sheng-Jun Wang and Changsong Zhou. Hierarchical modular structure enhances the robustness of self-organized
criticality in neural networks. New Journal of Physics, 14(2):023005, 2012.

[81] Atiq Ur Rehman and Samir Brahim Belhaouari. Divide well to merge better: A novel clustering algorithm. Pattern
Recognition, 122:108305, 2022.

22

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

Supplementary Materials

.1 Visualization of the Places-365 topology

Figure 7: Visualizing the topology of learned prototypes acquired from the Places-365 dataset, for the first 10 classes.
On the left is a 2-dimensional representation of the identified prototypes generated using t-SNE. Each circle represents
one prototype and the radius of each circle denotes the support for that prototype. On the right is the generated Voronoi
tesselation.

Figure 7 visualizes the topology of the prototypes encoded using ExLL-F. In the left sub-figure, the high-dimensional
centroids are transformed into 2-dimensional scatter plots using t-distributed stochastic neighbor embedding (t-SNE)
[79]. Each circle denotes one prototype and the radius of the circle indicates the support or size of the prototype’s data
cloud. There are multiple instances where neighbouring prototypes displayed overlapping areas of influences. The
presence of overlap suggests that some prototypes are highly similar to each other even after self-organization. It is
possible to reduce redundancies by merging the overlapping prototypes, for example, by using hierarchical clustering
[80] or divide-and-merge [81]. In the right sub-figure, the same 2-dimensional prototype topology is represented using
a Voronoi tesselation graph. The merged prototypes, for instance, may be visualized by removing the edges between
neighbouring partitions with the same colour (i.e., same class labels).

23

Loo et al. Explainable Lifelong Stream Learning Based on “Glocal” Pairwise Fusion

.2 Visualization of the F-SIOL-310 topology

Figure 8: Visualizing the topology of learned prototypes acquired from the F-SIOL-310 dataset. On the left is a
2-dimensional representation of the identified prototypes generated using t-SNE. Each circle represents one prototype
and the radius of each circle denotes the support for that prototype. On the right is the generated Voronoi tesselation.

Figure 8 visualizes the topology of the prototypes encoded using ExLL-F. In the left sub-figure, the high-dimensional
centroids are transformed into 2-dimensional scatter plots using t-SNE. Each circle denotes one prototype and the radius
of the circle indicates the support or size of the prototype’s data cloud. The prototypes encoding the F-SIOL-310 dataset
form a highly-separable topology with clear delineation between prototypes. This is considerably different compared to
the Places topology in Figure 7. The difference may be due to the visually distinctive objects in the F-SIOL-310 dataset
while the Places dataset has significantly more variety of images within-class causing the overlap. Similarly in the right
sub-figure, the Voronoi tesselation graph for F-SIOL-310 displayed a distribution of evenly spaced cells highlighting
the prototype separability.

24

	Introduction
	Problem Definition
	Related Work
	Streaming Learning
	Continual Embedded / On-Device Learning
	Explainable Prototype-Based Learning Models

	Methodology
	Training the Explainable Continual Learning Model
	Inferring the Explainable Continual Learning Model
	Explainability: Inference and Rule Generation

	Experiment Setup
	Backbone Architectures
	Online Continual Learning Models
	Datasets
	Experiment Protocol
	Performance Metric

	Results
	Results on OpenLORIS
	NetScore Performance
	Backbone CNN Comparisons

	Results on Places-365 and Places-LT
	Results on F-SIOL-310
	Overall Results

	Conclusion
	Visualization of the Places-365 topology
	Visualization of the F-SIOL-310 topology

