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ABSTRACT Robotic platforms that can efficiently collaborate with humans in physical tasks constitute a
major goal in robotics. However, many existing robotic platforms are either designed for social interaction
or industrial object manipulation tasks. The design of collaborative robots seldom emphasizes both their
social interaction and physical collaboration abilities. To bridge this gap, we present the novel semi-
humanoid NICOL, the Neuro-Inspired COLlaborator. NICOL is a large, newly designed, scaled-up version
of its well-evaluated predecessor, the Neuro-Inspired COmpanion (NICO). NICOL adopts NICO’s head
and facial expression display, and extends its manipulation abilities in terms of precision, object size and
workspace size. To introduce and evaluate NICOL, we first develop and extend different neural and hybrid
neuro-genetic visuomotor approaches initially developed for the NICO to the larger NICOL and its more
complex kinematics. Furthermore, we present a novel neuro-genetic approach that improves the grasp-
accuracy of the NICOL to over 99%, outperforming the state-of-the-art IK solvers KDL, TRACK-IK and
BIO-IK. Furthermore, we introduce the social interaction capabilities of NICOL, including the auditory and
visual capabilities, but also the face and emotion generation capabilities. Overall, this article presents for
the first time the humanoid robot NICOL and, thereby, with the neuro-genetic approaches, contributes to the
integration of social robotics and neural visuomotor learning for humanoid robots.

INDEX TERMS Neuro-genetic visuomotor learning, neuro-robotics, humanoid robotics

I. INTRODUCTION
What are the main prerequisites for a collaborative robot
to act and work alongside humans? On the one hand, the
robot needs to be able to perform precise and reliable
object manipulation in a large workspace, but on the other
hand, the robot also needs to be able to interact with
human coworkers on a social level. This requires auditory
communication as well as the understanding and synthesis
of both social cues and non-verbal communication like
gestures and facial expressions.

Social interaction is one of the crucial factors for intu-
itive human-robot collaboration and the ability of robots to
learn from humans [1]–[3]. Gaze, as a non-verbal social
cue, facilitates shared attention, which can signal future

actions or draw attention towards an object or location [4].
Likewise, facial expressions can be used to give feedback
or warn about dangers. Speech output also offers an intu-
itive way to request aid and instructions, or to suggest a
course of action. There exist only very few robots, however,
that integrate social interaction with reliable manipulation
of adult-scale objects while remaining affordable. A robot
is desirable that bridges this gap (see Fig. 1).

The Pepper robot by Softbank Robotics, for instance, is
an affordable semi-humanoid social robot with rudimen-
tary physical object manipulation abilities. It features a
variety of body language skills and communication abili-
ties, and can be programmed to understand certain social
cues. However, even though it is equipped with arms and
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FIGURE 1. The NICOL robot is an affordable platform that bridges the gap
between social robotics and reliable object manipulation in a large
workspace.

hands, it is not designed to grasp or lift but to gesture. A
good example of an affordable robot designed for physical
object manipulation is the Franka Research 3 by Franka
Emika [5]. It can perform high-precision grasping in a
large workspace, but it does not feature any built-in social
interaction abilities.

The iCub robot is a good example of a humanoid
robot that features both reliable object manipulation (for
smaller objects) and social interaction skills [6] and is,
therefore, an excellent research platform for developmental
robotics and Human-Robot Interaction (HRI). The iCub is
arguably among the most successfully engineered robots
that combine these skills, but it is also very expensive and
hard to afford for small research groups and companies
with only little funding (e.g., start-ups). Hence, to bridge
the gap between affordable social robots like Pepper, and
affordable robots designed for object manipulation like the
Franka Research 3, we present the novel adult-sized semi-
humanoid robot NICOL, the Neuro-Inspired COLlaborator
(see Fig. 2).

The social interaction capabilities of NICOL are based
on the well-evaluated design of its predecessor, the hu-
manoid child-sized Neuro-Inspired COmpanion (NICO)
[7]. Like the NICO, the new NICOL has an articulated
head that can express stylized facial expressions and fo-
cus its gaze on interaction partners or relevant elements
of the shared workspace. While NICO has limited low-
precision object manipulation abilities, NICOL can manip-
ulate objects using two Robotis OpenManipulator-P arms
with adult-sized five-fingered Seed Robotics RH8D hands
attached. It has a workspace similar to an adult person and
can handle everyday objects.

In addition to the hardware, NICOL also features a
software framework that is directed towards two groups
of users—the roboticists that wish to work at a low level
with a high degree of control, and the users from different
backgrounds, like artificial intelligence, machine learning,
cognitive modelling and human-robot interaction, that re-

quire a simpler and more abstract interface. Low-level con-
trol is delivered via the Robot Operating System (ROS) and
provides a rich control interface with great customizability
and extensibility. Manipulating and developing within a
ROS workspace often requires many non-trivial software
cross-dependencies and requires a certain level of expertise
to navigate, use and maintain. For users with little back-
ground in robotics, a more lightweight system is desired.
Furthermore, such users often demand a lightweight simu-
lated version of the robot for performing rapid iterations
of parallelised deep reinforcement learning experiments.
NICOL meets the demands of both groups—roboticists and
AI researchers. Its software offers a full ROS interface,
but users can also connect to a front-end Python interface
running on top of ROS, which enables them to directly use
the robot without having to explicitly deal with ROS. In
addition, we provide a simulated virtual version of NICOL.

In this article, we first place the NICOL robot in context
by examining existing related platforms (Section II). This
demonstrates how our robot fills the gap between social
robotics and object manipulation in an affordable manner.
The next three sections then cover our three main contribu-
tions:

• Section III presents the hardware and software con-
cept for NICOL, the Neuro-Inspired COLlaborator.
Herein, we also introduce the social interaction capa-
bilities of NICOL, including face and emotion gen-
eration capabilities as well as auditory and visual
capabilities.

• Section IV presents a thorough evaluation of NICOL’s
kinematics. We adapt and extend different neural and
hybrid neuro-genetic visuomotor approaches initially
developed for the NICO to the larger NICOL and its
more complex kinematics. We show the challenges
of neural end-to-end learning for complex kinemat-
ics and successfully evaluate a hybrid neuro-genetic
approach.

• Section V introduces a novel neuro-genetic visuomo-
tor learning approach that improves the learned grasp-
ing accuracy of NICOL to over 99%, and contributes
to the growing research on neuro-robotic approaches
that are suitable for transfer between platforms with
different morphologies [8]. Here, we also present
experiments to show that the grasp-accuracy of the
NICOL improves to over 99%, outperforming the
state-of-the-art inverse kinematics (IK) solvers KDL,
TRACK-IK and BIO-IK.

Overall, this article presents for the first time the NICOL
robot, which serves as an affordable research platform that
integrates social robotics and humanoid manipulation, and
as a testbed for neural visuomotor learning.

II. RELATED WORK
A. RELATED ROBOTIC PLATFORMS
NICOL combines the capabilities of dexterous robotic ma-
nipulation and social interaction, and so has different types
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Robot Type Humanoid Body Humanoid Head Facial Expressions Gestures Grasping Workspace Price Range
UR-5 robot arm ✗ ✗ ✗ ✗ ✓ adult-sized mid
KUKA-DLR Arm robot arm ✗ ✗ ✗ ✗ ✓ adult-sized mid
Franka Research 3 robot arm ✗ ✗ ✗ ✗ ✓ adult-sized low
Furhat robot head ✗ ✓ ✓ ✗ ✗ none mid
iCub head robot head ✗ ✓ ✓ ✗ ✗ none mid
ROBOTIS OP3 infant-sized robot ✓ ✗ ✗ ✓ ✗ tiny low
Nao infant-sized robot ✓ ✓ ✗ ✓ ✓ tiny low
iCub child-sized robot ✓ ✓ ✓ ✓ ✓ child-sized high
NimbRo-OP child-sized robot ✓ ✓ ✗ ✗ ✗ child-sized mid
Pepper child-sized robot (✓) upper body ✓ ✗ ✓ ✗ child-sized mid
Poppy child-sized robot ✓ ✓ ✓ ✓ ✓ child-sized low
NICO (ours) child-sized robot ✓ ✓ ✓ ✓ ✓ child-sized low
Talos adult-sized robot ✓ ✓ ✗ ✓ ✓ adult-sized high
PR2 adult-sized robot ✗ ✗ ✗ ✗ ✓ adult-sized high
Sawyer adult-sized robot ✗ ✗ ✓ ✗ ✓ adult-sized mid
ARMAR-6 adult-sized robot (✓) upper body ✗ ✗ ✓ ✓ adult-sized high
TOMM adult-sized robot (✓) upper body ✗ ✗ ✗ ✓ adult-sized high
Fetch adult-sized robot ✗ ✗ ✗ ✗ ✓ adult-sized high
R1 adult-sized robot (✓) upper body ✗ ✓ ✓ ✓ adult-sized high
Sophia adult-sized robot (✓) upper body ✓ ✓ ✓ ✗ adult-sized high
NICOL (ours) adult-sized robot (✓) upper body ✓ ✓ ✓ ✓ adult-sized mid

TABLE 1. Robotic platforms for social interaction and object manipulation. Price ranges are estimated; a low price range is below 10.000 EUR, a medium
price range is below 100.000 EUR and a high price range is above this. Few platforms are designed for both social interaction and physical tasks while still
being affordable. NICOL fills the gap of a robotic platform with both an upper humanoid body and humanoid head, capable of facial expressions, gestures
and object manipulation in an adult-sized workspace at an affordable price tag.

of robots as related platforms.
There are many robotic manipulators for industry and

research. Some common platforms are the UR-5 [9] and
its related designs from Universal Robots, as well as the
KUKA-DLR Lightweight Robot arm [10], and the Franka
Research 3 [11]. These robotic arms have at least six de-
grees of freedom (DoF) to ensure solvable inverse kinemat-
ics for general 6-dimensional poses. These manipulators
and their various end-effectors are primarily designed to
handle objects and lack the social interaction capabilities
that enable intuitive learning from, or teaching by, humans.

On the other side of the spectrum are platforms designed
for social interaction with no, or limited, manipulation
capabilities. For instance, the iCub [6] is available as a
stand-alone 3-DoF head that can display facial expressions
and perform gaze shifts. The Furhat [12] robot head is
another example and can project animated or recorded
faces for interaction purposes.

Infant-sized or toy-sized humanoids form another type
of social platform. Their small size is advantageous for
research, they have an affordable price, and they are in-
herently safe due to low motor speeds and weight. Well-
known examples are the Softbank Robotics NAO (for-
merly Aldebaran) and the ROBOTIS OP3 (descendant of
the DARwIn-OP) [13]. While infant-sized platforms often
have humanoid manipulators, they are too small to ma-
nipulate adult-sized items or reach them in domestic-scale
environments.

The next larger category of humanoids is child-sized. A
popular platform for developmental research is the iCub
[6]. Its size resembles a child of about 90 cm, it is well-
actuated with 53 DoF, features human-like hands and gaze
shifts, and can display stylized facial expressions. NICOL

is significantly more affordable and simple than the iCub,
and is thereby less challenging to modify and/or customize
for particular needs. The NimbRo-OP family of robots
[14]–[16] are designed for the RoboCup soccer league,
and focus on bipedal walking with arms for balance as
well as getting up, but not on manipulation. As such, they
do not even have hands that can be actuated. Softbank’s
Pepper robot [17] features a humanoid torso on top of an
omnidirectional wheeled platform. It has 20 DoF in the
upper body, but its arms and hands are designed for ges-
turing, not grasping. Poppy is an open-source 3D-printed
robot designed for education, artists, and scientists [18]. It
is completely customizable and comes with a display to
show facial expressions and other information. Poppy can
perform bipedal locomotion, but in its primarily advertised
configuration, it features only very limited grasping func-
tionalities. The concept or our NICO robot is quite similar
to that of Poppy. NICO is an open platform for researching
neuro-robotic models for human-robot interaction, as well
as visuomotor learning [7]. Its head adapts the open iCub
design, and, in contrast to Poppy, integrated LED arrays
display stylized facial expressions. Furthermore, NICO
has quite sophisticated grasping abilities to manipulate
small objects, provided by two 6-DoF arms with fully
functional child-sized anthropomorphic hands produced by
Seed Robotics.

Adult-sized humanoids with manipulation abilities can
generally handle real-life objects. However, such plat-
forms are often prohibitively expensive and difficult to
maintain—like PAL’s Talos [19], which was introduced at
a price of about 1 million euros—or their design is too
non-humanoid for social interaction, like the Atlas initially
developed by Boston Dynamics, and the PR2 from Willow
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Garage. Some adult-sized platforms lack object manipu-
lation abilities entirely, like the Hanson Robotics Sophia
robot. The ARMAR-6 from the KIT [20] is designed for
complex collaborative tasks in industrial environments, but
it neither features a human-like face nor can it display
facial expressions. Likewise, the TOMM [21] and the one-
armed Fetch robot [22] focus on manipulation and wheeled
mobility, but not on social cues. The R1 from the IIT
[23] is a wheeled platform with grippers that can display
an animated face on a screen. A related design is the
Rethink Robotics Sawyer, the successor of the well-known
humanoid Baxter robot. It features a tablet for displaying
animated eyes, but it only has a single end effector and is
not humanoid.

Table 1 summarizes our analysis of robotic platforms. It
is evident that there is a gap in available platforms that are
designed for both social interaction and adult-sized object
manipulation tasks. The few platforms that fulfil these two
criteria are prohibitively expensive. We propose the open
NICOL design to address this gap in the state of the art. In
this article, we show that the NICOL is capable of social
interaction tasks by extrapolating from previous work on
the NICO, its “smaller brother”. NICO and NICOL share
the design of their head and facial expression mecha-
nism(s), but importantly, the latter possesses a significantly
increased arm strength and workspace size, allowing for
more real object scenarios.

III. NICOL SEMI-HUMANOID ROBOTIC PLATFORM
NICOL is designed for research on robots that learn from
and collaborate with humans. It can serve as a platform
for integrating neuro-robotic visuomotor models combined
with affective interaction, joint attention, and shared per-
ception. NICOL, depicted in Fig. 2, consists of three
main components: two manipulators with anthropomor-
phic hands, and the head with a facial expression display.
NICOL adapts the head design of the child-sized humanoid
NICO and combines it with two Robotis manipulators with
five-fingered hands. NICOL can naturally collaborate with
human partners on physical tasks, thanks to its ability to
manipulate adult-size domestic objects and to use non-
verbal cues like gaze or facial expression.

A. SOCIAL INTERACTION CAPABILITIES OF NICOL
The interaction capabilities of NICOL are based on the de-
sign of NICO. Here, we summarize the main findings and
studies. The seven facial expressions of NICO, which are
now shared by NICOL, are evaluated by Churamani et al.
[24]. In a study with twenty participants from eleven differ-
ent countries, five expressions (neutral, happiness, sadness,
surprise and anger) are recognized by the participants with
an accuracy of over 75%. The positive effect of the emotion
display on the robot’s subjective user rating is verified with
a Godspeed questionnaire [25]. The freely programmable
LED arrays are also used in learning emotion expression
via reinforcement learning [26]. Ng et al. [27] used facial

expressions in combination with neurocognitive models for
social cue recognition and behavior control, and report
that a natural language dialogue system benefits from the
robot directly looking at the face of its interaction part-
ner. Together with a more personalized conversation, this
behavior made participants perceive NICO as more intelli-
gent and likeable. Beik-Mohammadi et al. [28] show that
using social gestures and more socially engaging dialogue
enhanced the robot’s perceived likeability and animacy.
Finally, Kerzel et al. [3] show that participants guided by
NICO in a visuomotor learning scenario via verbal requests
and facial expressions, as compared to instructions by a
human experimenter, rated the human-robot interaction as
more positive and engaging. This increased engagement
can improve the outcome of the learning scenario.

In summary, the studies strongly suggest that the design
of NICOL’s head, which is adapted from NICO, can effec-
tively create social cues in terms of facial expressions and
gaze. They also show that these social cues positively affect
human-robot interactions.

B. ARMS AND HANDS
The arms of NICOL consist of two Robotis OpenManip-
ulator-P1 arms with 6 DoF and a payload of 3 kg. As
end-effectors, two SeedRobotics RH8D adult-sized robot
hands2 with a manipulation payload of 750 g are used. All
five fingers in the hand are tendon-operated. Each three-
segment finger is operated by a single tendon. Each hand
has eight actuated DoF—three in the wrist for rotation3,
flexion, and abduction, two DoF in the thumb for abduction
and flexion, and one DoF each for index finger flexion,
middle finger flexion and combined flexion of the ring
and little finger. The tendon mechanism allows the hand to
coil around objects without further fine control. The arms
of NICOL can reach up to 100 cm and therefore have a
workspace slightly larger than that of an adult sitting at a
table.

C. HEAD AND AUDIOVISUAL SENSING
The design of the shell of NICO’s head is based on a
modified version of the open-source iCub design [6]. The
design balances human features with enough abstraction
to avoid the uncanny valley effect [29]. Stylized facial
expressions can be displayed by NICOL using three LED
arrays that are placed behind the eyes (two 8x8 LED arrays)
and mouth (one 16x8 array). Due to the head’s material
properties, the individual LEDs form lines shining through
the head’s material, as shown in Fig. 2. An internal speaker
is used to facilitate spoken communication. The head is
articulated with two DoFs for pitch and yaw movements.
Two See3CAM CU135 cameras with a 4096 x 2160 (4K)
resolution are mounted in the eye sockets of NICOL. Their

1https://www.robotis.us/openmanipulator-p
2https://www.seedrobotics.com/rh8d-adult-robot-hand
3Note that the wrist rotation is redundant and therefore not used.

4 VOLUME *, 2016



Kerzel et al.: NICOL: A Neuro-inspired Collaborative Semi-humanoid Robot that Bridges Social Interaction and Reliable Manipulation

FIGURE 2. NICOL semi-humanoid platform. Left: NICOL jointly works on a grasping task with an experimenter (in the upper-right corner thereof, different
facial expressions of NICOL are shown that can give feedback during the task). Right: NICOL object manipulation and expression in real life (top) and
simulation (bottom).

fisheye lens has a field of view of 202 degrees. Two
Soundman OKM II binaural microphones are placed at the
sides of NICOL’s head; due to the absence of head-internal
fans or mechanics, the robot’s ego noise is very low.

D. TABLE ENVIRONMENT AND SAFETY MEASURES
The table environment measures 100 x 200 cm and is
located at a height of 74 cm. The head and arms of the
NICOL are mounted to a vertical support at the rear centre
of the table. Scaffolding at the corners of the table creates
a visible delimitation for the workspace of the robot. A
human interaction or collaboration partner is thereby im-
plicitly made aware when actively reaching into the robot’s
workspace. For additional safety, two emergency shutdown
buttons are integrated within the operator’s workspace. The
scaffolding can further be used to mount external sensors or
devices, like cameras or light sources.

E. SOFTWARE AND SIMULATION ENVIRONMENT
The NICOL API is based on the Robot Operating Sys-
tem (ROS) middleware. All functionalities are provided
through a modified version of the hardware controller de-
livered with the Robotis arms, extended to support the Seed
Robotics hands, additional sensors, as well as drivers for
custom hardware (facial expressions). The API integrates
the MoveIt planning framework and provides a Python-
based client. For prototyping and development, as well as
for simulation of real-world scenarios, NICOL is realized
in both the Gazebo simulation environment (see Fig. 3) and
CoppeliaSim (see Fig. 2). The robot description is based
on a URDF model, making it possible to import NICOL in
many other simulators and environments.

IV. VISUOMOTOR LEARNING AND
STATE-OF-THE-ART IK SOLVERS
To evaluate NICOL as a research platform for neurorobotic
visuomotor learning, we first transfer an end-to-end neural
visuomotor learning approach from NICO, a smaller hu-
manoid robot, to NICOL. Based on the results, we propose
two variations of a modular neuro-hybrid approach. In
these modular approaches, we use a neural network for
image processing and different IK solver for the kinematic.
We evaluate the baseline performance of state-of-the-art
IK solvers that are established in the robotics community
and suggest a novel hybrid neuro-genetic approach that can
handle the added kinematic complexity of a humanoid.

A. STATE-OF-THE-ART IK APPROACHES
Solving IK is a well-known and studied problem in the
robotics community. The MoveIt planning framework [30],
as part of the ROS middleware, offers the required flexibil-
ity to utilize different IK solvers for an experimental setup.
It enables a plug-in-based configuration of inverse kinemat-
ics solvers as well as high-level motion planners. Mainly
third-party kinematics libraries, contributed by foundations
or private sector organizations are available, and these have
become state-of-the-art due to the popularity of the ROS
framework. The inverse kinematics and planning function-
alities are provided in the form of ROS services and offer a
variety of parameterized kinematics calculations.

The Kinematics and Dynamics Library (KDL) by Oro-
cos [31] is de-facto the most widely adapted inverse kine-
matics solution in the ROS ecosystem. It supports kine-
matic chains with a minimum of 6 DoF. KDL utilizes the
well-known pseudo-inverse Jacobian method to determine
suitable joint configurations. As the Jacobian matrix holds
the partial derivatives between joint space and Cartesian
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FIGURE 3. Left: Size comparison between an adult human’s hand, NICOL, and NICO. Upscaling the hands of NICO allows NICOL to manipulate everyday
objects and tools. Right: NICOL in a virtual Gazebo environment during a dexterous manipulation task and dropping a baseball into a basket.

FIGURE 4. Neural architecture for end-to-end visuomotor learning.

space, the difference between the so-called seed state (typ-
ically the initial joint configuration) and the target state
can be calculated in Cartesian space. Forward kinematics
are used on the seed state to determine the current end-
effector pose. A suitable joint configuration for achieving
the target Cartesian end effector pose can then be obtained
by calculating the error between the initial pose and the
target pose, and multiplying it with the inverted Jacobian.
The algorithm makes use of the Newton-Raphson method
and iteratively minimizes the error between the previous
and next target poses.

With the intention of improving the coverage of the robot
workspace, TracLabs identified key issues in the KDL
framework and proposed TRAC-IK in 2015 [32]. Remark-
able about the approach is that two IK solvers are executed
in parallel. One is a modified reimplementation of KDL
called KDL-RR. The method additionally checks for local

optima during the iterative improvement step and moves
the next seed far enough away from them. The second
solver, SQP-SS, formulates the IK problem as a non-linear
sequential quadratic programming optimization problem.
TRAC-IK returns the solution of the solver that first ter-
minates with a valid joint configuration. In contrast to the
pseudo-inverse Jacobian, SQP-SS is particularly capable
of directly handling constraints, such as the joint limits,
during the optimization step. This ability is particularly
relevant for humanoid robots like NICOL, whose joints are
constrained to mimic the human range of motion.

Starke et al. introduced the Bio-IK method [33] [34].
The algorithm combines multiple bio-inspired optimiza-
tion methods, most importantly evolutionary and particle
swarm optimization, in order to solve the inverse kinemat-
ics problem. In difference to KDL and TRAC-IK, it does
not rely on any Jacobian mathematics. The evolutionary

6 VOLUME *, 2016



Kerzel et al.: NICOL: A Neuro-inspired Collaborative Semi-humanoid Robot that Bridges Social Interaction and Reliable Manipulation

FIGURE 5. Three architectures for visuomotor learning.

algorithm is fundamental to the approach. Every individual
in the population corresponds to a joint space robot pose.
Momentums are assigned to every individual by hybrid
particle swarm optimization, and these momentums are
continuously updated during runtime. Besides selection,
mutation and recombination, also elitism is used to pre-
vent the deterioration of already-found solutions. Local
search is executed on the elites, and simulates mutations
on single genes. The classical MoveIt interface only allows
setting the pose or position goals. Bio-IK additionally offers
extended functionality in a separate service [35], where
multiple custom goal types are available, e.g. linear end-
effector trajectories or minimal joint displacement config-
urations. The various custom goal types can be combined
into a single request, as each custom goal type is treated
as a weighted partial cost function by the algorithm. The
service also offers an approximate mode, leading to lower
precision in the IK solutions but enabling higher coverage
of the workspace.

B. END-TO-END NEUROROBOTIC VISUOMOTOR
LEARNING
The supervised neural end-to-end visuomotor approach,
first introduced in [36], learns to map a single object’s
visual input in the robot’s workspace to joint configurations
for reaching for the object. The approach was evaluated
with a grasp success rate of approximately 85% on NICO
with 5 DoF in a workspace of size 30x40 cm and a training
set of 400 samples. In this paper, we evaluate if the larger
workspace and more complex NICOL kinematics influence
the learning outcome. The neural architecture is shown in
Figure 4. In Section V-B we report experimental results.

C. HYBRID NEURO-GENETIC VISUOMOTOR
LEARNING
Genetic algorithms are based on evolutionary selection,
recombination and mutation processes of a population of
individuals, modelled by their chromosomes [37]. Each
chromosome encodes a potential solution to a task. Fol-
lowing Kerzel et al. [38], the chromosomes encode a joint
configuration to reach a given pose. During each iteration,
these chromosomes, expressed as individuals, are ranked
according to their fitness, i.e., the position and orientation
error compared to the goal pose. Successful individuals
are copied into the next generation, with possible random
mutations to their chromosome-encoded joint configura-
tion. Niching is used to preserve diverse chromosomes; on
every CPU of the computer system, a different evolution
is implemented, thus full utilizing multiple cores with
minimal overhead.

While genetic algorithms are adept at escaping local
minima, they often have issues further optimizing found
solutions. To overcome this limitation, we hybridize the
genetic algorithm with gradient-based Sequential Least
SQuares Programming (SLSQP). This computationally ex-
pensive procedure is only applied to the n-best individuals
of the population. While preliminary experiments have
indicated that SLSQP is prone to be attracted by local
minima, the initialization with solutions found by the ge-
netic algorithm can overcome this shortcoming. Optimized
hyperparameters for the genetic algorithm and SLSQP
were adapted from [38], where they yielded good results
for NICO.

While the hybrid genetic algorithm provides IK solu-
tions, a neural component is utilized to determine the posi-
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tion of the grasp object from visual input. The architecture
is shown in Figure 5, experiments are reported in Section
V-B.

V. IK AND VISUOMOTOR LEARNING EXPERIMENTS

We first curate a new dataset (Section V-A) for visuomotor
learning on the NICOl platform. A first analysis of the
dataset allows us to get an insight into NICOL’s workspace.
In Section V-B, we evaluate how well our neural end-to-end
and a hybrid neuro-genetic visuomotor learning approach
can be transferred from the child-sized humanoid NICO to
the adult-sized NICOL. We evaluate how the significantly
increased workspace and the more complex manipulator
affect the learning outcome. In Section V-C and V-D, we
present a modular neuro-hybrid approach in which we
evaluate state-of-the-art IK solvers and a neuro-generic
approach based on GAIKPy.

A. DATASET FOR VISUOMOTOR LEARNING
ANALYSIS OF NICOL’S WORKSPACE

We collect three datasets4, each consisting of 10,000 sam-
ples in a virtual environment. The datasets differ in the
number of active joints of NICOL, ranging from six to
eight. As the joints of NICOL are constrained to mimic the
human range of motion, we hypothesize that the additional
degrees of freedom beyond six will increase the number of
reachable grasp poses. Each sample contains the following:
1) an image from the egocentric perspective of NICOL with
a grasp-object placed onto the table on the right side of the
workspace in a 100 x 100 cm area; the images are cropped
and resized to 63 x 96 pixels. 2) The x- and y-coordinates
of the grasp-object on the table. 3) The configuration of
NICOLs 8 arm joints that result in a grasp-pose. The grasp
pose has the hand pointing forward with the palm touching
the grasp-object at the middle of its height, as shown in
Fig. 4 (right side). We use a genetic algorithm GAIKPy
introduced in [38] for computing the joint configuration
for grasping the object that is placed at a random position
within the robot’s workspace. If no suitable joint configura-
tion can be found with the genetic algorithm, the sample is
rejected, and another random object position is generated.

Fig. 6 shows the distribution of all successful grasp
samples in NICOL’s workspace for the three experimental
conditions. Due to the rigid mechanical constraints of our
defined grasping pose, the joint configuration and self-
collision avoidance, the area within the defined workspace
for which grasp poses can be found increases with the
number of active joints. Only with eight active joints, good
coverage of the workspace can be achieved. Therefore, we
focus our analysis on this dataset.

4The datasets will be released at https://www.inf.uni-hamburg.de/en/
inst/ab/wtm/research/corpora.html

B. END-TO-END NEUROROBOTIC VISUOMOTOR
LEARNING EXPERIMENTS

First, we evaluate a neural end-to-end learning approach
using the neural architecture adopted from [36]. The input
to the neural network is a 96x64 pixel image from NICOL’s
perspective of its workspace with a single object placed in
it. Depending on the dataset, the output of the network is
the seven or eight joint values of NICOL’s right manipula-
tor. The hyperparameters were optimized using Hyperopt
[39]. The model was trained with an Adam optimizer and a
batch size of 35, and the MSE over the joint configuration
as a loss function on a random 90-10 split of the entire
dataset. Hyperparameter ranges and results after are shown
in Table 2, and the resulting architecture is shown in Fig. 4.

We use 10-fold cross-validation to obtain our results.
For evaluation, we denormalize the joint output values
and calculate the robotic hand’s pose using the known
forward kinematics of NICOL. The mean position error
is 0.42 ± 0.21 meters and the mean orientation error is
7.72 ± 5.88 degrees. Based on previous work [36], [38],
we count a grasp as successful if the position error of the
resulting pose is < 10 mm and the sum of orientation
errors is < 20 degrees. These limits are regularly exceeded.
Table 3 summarizes the results with a single-digit grasp
accuracy. We conclude that the end-to-end approach cannot
be transferred directly to NICOL. We attribute this result to
several factors: The workspace of NICOL with 100x100
cm is larger than the workspace of NICO with 30x40
cm; more importantly, the arms of NICOL afford more
complex motions and more diverse joint configurations
during grasping.

C. MODULAR APPROACH WITH CLASSICAL IMAGE
PROCESSING, NEURAL COORDINATE
TRANSFORMATION AND IK SOLVERS

Next, we analyse if the low accuracy of neural end-to-end
visuomotor learning can be attributed to issues in visually
locating the grasp object in the image, transforming the
image coordinates to world coordinates or the computation
of inverse kinematics. In previous work, we addressed this
issue using a modular, hybrid neuro-genetic approach [38].
We adopt this approach to the NICOL and use three mod-
ules as shown in Fig. 5: Classical image processing to lo-
cate the object in the image, a neural-network to transform
the image coordinates into world coordinates and existing
state-of-the-art and a novel generic IK solvers. To extract
the grasp object’s position from the non-downsampled
image (4208x3120) using classical image processing, we
detect the top and the bottom of the grasp-object with a
standard color-based detector, resulting in the x, y position
and the radius of the base and top parts of our grasp-
object. These 6 input parameters are fed into an MLP,
which outputs the x- and y-coordinates of the object on the
table. The network consists of one dense layer with 180
neurons and ReLU activation; the architecture is based on
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FIGURE 6. Left: Placement of the 10,000 collected samples (green) versus the rejected samples (red) for 6 (left), 7 (middle) and 8 (right) DoF. The images
show the continuity of the IK map, i.e., to what extent a smooth IK trajectory ends up as a smooth joint trajectory if each instantaneous pose is individually
passed through the IK algorithm.

Parameter Parameter range Result 8 DoF
# filters conv1 8-32 (step size 8) 32
# filters conv2 8-32 (step size 8) 8

kernel size conv1 3-5 (step size 1) 3
kernel size conv2 3-5 (step size 1) 5
# dense_1 neurons 16-1024 (step size 16) 256
# dense_2 neurons 16-256 (step size 16) 160

normalisation [0..1] or [-1..1] [0..1]
image size 48x32, 96x64, 192x128 96x64

learning rate [0.01, 0.001, 0.0001, 0.00001] 0.0001

TABLE 2. Ranges and results of hyperparameter optimization of the end-to-end visuomotor architecture for 7 and 8 DoF.

Experiment DoF Mean pos. error Median pos. Error Mean orient. error Median orient. error Grasp accuracy
End-to-end 8 0.4161 ± 0.2085 m 0.3908 m 7.72 ± 5.88 deg. 6.01 deg. 0.01 %

TABLE 3. Results for the neural end-to-end approach for 8 DoF. Results indicate that the neural end-to-end approach cannot be transferred to the more
complex kinematics of NICOL.

Parameter Parameter range Result
# dense neurons 10-200 (step size 10) 180
normalisation [0..1] or [-1..1] [0..1]

TABLE 4. Ranges and results of hyperparameter optimization of the neural
image-to-coordinate transformation.

[38] and was optimized with Hyperopt [39]. Table 4 shows
the optimization ranges and results.

We use 10-fold cross-validation for all reported results.
First, we evaluate the error of the transformation. As shown
in the first line in Table 5, the resulting mean position
error is 0.0039 ± 0.0023 m, and the median position
error is 3 mm. Applying the above-established criteria
for a successful grasp (obviously without considering ori-
entation) resulting in a grasp accuracy of 98.47%. Next,
we evaluate the complete grasp architecture by using IK
solvers to compute the robot’s joint configuration based on
the predicted object coordinates. Table 5 summarizes the
results for the state-of-the-art IK solvers KDL, TRACK-
IK and BIO-IK as well as for our novel genetic IK solver
GAIKPy. Again, we apply the criteria for a successful grasp

(position error is < 10 mm, and the sum of orientation
errors is < 20 degrees). We achieve accuracies of 90.52%,
90.29% and 89.60% for KDL, TRAC-IK and BIO-IK. In
both conditions, GAIKPy shows the highest accuracy with
98.45% and 92.85%.

D. NOVEL NEURAL IMAGE-TO-COORDINATE
TRANSFORMATION AND GENETIC ALGORITHM
To evaluate the limits of neural visuomotor learning, we
modify the end-to-end architecture presented above to
regress directly the x- and y-coordinates of the object on
the table instead of the joint configurations. We then use
state-of-the-art IK solvers and GAIKPy to compute a joint
configuration that reaches for the output coordinate with a
given hand orientation.

We use 10-fold cross-validation to obtain the results
in Table 6. Applying the criteria for a successful grasp,
96.51%, 96.2% and 95.71% for KDL, TRAC-IK and BIO-
IK. GAIKPy shows the highest accuracy with 99.17%.

E. DISCUSSION
In Section V-A, we show that 8 DoF are needed to cover
sufficiently large parts of NICOL’s intended workspace. In
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Experiment DoF Mean pos. error Median pos. Error Mean orient. error Median orient. error Grasp accuracy
transformation - 0.0039 ± 0.0023 0.00343 - - 98.47

KDL 8 0.0229 ± 0.1031 0.00444 0.519 ± 2.924 1.817e-05 90.52
TRAC-IK 8 0.0244 ± 0.1068 0.00445 0.564 ± 3.042 1.630e-05 90.29
BIO IK 8 0.0280 ± 0.1144 0.00448 0.686 ± 3.343 1.987e-04 89.60

GAIKPy 8 0.0067 ± 0.0302 0.00436 0.337 ± 0.687 0.1186 92.85

TABLE 5. Results for the modular approach with Classical Image Processing, Neural Coordinate Transformation and IK solvers for 8 DoF. GAIKPy achieves
the highest grasp accuracy of all evaluated IK solvers.

Experiment DoF Mean pos. error Median pos. Error Mean orient. error Median orient. error Grasp accuracy
transformation - 0.0018 ± 0.0012 0.00158 - - 99.98

KDL 8 0.0191 ± 0.1034 0.00125 0.487 ± 2.834 1.837e-05 96.51
TRACK-IK 8 0.0209 ± 0.1078 0.00125 0.540 ± 2.979 1.627e-05 96.20

BIO-IK 8 0.0233 ± 0.1130 0.00126 0.625 ± 3.196 2.035e-04 95.71
GAIKPy 8 0.0019 ± 0.0102 0.00122 0.465 ± 1.151 0.1841 99.17

TABLE 6. Results for our novel hybrid approach combining neural image-to-coordinate transformation and genetic IK with GAIKPy for 8 DoF. Again,
GAIKPy achieves the highest grasp accuracy.

contrast, non-humanoid industrial robot arms often only
need 6 DoF to cover their workspace. We attribute this find-
ing to NICOL design mimicking human motion, resulting
in a more humanoid distribution of DoF along the arm and,
more importantly, severe constraints on its joints. Next, we
show that the increased kinematic complexity of NICOL
can not be handled by an end-to-end neural visuomotor
learning approach in V-B. However, we successfully apply
a hybrid modular approach using image processing and
a neural coordinate transformation with an IK solver in
V-C. We also demonstrate that NICOL integrates well with
the state-of-the-art IK solvers KDL, TRACK-IK and BIO-
IK. However, the best results were achieved by using our
genetic algorithm-based GAIKPy IK solver. We attribute
this finding to the combination of more than 6 DoF in
conjunction with joint constraints, posing a challenge for
traditional state-of-the-art IK solvers, as shown in Tables
5 and 6. Finally, in V-D, we positively evaluated a novel
hybrid approach that uses a convolutional neural network to
extract target grasp positions from an image in conjunction
with an IK solver. Again, our GAIKPy approach yields the
highest grasp accuracy with a success rate of over 99%.

This added accuracy comes at the cost of longer process-
ing times. We give each IK solver 1 second to compute
a solution. While GAIKPy fully utilizes this time, the
state-of-the-art solvers show a different behaviour: If cases,
where they can find a good solution, this often happens
much faster, however, they don’t utilize the time budget to
find suitable solutions for difficult poses.

We argue that in human-robot collaboration, these
slower IK solutions are less problematic. For a humanoid
robot, collaborating with a human, we face different chal-
lenges compared to an industrial robotic arm. For human-
robot collaboration, safe and more importantly, predictable
motions are essential. For safety reasons, we need to
limit the technical possible maximum joint speed of the
humanoid anyway. The slower but more accurate hybrid

neuro-genetic approach yields better accuracy scenarios,
while still fulfilling the time constraints for collaborative
human-robot scenarios.

VI. CONCLUSION
In summary, we introduce NICOL as a novel semi-
humanoid robotic platform for research in social robotics
and physical human-robot collaboration. NICOL is a semi-
humanoid robot that combines the already positively evalu-
ated social interaction capabilities of the NICO platform [7]
with adult-sized manipulators and five-fingered hands for
the everyday handling of objects in a robot environment.
NICOL is intended for research on robots collaborating
with, and learning from, humans in scenarios that require
both advanced object manipulation and interaction abili-
ties. NICOL addresses a gap in the state of the art for
affordable and open robot designs that enable search in
human-robot interaction and social robotics on the one
side, but also allow precise grasping of larger objects, as
shown in our experiments.

We focus our evaluation of NICOL on inverse kinemat-
ics for a reach-for-grasp task for three reasons: First, grasp-
ing is an essential ability of humanoid robots that is the
foundation of many more complex abilities and can be ap-
plied in many experimental scenarios. Secondly, our main
incentive to design the adult-sized NICOL as a successor
of the child-sized NICO is to create a robotic platform
that has a workspace and can handle objects comparable
to an adult human, thus being able to be used in physical
collaboration scenarios. Thirdly, we have observed that
standard IK solvers have issues with kinematic chains that
have more than 6 DoF while at the same time having
strict constraints on the individual joint limits to mimic the
human range of motion. We address these last points with
a detailed set of experiments in which we evaluate neural
end-to-end learning approaches for visuomotor learning
and compare state-of-the-art IK solvers against a novel
neural and hybrid neuro-genetic IK approaches. We show
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that neural end-to-end learning is challenging due to the
more complex kinematics of NICOL and overcame this
challenge with a neuro-genetic approach. Furthermore, we
demonstrate that our novel hybrid neuro-genetic approach
outperforms classical IK solvers in terms of accuracy by
taking advantage of the relaxed time constraints in human-
robot collaboration scenarios.

In future work, we will apply the grasp learning in a
real-world scenario, in which human-robot interaction and
visuomotor abilities are combined, and participants aid and
are aided by NICOL during a collaborative task.
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