
1

Continual Robot Learning using Self-Supervised
Task Inference

Muhammad Burhan Hafez and Stefan Wermter

Abstract—Endowing robots with the human ability to learn a
growing set of skills over the course of a lifetime as opposed to
mastering single tasks is an open problem in robot learning.
While multi-task learning approaches have been proposed to
address this problem, they pay little attention to task inference.
In order to continually learn new tasks, the robot first needs
to infer the task at hand without requiring predefined task
representations. In this paper, we propose a self-supervised task
inference approach. Our approach learns action and intention
embeddings from self-organization of the observed movement
and effect parts of unlabeled demonstrations and a higher-level
behavior embedding from self-organization of the joint action-
intention embeddings. We construct a behavior-matching self-
supervised learning objective to train a novel Task Inference
Network (TINet) to map an unlabeled demonstration to its near-
est behavior embedding, which we use as the task representation.
A multi-task policy is built on top of the TINet and trained
with reinforcement learning to optimize performance over tasks.
We evaluate our approach in the fixed-set and continual multi-
task learning settings with a humanoid robot and compare it to
different multi-task learning baselines. The results show that our
approach outperforms the other baselines, with the difference
being more pronounced in the challenging continual learning
setting, and can infer tasks from incomplete demonstrations. Our
approach is also shown to generalize to unseen tasks based on a
single demonstration in one-shot task generalization experiments.

Index Terms—Continual multi-task learning, task inference,
self-supervised learning, robot control.

I. INTRODUCTION

TEACHING robots to perform tasks with minimal knowl-
edge about the environment and without manually pro-

gramming the desired behavior has always been the driving
motivation for the research on robot learning. The field has
witnessed remarkable progress over the past decade on a
variety of difficult tasks, including manipulation [1], [2],
locomotion [3], and navigation [4]. However, the learning is
more oriented towards solving single tasks. To enable multi-
task learning, approaches based on knowledge distillation [5]–
[7], meta-learning [8], [9], and language conditioning [10],
[11] have been proposed.

While these approaches are becoming widely adopted to
overcome the limitation of task-specific learning, they have
two notable deficiencies. First, they are not compatible with
continual learning as they assume a fixed task distribution
and treat newly introduced tasks as independent learning
problems. Specifically, when a policy to perform a given
set of sensorimotor tasks is learned, a complete retraining is
often required if a new task is introduced. This is in sharp

The authors are with the Knowledge Technology Group, Department
of Informatics, University of Hamburg, Hamburg, Germany ({hafez,
wermter}@uni-hamburg.de).

Fig. 1. Given an unlabeled demonstration (left), the robot learns to infer the
task at hand (e.g., Grasp the red glass) by finding the best-matching behavior
in the growing, self-organizing network of behaviors and training the proposed
task inference network (TINet) to map the demonstration to its best-matching
behavior, which we use as the task representation.

contrast to the human ability to learn a growing repertoire
of skills over the course of a lifetime. Second, they lack an
efficient task inference mechanism. This issue is either ignored
by using predefined task labels or fixed task representations
(e.g., pretrained natural language embeddings) as input or
poorly addressed by requiring extensive exploration to gather
experience data sufficient to infer a posterior over a latent task
variable [12], [13]. Humans, on the other hand, only need to
observe a demonstration of the desired behavior to successfully
infer the task at hand due to their ability to understand and
imitate the goal of the observed behavior, not the precise
actions [14], [15].

Existing multi-task learning approaches that incorporate ex-
pert demonstrations can be categorized, according to the way
the demonstrations are used, into three distinct groups: i) con-
ditioning the policy on a demonstration embedding [16], [17],
ii) training the policy to match demonstration actions with
behavior cloning [18], [19], and iii) generating a reward based
on how close the observed image is to the corresponding one
from visual demonstrations [20], [21]. A common assumption
in these groups of approaches is that the demonstrations are
complete. This is a strong assumption in practice for several
reasons such as the misalignment between the initial state of
the demonstration and that of the robot’s environment, sensory
noise, self- and object-occlusion, and motion blur. Consider the
following example as motivation: If a demonstration of some
desired visual manipulation task has missing or corrupted
parts (e.g., irretrievable image observations) for any of the
above-mentioned reasons, then the control policy can only

ar
X

iv
:2

30
9.

04
97

4v
1

 [
cs

.R
O

]
 1

0
Se

p
20

23

2

learn to match the observed actions of the intact part of the
demonstration without the ability to recover the remaining
actions. In the case of using this demonstration to infer or
identify the desired task before solving it by conditioning the
policy on the demonstration, the policy will be unable to infer
the correct task, and much worse, using this as a training
example will impair the learned policy. A multi-task learning
approach that enables task inference from incomplete demon-
strations is thus needed to relax this assumption. Moreover,
such an approach would be consistent with a large body of
behavioral and neurocognitive evidence indicating that human
children can imitate incomplete task demonstrations [22]–[27].
Besides assuming complete demonstrations, the above groups
treat each demonstration as one single unit of information,
overlooking the fact that a demonstration is a combination
of action, which is the observed movement, and intention,
which is the observed effect. In contrast, learning movement-
effect associations by observation has been found to play an
essential role in the developmental changes in human goal-
directed imitation, including the ability to imitate behaviors
from incomplete demonstrations [25], [28], [29].

In this paper, we propose a multi-task robot learning
approach that alleviates the two deficiencies identified ear-
lier—namely, the incompatibility of the existing approaches
with continual learning of sensorimotor tasks and the lack of
efficient task inference mechanisms. Our approach learns, in an
unsupervised manner, a behavior embedding space from unla-
belled task demonstrations. We construct a behavior-matching
self-supervised learning objective for training a novel Task
Inference Network (TINet) to map a given demonstration to
its nearest behavior embedding, which we use as the task
representation (see Fig. 1). A multi-task policy is built on top
of the task inference network and trained with reinforcement
learning to optimize performance over tasks.

In a previous work [16], incremental self-organization of
visual demonstrations of behaviors was proposed to build
a behavior embedding space for efficient task inference in
continual robot learning. However, a single self-organizing net-
work was used to learn to map an unlabeled demonstration to a
behavior embedding. This means that the network will map an
incomplete demonstration to a behavior embedding different
from the one that best matches the complete demonstration.
Furthermore, a node representing this undesired behavior will
be added to the network if the node insertion criterion is
met, which impairs the behavior embedding space. In contrast,
using two networks separately learning actions and intentions
and another learning action-intention associations facilitates
finding a correct behavior because from the intention embed-
ding of an incomplete demonstration it will be possible to
retrieve a behavior that has the same or similar intention as
the one that best matches the complete demonstration. We
improve on [16] by treating the visual demonstration as a
combination of an observed movement and an observed effect
and learning two separate embeddings for each of these two
components of a demonstration, which we call action and
intention embeddings respectively. The behavior embedding
space is learned by incrementally self-organizing the combined
action and intention embeddings. Unlike [16], our approach

can perform task inference from incomplete demonstrations.
This is achieved by randomly sampling a sub-trajectory from
the demonstrated trajectory and training the proposed TINet
to map both trajectories to the behavior embedding that best
matches the demonstrated trajectory with a behavior-matching
self-supervised learning objective. Furthermore, the whole
learning architecture, including the policy network and the task
inference network, is trained end-to-end which allows the task
representations to capture the structure of the task at hand.

The primary contributions of our work are summarized as
follows:

• We develop a hierarchical architecture to learn unsuper-
vised embeddings of actions, intentions, and the resulting
action-intention associations from unlabeled demonstra-
tion data.

• A behavior-matching self-supervised learning objective
is proposed to train a task inference network to map an
input demonstration to the best matching behavior in the
unsupervisedly learned behavior embedding space.

• We introduce an end-to-end continual robot learning
approach that learns novel tasks over time and can infer
tasks from incomplete visual demonstrations.

• We evaluate our approach in multi-task learning ex-
periments under the continual learning setting with a
humanoid robot and compare it to different multi-task
learning baselines.

II. RELATED WORK

A. Task-Agnostic Models and Skills

It has been shown that a world model learned by unsu-
pervised exploration can be used to efficiently solve mul-
tiple tasks [30]. First, a task-agnostic exploration policy is
trained to collect experience that improves the world model by
maximizing expected novelty of future states. A task policy
is then trained by imagination inside the world model. The
method is found to achieve better zero-shot task performance
than other unsupervised methods on continuous control tasks
and few-shot performance comparable to a supervised oracle
that receives task rewards during exploration. However, fast
adaptation to a downstream task requires the world model to be
trained in parts of the environment relevant to the task, which
cannot be guaranteed with the proposed exploration method.
Similar to [30], Sharma et al. [31] train a reinforcement
learning agent without reward supervision and use it to solve
downstream tasks. However, the training objective is not to
learn a world model, but rather to learn a set of reusable
skills that can be composed when solving a given task. These
skills are learned to be diverse by iteratively sampling a
skill from a skill prior and encouraging a skill-conditioned
policy to produce transitions that are predictable, given the
sampled skill, and different from those produced by the policy
conditioned on a different skill. At test-time, model-predictive
control is used to find an optimal sequence of learned skills
for solving a target task without any learning on the task.
One issue with the proposed method is that the learned skill-
conditioned transition model is queried at test-time on states

3

generated by the model itself at previous timesteps, which can
be different from the state distribution it was trained on.

Another approach extracts reusable skills from an experi-
ence dataset collected across different tasks and recombines
them to efficiently solve a downstream task [32]. A variational
encoder computes a skill embedding for each trajectory sam-
pled from the dataset and a low-level policy is trained with be-
havior cloning to decode the embedding into its corresponding
actions. State-conditioned skill prior and posterior are trained
to match the pretrained skill encoder on behaviors from the
experience dataset and task demonstrations, respectively. To
solve a downstream task, a high-level policy over skill embed-
dings is trained with reinforcement learning using an objective
that constrains the policy to be close to the skill posterior
if the environment state comes from the demonstration data,
or to the skill prior otherwise. The approach is shown to
outperform prior works that use either demonstrations or task-
agnostic experience. However, it makes a strong assumption
that the experience dataset contains meaningful, short-horizon
behaviors and requires training a separate high-level policy
from scratch for every new downstream task.

Our approach shares a common objective with this group of
approaches, which is to enable fast adaptation to downstream
tasks. However, it stands out by not relying on a world model
or an experience dataset.

B. Learning Task-Conditioned Policies
Lynch et al. [19] propose a method for learning a continuum

of robotic tasks from unlabeled play data. The method learns
a latent plan distribution space from play sequences by opti-
mizing for reconstruction of play actions while maximizing
the similarity between the latent plan distribution of each
sequence and that of its combined initial and final states. At
test-time, a latent plan is sampled given the current and goal
states. It is then fed with the two states to a stochastic policy
trained to reconstruct the actions of a play sequence from
its corresponding latent plan, initial, and final states. While
not requiring expensive expert demonstrations, the proposed
method trains the policy on trajectories of play data collected
by curious exploration that aims to sufficiently cover the state-
action space without regard to the quality of the generated
behavior. This leads to a poor policy when the training
trajectories are far from the optimal behavior.

To enable zero-shot generalization to novel tasks, Jang
et al. [17] propose to condition the policy on information
that describes the task such as language instruction or video
demonstration. A task embedding is computed from this in-
formation and passed into the policy which is supervised with
behavior cloning to match the actions in the task demonstra-
tions. The video encoder is constrained to produce an output
that is close to the pretrained embedding of the corresponding
language description to align the videos more semantically.
While the trained policy is found to generalize to unseen
tasks, the performance of the video-conditioned policy is lower
than the language-conditioned one. The method also requires
a predefined task dataset on which the policy is trained at
once, and hence the method is not applicable when tasks are
presented over time.

Sodhani et al. [33] found that learning context-based com-
posable representations is an efficient method for sharing
information across tasks in multi-task reinforcement learning.
In their approach, a natural language task description acts
as the context and a mixture of encoders is used to give
multiple representations to an input observation. The context
determines how to compose the representations by computing
soft-attention weights over representations. The weighted sum
of representations is concatenated with the context vector
and fed to the policy network. Despite improving knowl-
edge transfer, the approach strongly relies on the language
description’s semantics to extract task-relevant object and
skill representations and infer similarity between tasks. It is
therefore incompatible with other forms of task description,
including visual demonstration.

While our approach, like this group of approaches, condi-
tions the policy on a task description, it is not limited by the
quality of task demonstrations or language semantics to extract
task-relevant information.

C. Cross-Task Adaptive Regularization

To accelerate learning new tasks while preserving perfor-
mance on previously learned tasks, Schwarz et al. [34] propose
to use two neural networks: an active column and a knowledge
base. The former is used to learn a new task and is layer-
wise connected with the latter to utilize past information.
After a task is learned, the active column is distilled into
the knowledge base whose parameters are regularized to be
close to those adapted to older tasks. The approach has two
limitations when used to train a multi-task policy. First, due
to the regularization constraint, the knowledge base will learn
a policy that tries to achieve average performance on all
encountered tasks instead of optimal performance on each
individual task. Second, the approach does not address task
inference and assumes that changes in task distribution are
known to the learner. Hessel et al. [35] suggest that to improve
the performance of multi-task reinforcement learning, all tasks
should influence the learning updates similarly regardless of
the density and scale of their rewards. They propose an
actor-critic method that learns multiple tasks in parallel by
assigning different environments to different actors. Iteratively,
the experience collected by all actors is used to update both a
value network with multiple outputs, one for each task, and a
task-agnostic policy network used by the actors. The targets in
the updates are adaptively normalized by tracking the statistics
of the return in each task, causing tasks with different return
scales to have similar impact on the learning. A limitation
to the proposed method is that the output layer of the value
network depends on a predefined number of tasks, rendering
it infeasible for learning new tasks over time. Furthermore,
parallel training is resource-intensive and impractical for real
robots.

Similar to [34] and [35], our approach trains a multi-task
policy with reinforcement learning, but does not require prior
knowledge of task distribution or value network reconfigura-
tion when new tasks are added.

4

D. Leveraging Task Relationships

While most approaches to multi-task learning give little
consideration to task relationships beyond learning general-
izable task features from task examples, a few have shown
that exploiting the relationships between tasks leads to fast
adaptation to new tasks [16], [21], [36], [37]. These ap-
proaches mainly differ in how task relationships are learned.
For example, Oh et al. [36] add an analogy-making objective
to encourage the task representation to capture task similarities
when optimizing performance over tasks. Kalashnikov et al.
[21] propose a distributed multi-task reinforcement learning
method in which off-policy data is collected by multiple robots
and shared between similar tasks to improve the efficiency of
learning each task. This training data is re-balanced between
tasks in every training batch when updating the multi-task
policy. Besides requiring a predefined discrete set of tasks, that
does not allow for continual multi-task learning, the method
also requires to manually decide which tasks are semantically
similar in order to share data between them. Another approach
is to train a meta-mapping function that transforms a learned
task representation into another one using a training dataset
of task representation pairs, where all paired tasks are sys-
tematically related [37]. This direct exploitation of systematic
relationships has shown better adaptation performance than the
indirect way of generalizing through language alone. Instead of
relying on prior knowledge in terms of pairs of systematically
related tasks [21], [37] or predefined task analogies [36], a
more recent work [16] learns task relationships unsupervised
by continually self-organizing visual demonstrations of tasks
so that behaviorally similar tasks are located close to each
other. However, the proposed method makes a strong assump-
tion that task demonstrations are perfect and complete, which
is restrictive and not often realistic in practice.

The approach described in this paper exploits task relations
and learns them in an unsupervised manner from unlabelled
task demonstrations, similar to [16]. The difference is that our
approach does not assume completeness of the demonstrations,
which makes it more robust and applicable in real-world sce-
narios where complete demonstrations may not be available.

III. TECHNICAL APPROACH

In this section, we present our self-supervised task inference
approach for continual multi-task robot learning. We start by
describing how action and intention embeddings are learned
in an unsupervised manner from unlabeled task demonstra-
tions and used to learn behavior embeddings. Then, the task
inference network (TINet) is introduced, which is trained
with the proposed behavior-matching self-supervised learning
objective. Finally, we show how a multi-task policy can be
trained end-to-end with reinforcement learning on top of TINet
to optimize performance over tasks.

The aim is to train a multi-task policy with reinforcement
learning that can recognize the desired task from an incomplete
demonstration and successfully execute the task. At the start of
every learning episode, a complete demonstration in the form
of a trajectory of n images is randomly sampled and encoded
into a vector hn, as shown in Fig. 2. Similarly, the sequence of

the first n−1 images is encoded into a vector hn−1 and the last
image is encoded into a vector xn−1. The vectors hn−1 and
xn−1 are used as input to the growing self-organizing networks
Action Net and Intention Net, respectively, and the action and
intention embeddings gact and gint that best match hn−1 and
xn−1 are identified before the two networks are updated (Sec.
III-A). The combined action-intention embedding in turn is
used as input to the growing self-organizing network Behavior
Net, where the behavior embedding gb that best matches the
input is identified and the network is updated. The encoded
demonstration hn is fed to the Task Inference Network (TINet)
that outputs the task representation zi. The feature vector
of the current environment state s together with zi are fed
to the multi-task policy which outputs the action to take.
The TINet is trained with contrastive learning to output the
same task representation for the input demonstration (complete
demonstration) and for a randomly chosen part of the input
demonstration (incomplete demonstration) (Sec. III-B). It is
also jointly trained to minimize the distance between its output
and the behavior embedding gb.

A. Hierarchical Self-Organization of Behaviors

Demonstration Encoding. In our approach, a task demonstra-
tion is defined as a trajectory of image observations showing
the robot performing a particular behavior to complete the de-
sired task. Any behavior can typically be described by different
demonstrations, each being a different trajectory that shows a
successful completion of the same task. The image observa-
tions in a trajectory are encoded by a Convolutional Neural
Network (CNN), and the sequence of the CNN encodings is
processed by a recurrent neural network based on the Long
Short-Term Memory (LSTM) architecture [38] to capture
the contextual information in the demonstration. We use the
hidden state hn−1 of the LSTM after the last CNN encoding
xn−1 = fx(Tn−1) has been read as the latent representation
of the entire demonstration, where n is the length of the
demonstration. Together, the observation-encoding CNN and
context-encoding LSTM define a demonstration encoder fd
that takes in a trajectory of observations T0:n−1 and outputs a
latent representation of the demonstration. Fig. 2(a) illustrates
the demonstration encoding process. Sec. III-C describes how
the demonstration encoder is trained. Details on the design
choices of the CNN and LSTM networks are given in Sec.
IV.
Action and Intention Embeddings. Each task demonstration
is a combination of action and intention, which are the
observed movement and effect, respectively. We explicitly
leverage this fact and learn two mappings: the first maps from
an input space of visually described movements to an em-
bedding space where similar movements are located together;
the second maps from an input space of visually described
effects to an embedding space where similar effects are located
together. These embeddings are called action and intention
embeddings, respectively. In our approach, both mappings are
learned in an unsupervised manner by incrementally self-
organizing the respective input space with a growing self-
organizing network. Particularly, we use the Grow When

5

Behavior Net

𝑥𝑛−1 = 𝑓𝑥ሺ𝑇𝑛−1ሻ

Neural Network

Supervision Signal

ℒ𝑅𝐿

ℒ𝑅𝐿

ℒ𝑅𝐿

ℒ𝑆𝑆𝐿

Complete Demo

ℒ𝑆𝑆𝐿

ℒ𝑆𝑆𝐿 ℒ𝑆𝑆𝐿

𝑧𝑗 𝑧𝑖 𝑥

𝑠

𝑓𝑑ሺ𝑇𝑢:𝑣ሻ

ℎ𝑛−1 ℎ𝑛−2

𝑇𝑛−1 𝑇𝑛−2 𝑇2 𝑇1 𝑇0

ℎ𝑛 = 𝑓𝑑ሺ𝑇0:𝑛−1ሻ

ℎ0

𝑥𝑛−2 𝑥1 𝑥𝑛−1 𝑥2 𝑥0

CNN CNN CNN CNN CNN

ℎ1 ℎ2
LSTM LSTM LSTM LSTM LSTM

TINet TINet

CNN

Incomplete Demo

𝑔𝑏

𝑔𝑎𝑐𝑡 𝑔𝑖𝑛𝑡

Action Net ሺ𝐺𝐴𝐶𝑇ሻ

𝑔𝑖𝑛𝑡

𝑔𝑎𝑐𝑡

Intention Net ሺ𝐺𝐼𝑁𝑇ሻ

⊕

ሺ𝐺𝐵ሻ

In
p

u
t

O
b

se
rv

a
ti

o
n

In
p

u
t

Tr
a

je
ct

o
ry

(a) Demonstration Encoding (b) Multi-Task Learning

(c) Behavior Self-Organization

Information Flow

Self-Supervised

Learning

Reinforcement

Learning

Learning Objective

ℎ𝑛−1 = 𝑓𝑑ሺ𝑇0:𝑛−2ሻ

Fig. 2. Overview of our proposed task inference architecture for continual multi-task learning. (a) Each input demonstration is encoded with a demonstration
encoder fd by passing image observations in the demonstrated trajectory T0:n−1 to a CNN encoder fx and processing the sequence of CNN-encoded image
features x0:n−1 with an LSTM. The hidden state hn after the last feature vector xn−1 has been read is used as a latent representation of the demonstration.
(b) The TINet is trained with a behavior-matching self-supervised learning objective to map a complete fd(T0:n−1) and an incomplete fd(Tu:v|0≤u<v≤n−1)

version of an input demonstration to a behavior embedding gb in the self-organizing Behavior Net GB that best matches the input demonstration. The task
representation zi produced by the TINet is used together with the current observation’s feature vector x = fx(s) as input to a multi-task policy trained with
reinforcement learning to optimize performance over tasks. (c) Action and intention embeddings are learned in an unsupervised manner by incrementally
self-organizing the movement fd(T0:n−2) and effect fx(Tn−1) components of input demonstrations using the growing Action Net GACT and Intention
Net GINT, respectively. Given an input demonstration, the action gact and intention gint embeddings that best match the demonstrated movement and effect
are combined. The behavior embeddings are in turn learned by self-organizing the combined action and intention embeddings with the Behavior Net GB .

Required (GWR) network [39], which grows when it does not
have a close enough match to an input stimulus as opposed to
adding nodes at predefined intervals, a criterion often used in
other growing networks. This allows adding novel actions and
intentions to the respective network once discovered. We refer
to the GWR networks used to learn the action and intention
embeddings by GACT and GINT, respectively. For each input
demonstration, we pass the first n − 1 observations to the
demonstration encoder fd whose output fd(T0:n−2) is used as
input to GACT and use the CNN-encoded feature vector xn−1

of the last observation as input to GINT (see Fig. 2(c)).
The GWR network is defined by a set of nodes V , where

each node i ∈ V is associated with a weight vectors wi, and
a set of edges between nodes. At the start of learning, the
network has two nodes with weights randomly initialized. In
each learning iteration, a new input stimulus ζ is observed and
the following adaptation steps are performed:

1) Find the best matching node c and second best matching
node c′ w.r.t. ζ:

c = argmin
j∈V

∥ζ − wj∥2, (1)

c′ = argmin
j∈V/{c}

∥ζ − wj∥2, (2)

and add an edge between them, if it does not exist, and
set its age to 0.

2) Calculate the activity a of the best matching node based
on the Euclidean distance between its weight vector wc

and the input ζ:

a = exp (−∥ζ − wc∥2). (3)

3) If the activity a of node c is below a threshold aT and
its habituation (a measure of the node’s responsiveness
to input stimuli, inversely proportional to the number of
times it has been a best match) is below a threshold hT ,
create a new node v with a weight vector (wc+ζ)/2 and
an edge to both c and c′ and remove the edge between
c and c′.

4) Move the weights of the best matching node c and its
neighbors k, with which it shares edges, towards ζ:

∆wc = ϵc × hc × (ζ − wc), (4)

∆wk = ϵn × hk × (ζ − wk), (5)

where 0 < ϵn < ϵc < 1 and hk is the habituation value
for node k.

5) Decrease the habituation value for the best matching
node c and its neighbors k:

hc = h0 −
(1− e

−αct
τc)

αc
, (6)

hk = h0 −
(1− e

−αnt
τn)

αn
, (7)

6

Algorithm 1 BEHAVIOR(T0:n−1) → gb

Require: Growing self-Organizing networks GACT , GINT, and GB

1: Find the best matching node cact in GACT w.r.t. fd(T0:n−2; θ
fd)

2: Compute action embedding gact ← wcact

3: Find the best matching node cint in GINT w.r.t. fx(Tn−1; θ
fx)

4: Compute intention embedding gint ← wcint

5: Find the best matching node cb in GB w.r.t. gact ⊕ gint

6: Compute behavior embedding gb ← wcb

7: Return gb

where h0 is the initial habituation value. αc,αn and τc,τn
are constants controlling the habituation curve.

6) Increment the age of all edges emanating from c by 1. If
the age of any edge exceeds a threshold κ, remove that
edge and remove any node with no remaining edges.

An illustration of the GWR networks GACT and GINT is shown
in Fig. 2(c).
Behavior Embeddings. To learn the behavior embeddings, the
combined action-intention embedding space is incrementally
self-organized by using a higher-level GWR network GB .
During learning, the GB follows the same adaptation steps of
the standard GWR network explained earlier. At each learning
iteration, the weight vectors gact and gint of the best matching
nodes in the lower-level networks GACT and GINT w.r.t. an
input demonstration are concatenated and fed as input to GB ,
as shown is Fig. 2(c). The incremental self-organization of
action-intention embeddings allows learning a growing set of
behaviors, which is necessary for continual multi-task learning.
After the learning of the behavior embeddings, the action
GACT , intention GINT, and behavior GB networks can be
utilized to map a visual demonstration to the intended behavior
behind the demonstration (Algorithm 1).

The two-level hierarchy of embeddings ensures that the
learned behavior embeddings capture the action-intention as-
sociations and their similarities.

B. Self-Supervised Learning of Task Representations

Given the learned behavior embedding space, we aim to
train a differentiable model that maps an unlabeled demon-
stration to a corresponding task representation. In order to do
so, we transfer knowledge from the behavior self-organization
explained earlier to a task inference neural network, which we
call TINet. We construct a behavior-matching self-supervised
learning objective to perform the knowledge transfer by train-
ing the TINet to map a given demonstration to its nearest
behavior embedding in the unsupervisedly learned behavior
embedding space, which we use as the target task representa-
tion.

The input to the TINet is an encoding of a demonstrated tra-
jectory T0:n−1 produced by the demonstration encoder fd and
the target output is the weight vector gb of the best matching
node in the behavior net GB w.r.t. the input demonstration.
The TINet model is formally described by:

z = fINF(fd(T0:n−1)), (8)

where fINF is the task inference function and z is the pre-
dicted task representation. We train the TINet to minimize the
following behavior-matching loss:

LBM = ∥fINF (fd(T0:n−1))− gb∥22. (9)

To enable task inference from incomplete demonstrations,
the TINet is further trained to produce the same output for the
original version T i

0:n−1 (the complete demonstration) and the
temporally cropped version T j

u:v|0≤u<v≤n−1 (the incomplete
demonstration) of an input demonstration (Fig. 2(b)) in a set
of K different demonstrations, where u and v are sampled at
random from [0, n− 1]. This is performed by minimizing the
following contrastive loss:

LC = − log
exp(sim(zi, zj)/τ)∑K−1

k=0 1[k ̸=i] exp(sim(zi, zk)/τ)
, (10)

where zi and zj are the task representations of the complete
and incomplete versions of the input demonstration, respec-
tively, 1[k ̸=i] ∈ {0, 1} is an indicator function, τ is a temper-
ature hyperparameter, and sim(·, ·) is a similarity function.
We use cosine similarity sim(zi, zj) = z⊤i zj/(∥zi∥2 ∥zj∥2)
between task representations zi and zj [40]. This process
is shown in Fig. 2(b). The two TINet blocks are the same
network which produces a task representation zi when the
input is the encoded complete demonstration fd(T0:n−1) and
a task representation zj when the input is the encoded incom-
plete demonstration fd(Tu:v). The contrastive loss in Eq. 10
enforces that the task representations for the original (“com-
plete") and cropped (“incomplete") demonstrations zi and zj ,
respectively, are close to each other while also preventing
the TINet from always producing the same vector on the
output by pushing away the task representations of different
demonstrations from each other. In other words, minimizing
LC (Eq. 10) means that the complete and incomplete versions
of the input demonstration will have nearly identical task
representations. Consequently, the robot can now infer the
correct task representation when shown only an incomplete
demonstration, because the TINet is trained to produce a
task representation for the incomplete demonstration that is
close to the task representation for the corresponding complete
demonstration.

The overall self-supervised learning loss to train a randomly
initialized TINet is:

LSSL = LBM + LC. (11)

By jointly optimizing for behavior-matching and contrastive
prediction, as shown in Eq. 11, the TINet is trained to
infer the task at hand from complete or incomplete visual
demonstrations without requiring predefined task labels. In
addition, distilling the growing behavior net GB into the TINet
(Eq. 9) allows the TINet to continually learn to infer new tasks.

C. End-to-End Continual Multi-Task Learning

Given an unlabeled input demonstration, the learning agent
can use the TINet to infer the task it is required to solve.
To enable learning a growing set of tasks, we use the task
representation z provided by the TINet together with the

7

current environment state s as input to a multi-task policy
π which is trained with Reinforcement Learning (RL) to
optimize performance over tasks. This is done by finding the
policy π that minimizes the following loss:

LRL = −Eπ

(∞∑
t=0

γtrt

)
, (12)

where t is the time step, r is the reward, and γ ∈ [0, 1)
is a discount factor. Minimizing LRL corresponds to the
standard RL objective of maximizing the expected cumulative
discounted reward. The RL algorithm used to train the multi-
task policy in the presented work is Deep Deterministic Policy
Gradient (DDPG) [41], but our approach can be paired with
any other RL algorithm with minimal changes. DDPG updates
the policy by gradient ascent on the action-value (Q-)function:

θπ = θπ + µ▽aQ
(
s, a; θQ

)
|a=π(si)▽θππ (s; θπ) , (13)

where Q(s, a) is the expected value of taking action a in state
s and following policy π thereafter, θπ and θQ are the policy
and Q-function parameters, and µ is the gradient step size. In
our implementation, the state feature vector x = fx(s; θ

fx)
and the task representation z are used instead of s as input to
Q and π.

The whole learning architecture (Fig. 2), including the task
inference network TINet, is trained end-to-end. This encour-
ages the task representations from the TINet to capture the task
structure. Gradients from LRL and LSSL are backpropagated
through the TINet, the demonstration encoder fd, and the CNN
state encoder fx, optimizing all the networks end-to-end, as
shown in Fig. 2(b). Hence, the final loss for training the multi-
task learning agent with our approach is:

Ltotal = LSSL + LRL. (14)

The complete Self-Supervised Task Representation Learn-
ing (SSTRL) algorithm for continual multi-task RL is given
in Algorithm 2. At the beginning of each learning episode,
a visual demonstration in the form of a trajectory of frames
T0:n−1 is presented to the robot (line 5). We then compute
the behavior embedding gb (line 6) of the best matching node
in the growing behavior net GB w.r.t. T0:n−1, as shown in
Algorithm 1, followed by adjusting the networks GACT , GINT,
and GB(Eq.1–7). Random temporal cropping is performed on
T0:n−1 to generate a corresponding incomplete demonstration
Tu:v (line 8). The indices u and v are uniformly sampled
from [0, n − 1] such that 0 ≤ u < v ≤ n − 1. We add the
complete T0:n−1 and incomplete Tu:v demonstrations along
with the corresponding behavior embedding gb to the training
dataset DSSL used for minimizing LSSL (line 9). The encoded
demonstration fd(T0:n−1; θ

fd) is passed to the TINet to infer
the task representation z = fINF(fd(T0:n−1; θ

fd); θfINF) (line
10). Actions are generated by the behavioral policy π of the
chosen RL algorithm A (line 14). The policy takes as input
the state feature vector x = fx(s; θ

fx) and the inferred task
representation z and is parameterized by parameters θπ . A
can be a policy-gradient algorithm, in which case θA = {θπ},
or a value-based algorithm, in which case θA = {θπ, θQ},
where Q is the action-value function. In our implementation,

Algorithm 2 SSTRL algorithm for continual multi-task RL
Require: An RL algorithm A
Require: State encoder fx, demonstration encoder fd, task repre-

sentation encoder fINF, and components of A
1: Initialize growing self-organizing networks: GACT , GINT, GB

2: Initialize datasets DSSL,DRL ← ∅
3: Randomly initialize network parameters: θfx , θfd , θfINF , θA

4: for episode = 1, E do
5: Sample demonstration T0:n−1

6: Compute gb = BEHAVIOR(T0:n−1) using Algorithm 1
7: Adjust GACT , GINT, and GB networks using Eq.1–7 (refer to

Sec. III-A)
8: Tu:v ← TEMPORALCROP(T0:n−1)
9: Insert (T0:n−1, Tu:v, g

b) into DSSL

10: z ← fINF(fd(T0:n−1; θ
fd); θfINF)

11: Sample initial state s
12: while not terminal do
13: x← fx(s; θ

fx)
14: Sample action a ∼ π(x, z) using A’s behavioral policy
15: Execute a and observe r and s′

16: Insert (s, T0:n−1, a, r, s
′) into DRL

17: Update θfx , θfd , θfINF using DSSL and LSSL in Eq. 11
18: Update θfx , θfd , θfINF , θA with A using DRL and LRL in

Eq. 12
19: s← s′

20: end while
21: end for
22: Return optimized policy π

the RL algorithm A used is DDPG [41] which is value-
based and updates the policy by gradient ascent on the Q-
function (Eq. 13) using experiences sampled from DRL (line
18). The learning parameters of our task inference architecture
are updated to minimize the total loss Ltotal (Eq. 14).

IV. EXPERIMENTAL RESULTS

In this section, we empirically evaluate our proposed
SSTRL algorithm for continual multi-task RL on learning a
fixed as well as a growing set of visuomotor tasks with a
humanoid robot and compare it against three multi-task learn-
ing baselines: Plan2Explore [30], Progress&Compress (P&C)
[34], and Behavior-Guided Policy Optimization (BGPO) [16].
Additionally, we perform ablation experiments to investigate
the effect of the different components of our approach on
its performance. We also perform one-shot generalization
experiments to test the performance of our approach on a set
of unseen tasks based on a single visual demonstration.

A. Experimental Setup

Hyperparameters. The CNN state encoder has three 3×3
convolutions with 32, 64, and 128 channels, respectively.
Each convolution is followed by ReLU activation and 2×2
max-pooling. This is followed by two fully connected layers
each with 128 units and ReLU activations. The demonstration
encoder uses a single-layer LSTM with 256 hidden units and
tanh activations. The TINet is a fully connected multi-layer
perceptron (MLP) of three layers with 512, 512, and 256
units, respectively. The multi-task policy and Q-functions are
parameterized by a 2-layer MLP each. The hidden layer is 64-
dimensional with ReLU activation. The output layer contains

8

Fig. 3. The NICO robot in the simulation environment facing a table with
three objects.

a single unit with linear activation in the Q-network and d
units with tanh activations in the policy network, where d
denotes the dimenstionality of the action space. The training
datasets DSSL and DRL are stored in memory buffers of
sizes 105 and 106, respectively. All networks are trained using
the Adam optimizer [42] with learning rate 0.001 and batch
size 256. The discount factor γ is set to 0.99. We do not
use any hyperparameter for balancing the behavior-matching
loss and the contrastive loss to simplify the training process.
The details on the hyperparameters of the growing Action Net
GACT , Intention Net GINT, and Behavior Net GB are given
in Appendix A. Training is done with Tensorflow [43] on a
desktop with Intel i5-6500 CPU and a single NVIDIA Geforce
GTX 1050 Ti GPU.
Robotic setup. We conduct our experiments on the Neuro-
Inspired COmpanion (NICO) robot [44] using the Cop-
peliaSim (formerly V-REP) robot simulator [45]. Real-world
experiments are described in Sec. IV-F. Fig. 3 shows the
simulated NICO sitting in front of a table on top of which
different objects are placed. In all experiments, we consider
a motor action controlling four degrees of freedom in the
right arm: two joints in the shoulder, one joint in the elbow,
and one joint in the hand. The shoulder and elbow joints
have an angular range of motion of ±100 and ±85 degrees
respectively. The tendon-operated multi-fingered hand consists
of 1 thumb and 2 index fingers with finger joints having an
angular range of motion of 0−160 degrees. The input to the
robot learning algorithm is a 64×32 RGB image obtained from
a vision sensor. Examples of the original output of the vision
sensor are shown in Fig. 4.

B. Multi-Task Learning Evaluation

In our experiments, we consider the following visuomotor
tasks: Grasp the red glass (Task-1), push the green box towards
the red glass (Task-2), push the green box towards the white
box (Task-3), and push the white box towards the green box
(Task-4). We collect 1000 visual demonstrations per task with
random initial robot configuration and object positions (see
Fig. 4). The demonstrations have an average length of 30 steps

Fig. 4. First-person demonstrations of four visuomotor tasks: (a) “Grasp the
red glass", (b) “Push the green box towards the red glass", (c) “Push the
green box towards the white box", (d) “Push the white box towards the green
box". From bottom to top: RGB frames of initial, intermediate, and terminal
configurations.

Fig. 5. Performance curves of P&C, Plan2Explore, BGPO, and SSTRL on
learning a fixed set of four independent visuomotor control tasks with the
NICO robot. Shaded regions represent one standard deviation over 10 random
seeds.

(≈ 6s). Due to the demonstrations having variable lengths, we
apply zero-padding and masking to them when training the
LSTM network of the demonstration encoder. During learning,
a task is randomly sampled at the start of each episode which
terminates when the task is successfully completed or after
a maximum of 50 timesteps. A reward of 1 is given for a
successful task completion and 0 otherwise. At the end of each
episode, the learned policy is tested by randomly sampling a
task and running the policy for 50 timesteps.

All learning algorithms use the environment state as input
to the policy. Plan2Explore and P&C assume that changes in
task identity are known to the agent, while BGPO and SSTRL
perform task inference from unlabeled input demonstrations
and use the inferred task representation as additional input to
the policy. For implementing Plan2Explore, we train a global
world model from task-agnostic experience gathered during
learning by an exploration policy trained to maximize the
expected novelty over future model states. In each test episode,

9

the policy for the sampled task is trained in imagination using
the model and then executed for 50 timesteps. P&C has two
policy networks with layerwise connections between them:
the active column and the knowledge base. At each learning
episode, the active column is trained on a sampled task and
then distilled into the knowledge base which is then evaluated.
BGPO and SSTRL receive an unlabeled demonstration from a
randomly sampled task at the start of each episode and use it
to infer the task representation. The policy conditioned on the
inferred representation and environment state is trained for one
episode and evaluated on a random task. The implementation
details of the baseline algorithms can be found in Appendix
B. We perform our experiments in two settings: (i) fixed-set
multi-task learning, where the set of tasks the robot is required
to learn is kept fixed throughout the course of learning, and
(ii) continual multi-task learning, where the tasks are presented
sequentially to the robot.

Fig. 5 shows the total reward per test episode for each
algorithm in the fixed-set multi-task learning setting, averaged
over 10 random seeds. As shown in the figure, Plan2Explore
performs slightly better than the other algorithms over the first
12K episodes. However, the performance tends to be largely
unstable thereafter, with the average reward staying under 0.5
(i.e., below 50% success rate). This is likely the result of
the world model being trained on parts of the environment
that are not relevant to the task at test time. In contrast, the
performance of P&C continues to improve with more training
but reaches only an average reward of 0.57 by the end of
learning. Since the knowledge base parameters in P&C are
restricted to be close to their previously trained values when
the policy learned by the active column is distilled into the
knowledge base, the multi-task policy of the knowledge base
can only generalize slowly. Consequently, its performance on
a given task heavily depends on how similar that task is to the
recently learned one, which may explain the slow increase in
the observed average reward over time. Instead of mitigating
interference among tasks by regularizing the update to the
multi-task policy parameters, which still leads to interference
since tasks are learned in a joint parameter space, BGPO and
SSTRL avoid interference in the first place by conditioning
the policy on a task representation which is learned in a space
different than that of the policy parameters. While BGPO and
SSTRL show a better final performance, achieving an average
reward of over 0.75 at the end of learning, SSTRL has a more
stable performance and faster convergence than BGPO.

We also evaluate the performance of the trained policy
of each algorithm on the individual tasks. This includes a
comparison to a single-task policy optimization, where a
separate policy network is trained with DDPG [41] on each
task individually (see Appendix B for implementation details).
The trained policy attempts each task 100 times. The success
rate is given in Table I, with SSTRL achieving the highest
success rate in 3 out of 4 tasks. The results suggest that
multi-task learning with SSTRL not only allows the policy
to accomplish a number of different tasks, but also to improve
its performance on each individual task via sharing policy and
task representations.

In the continual learning setting, the learning starts with

TABLE I
PERFORMANCE COMPARISON OF THE ALGORITHMS ON INDIVIDUAL
TASKS. THE REPORTED NUMBERS ARE SUCCESS RATES OVER 100

TRIALS.

Algorithm Task-1 Task-2 Task-3 Task-4

Single-task policy optimization 53% 72% 66% 60%
P&C [34] 23% 55% 31% 18%
Plan2Explore [30] 35% 43% 29% 25%
BGPO [16] 54% 82% 68% 71%
SSTRL (Ours) 67% 86% 79% 68%

Fig. 6. Performance curves of P&C, Plan2Explore, BGPO, and SSTRL in the
continual multi-task learning setting. Shaded regions represent one standard
deviation over 10 random seeds.

Task-1. Task-2, Task-3, and Task-4 are presented after 15K,
30K, and 45K episodes respectively. At test time, each al-
gorithm is evaluated on a task randomly sampled from the
presented tasks. We plot the total reward per test episode,
averaged over 10 random seeds, in Fig. 6. A drop in per-
formance can be observed for all algorithms after each new
task is introduced. Changing tasks has less direct effect on
Plan2Explore as it follows task-agnostic exploration policy
during learning. However, the policy learned offline at test
time relies on a world model that may have been trained on
task-irrelevant data. Thus, the policy performs poorly on tasks
for which the model is not sufficiently trained, particularly
when such tasks are visited for several episodes before new
tasks are presented, as it is the case in the continual learning
setting. Similarly, when P&C encounters an unseen task, the
knowledge base’s policy typically requires longer training
before it adapts to that task, because the active column’s policy,
which is distilled into the knowledge base after every episode,
will likely fail to quickly solve the unseen task. This leads to
a considerably small improvement in performance during the
intervals between the tasks, as shown in Fig. 6.

BGPO and SSTRL, on the other hand, are originally
more robust to learning instability caused by the sequential
presentation of tasks due to their self-organizing networks
that grow when they cannot find a behavior embedding that
closely matches an input demonstration. By using a task
representation based on a growing behavior network as input

10

Fig. 7. Performance curves of BGPO and SSTRL on incomplete demon-
strations in two multi-task learning settings: (a) fixed-set and (b) continual.
Shaded regions represent one standard deviation over 10 random seeds.

to the policy, they can generalize faster to new tasks and
maintain the performance on old tasks while learning new ones
since different tasks have different representations on which
the policy is conditioned. Compared to BGPO that reached
an average reward of only 0.55 after 60K episodes, SSTRL
was able to converge to an average reward of over 0.8. This
empirically shows the advantage of learning separate action
and intention embeddings and the advantage of the TINet that
learns a generalizable mapping from demonstrations to task
representations end-to-end, which is particularly useful in the
continual learning setting.

C. Performance Evaluation on Incomplete Demonstrations

In this experiment, we aim to compare the performance of
the multi-task policy trained with BGPO and SSTRL when
incomplete demonstrations are used as input. We make two
comparisons in the fixed-set and continual learning settings.
At each test episode, we randomly sample 10 unlabeled
demonstrations and apply random temporal cropping to each
demonstration. We then run the trained policy 10 times each
using a different temporally cropped demonstration as input.
The results are shown in Fig. 7. In the fixed-set setting, BGPO
reaches an average reward of around 0.25, while SSTRL
appears to achieve three times more average reward by the
end of learning. The difference in performance between the
two algorithms is more pronounced in the continual learning
setting. As opposed to BGPO which fails to make any progress
in maximizing the obtained reward over the entire learning
process, SSTRL is able to continue to improve its performance
after every new task is presented. This demonstrates the effec-
tiveness of training the TINet to learn a joint representation of
original and cropped versions of unlabeled demonstrations in
SSTRL, enabling task inference from incomplete demonstra-
tions and improving the performance of the multi-task policy
on tasks inferred form such demonstrations.

D. Ablation Study

We perform an ablation study to investigate the contribution
of each component of our proposed approach to the overall
performance in the continual learning setting and plot the
results in Fig. 8. When the action and intention networks are
removed ("no-GACT,INT"), the behavior network GB is forced to
learn the behavior embeddings directly from demonstrations.

Fig. 8. Performance curves of SSTRL with all of its components and after
removing different components in the continual multi-task learning setting.
Shaded regions represent one standard deviation over 10 random seeds.

TABLE II
SUCCESS RATE PER TASK FOR EACH ABLATION CONFIGURATION OVER

THE TEST EPISODES.

Algorithm Task-1 Task-2 Task-3 Task-4

no-GACT,INT 65.33% 61.12% 45.80% 33.00%
TINet only 42.35% 37.19% 30.51% 17.79%
no-TINet 11.98% 10.33% 5.56% 4.95%
SSTRL (Ours) 74.32% 71.00% 68.76% 56.20%

This slows convergence as the robot lacks the information the
action-intention associations offer to facilitate task inference.
Removing the hierarchical self-organization architecture alto-
gether and keeping the TINet ("TINet only") causes the multi-
task policy to converge to a lower average reward than when
self-organization of behaviors is enabled. Since in this case
the TINet cannot be trained to map demonstrations to best
matching behaviors, the algorithm will likely fail to infer the
intended behavior behind each demonstration, thus preventing
the policy from achieving high performance across all tasks.
If the TINet is removed ("no-TINet"), the policy exhibits poor
performance, with the average reward staying under 0.25 until
the end of learning. The success rate per task for each of the
considered Configurations is given in Table II.

These results suggest that behavior self-organization is
essential for task inference in SSTRL and that, without the
behavior-matching loss, the TINet can only reach an aver-
age performance, indicating that training the TINet with the
contrastive loss is sufficient for improving the performance
compared to the case when the TINet is removed. Additionally,
unsupervised learning of action and intention embeddings with
GACT and GINT networks and using the combined action-
intention embeddings as input to the GB network allow
behavior self-organization to significantly improve learning
speed and final performance compared to directly using the
encoded demonstrations as input to GB .

11

Fig. 9. Example demonstrations of three held-out visuomotor tasks: (a) “Grasp
the green box", (b) “Grasp the can", (c) “Push the can towards the green
box". From bottom to top: RGB frames of initial, intermediate, and terminal
configurations.

E. One-Shot Task Generalization

We evaluate the multi-task policy trained in the continual
learning setting with BGPO and SSTRL (the best-performing
policy out of 10 training runs) on a held-out set of three unseen
tasks: Grasp the green box (Task-5), grasp the can (Task-6),
and push the can towards the green box (Task-7). For each
unseen task, we provide the trained policy with one visual
demonstration of successful task execution as input. Fig. 9
shows an example demonstration for each task. We perform
100 test trials with 100 different demonstrations per unseen
task. The success rate for the unseen tasks is given in Table
III.

The held-out tasks are chosen such that they include com-
binations of action-object pairs (Task-5, Task-6) and object-
object pairs (Task-7) that were not seen during training. As
shown in Table III, SSTRL achieves a non-zero success rate
in all the held-out tasks. We find that Task-6 is particularly
challenging. We believe this is because it not only involves a
novel object (the can), but also because the policy has learned
to grasp only a single object (the red glass) during training
whereas it has learned to push different objects. Neverthe-
less, the multi-task policy trained with SSTRL appears to
capture the intention of the observed demonstration despite
having never seen any demonstration of the related task. We
demonstrate the one-shot generalization performance of our
approach on the held-out tasks in the accompanying video
(https://youtu.be/77cP8ciHcII). Analyzing the trajectories gen-
erated by the policy, we observe that while the robot does not
exactly complete the task in the unsuccessful trials, it moves
towards the target object, and in many cases the robot does
come fairly close to the target object but fails only to close the
fingers correctly on the object or to place the pushed object
right next to the target object. This clearly indicates that the
inferred task representation is informative of the task at hand.

F. Performance Evaluation in the Real World

We compare the performance of the multi-task policy
trained under the continual learning setting in simulation on
the real NICO robot. For each algorithm, we take the best-
performing policy out of 10 simulation-based training runs

TABLE III
ONE-SHOT GENERALIZATION PERFORMANCE ON HELD-OUT TASKS. THE

REPORTED NUMBERS ARE SUCCESS RATES OVER 100 TRIALS.

Algorithm Task-5 Task-6 Task-7

BGPO [16] 22% 0% 0%
SSTRL (Ours) 55% 35% 61%

Fig. 10. Exocentric and egocentric (inset) views of the real-world experimen-
tal setup for multi-task learning from the perspective of the NICO robot.

and perform 20 test episodes per task on the real robot, each
with different object positions and initial robot configuration.
For BGPO and SSTRL, we use a random simulation-based
demonstration as input to the policy.

The simulation uses a URDF model of the NICO robot
and, thus, there is no difference between the real NICO and
the simulated NICO. The height and color of the table and
of the robot’s seat are identical in the simulation and the
real environment, which facilitates a direct transfer of the
robot’s arm pose and the trained policy. The objects on the
table are slightly different in geometry to enable more stable
manipulation but have the same colors as in simulation. Fig.
10 shows the experimental setup with the real NICO robot.
We do not perform any additional training or fine-tuning of
the learning architecture and deploy it directly on the real
NICO. We report the success rate per task for each algorithm
in Table IV. Example runs of the multi-task policy learned
using SSTRL on the real robot are shown in the accompanying
video (https://youtu.be/77cP8ciHcII).

V. CONCLUSION

In this paper, we presented a novel self-supervised task
inference approach for continual robot learning. Our approach
uses a two-level hierarchical self-organization architecture to
learn task-descriptive behavior embeddings from unlabeled
vision-based demonstrations. In the lower level, action and
intention embeddings are incrementally learned from self-
organization of the observed movement and effect parts of
each demonstration. The self-organization of the combined
action-intention embeddings constructs a higher-level behavior
embedding space. A novel behavior-matching self-supervised
learning objective is used to train a task inference network,

https://youtu.be/77cP8ciHcII
https://youtu.be/77cP8ciHcII

12

TABLE IV
PERFORMANCE EVALUATION IN THE REAL WORLD. THE REPORTED

NUMBERS ARE SUCCESS RATES OVER 20 TEST EPISODES.

Algorithm Task-1 Task-2 Task-3 Task-4

P&C [34] 15% 25% 15% 20%
Plan2Explore [30] 10% 30% 20% 25%
BGPO [16] 35% 75% 50% 50%
SSTRL (Ours) 60% 75% 65% 70%

which we call TINet, to map complete and incomplete versions
of an unlabeled demonstration to a best matching behavior in
the learned behavior embedding space, which we use as the
target task representation. A multi-task policy is built on top
of the TINet and trained with reinforcement learning to opti-
mize performance over tasks. The whole learning architecture,
including the TINet, is trained end-to-end, encouraging the in-
ferred task representation to capture the structure of the task at
hand. We evaluate our approach in the fixed-set and continual
multi-task learning settings and compare it to different multi-
task learning baselines. The results show that our approach
outperforms the other baselines, with the difference being
more pronounced in the challenging continual learning setting.
Our approach also achieves higher task performance than the
compared demonstration-based baseline on incomplete input
demonstrations. Additionally, the results from one-shot task
generalization experiments clearly demonstrate the ability of
our approach to read the intention behind a task demonstration
and generate a meaningful action trajectory to complete the
task without any learning on the task.

In contrast to previous multi-task learning approaches, our
approach is constant in the number of policy parameters,
makes no assumptions about task distribution, and while main-
taining performance on previously learned tasks, avoids learn-
ing interference among tasks as it accelerates learning progress
on new tasks. The ability to infer the intended behavior behind
a visual demonstration rather than copying and memorizing the
observed actions allows our approach to complete the tasks
more efficiently than the provided demonstrations, especially
when the input demonstration is imperfect or incomplete. It
is also worth mentioning that the policy trained with our
approach performs the desired task even when the initial
environment state, including robot configuration, is different
between the demonstration and test-time settings, as shown in
the accompanying video (https://youtu.be/77cP8ciHcII).

One limitation of our approach is that it requires addi-
tional computational time for constructing and adapting the
growing self-organizing networks necessary for task inference.
However, this happens only once every learning episode and
never at test time, where only the TINet is queried for a task
representation without any search in the graph of the growing
networks. Besides, this computational complexity scales only
linearly with the number of demonstrations. In its current form,
our approach uses first-person demonstrations. One exciting
direction for future work is to adapt our approach to address
task inference when the morphology of the demonstrator and
the robot are different, which is the case when using third-
person demonstrations from a human teacher. Another direc-

tion for future work is to train the approach on multimodal
demonstrations using vision-and-language task descriptions.

APPENDIX A
HYPERPARAMTERS OF THE GROWING SELF-ORGANIZING

NETWORKS

Here we give details on the hyperparameters of the growing
Action Net GACT , Intention Net GINT, and Behavior Net GB

in Tables V, VI, and VII, respectively.

TABLE V
THE HYPERPARAMETERS OF GACT NET USED IN OUR EXPERIMENTS.

Hyperparameter Value

Activity Threshold aT = 0.7
Habituation Threshold hT = 0.2
Learning Rates ϵc = 0.1, ϵn = 0.05
Initial Habituation h0 = 1
Habituation Curve αc = αn = 1.05, τc = 0.5, τn = 2
Maximum Age Threshold κ = 80

TABLE VI
THE HYPERPARAMETERS OF GINT NET USED IN OUR EXPERIMENTS.

Hyperparameter Value

Activity Threshold aT = 0.9
Habituation Threshold hT = 0.3
Learning Rates ϵc = 0.1, ϵn = 0.01
Initial Habituation h0 = 1
Habituation Curve αc = αn = 1.05, τc = 1, τn = 2.7
Maximum Age Threshold κ = 100

TABLE VII
THE HYPERPARAMETERS OF GB NET USED IN OUR EXPERIMENTS.

Hyperparameter Value

Activity Threshold aT = 0.8
Habituation Threshold hT = 0.15
Learning Rates ϵc = 0.1, ϵn = 0.01
Initial Habituation h0 = 1
Habituation Curve αc = αn = 1.05, τc = 3.3, τn = 14.3
Maximum Age Threshold κ = 90

APPENDIX B
BASELINE DETAILS

Plan2Explore. The convolutional image encoder and decoder
networks are the same from [46]. We use an ensemble of 5
transition models whose prediction disagreement is used to
derive the intrinsic reward for the task-agnostic exploration,
with each model implemented as a 2 hidden-layer MLP which
takes the recurrent state of the recurrent state space model
(RSSM) [47] and the action as input and predicts 1024-
dimensional image encoder features. The reward prediction,
state-value, and policy functions are parameterized by a 3
hidden-layer MLP each, with 200 ReLU units in each layer,
and trained using Adam [42] with a learning rate of 10−5. The
imagination horizon is 15.
P&C. The policy and value function of the active column and
knowledge base share a convolutional encoder of two Conv

https://youtu.be/77cP8ciHcII

13

layers with 16 6×6 and 32 3×3 filters and ReLU activations,
followed by a fully connected layer with 256 units and ReLU
activations. A separate, fully connected output layer with linear
activation is used for each of the policy and value function. The
networks are trained using Adam [42] and with a learning rate
of 0.003. The forgetting coefficient and Fischer regularisation
strength are set to 0.95 and 25, respectively.
BGPO. A variational autoencoder (VAE) [48] is used to
learn the state representation. The VAE encoder consists of
three Conv layers with 32, 64, and 128 3×3 filters, each
followed by ReLU activation and 2×2 max-pooling, and two
fully connected layers of 128 linear units outputting the mean
and standard deviation of a diagonal Gaussian from which
state representations are sampled. The decoder mirrors the
encoder, but uses a sigmoid activation in the output layer. The
inverse model used is a 1-layer MLP with tanh activation.
Each demonstration is a sequence of VAE-encoded states. An
LSTM autoencoder with 64 hidden units in the encoder and
decoder LSTMs is used to encode the demonstrations. We
use the same hyperparameters that were used in [16] for the
GWR-B model. DDPG is used as the base RL algorithm. The
policy and action-value function are parameterized by an MLP
with a hidden layer of 64 ReLU units and output layer of one
linear unit in the action-value function and 4 tanh units in the
policy. The VAE, inverse model and LSTM autoencoder are
pretrained on 4000 task demonstrations and then fixed during
policy learning. The networks are trained using Adam [42]
with learning rate 0.001.
Single-task policy optimization. In both the single-task Q-
and policy networks, a CNN state encoder (described in Sec.
IV-A) is used, followed by one fully-connected hidden layer
with 64 ReLU units. The output layer in the policy network
is a tanh layer and in the Q-network is a linear layer. The
actions are included after the CNN encoder in the Q-network.
The networks are trained with DDPG [41] using Adam [42]
with learning rate 0.001 and batch size 256.

ACKNOWLEDGEMENT

We gratefully acknowledge support from the German Re-
search Foundation DFG under project CML (TRR 169). We
thank Erik Strahl for his technical support with the real-world
experimental setup.

REFERENCES

[1] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[2] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113, 2019.

[3] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning
to walk via deep reinforcement learning.” in Robotics: Science and
Systems (RSS), June 2019.

[4] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 3357–3364.

[5] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirk-
patrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy
distillation,” in ICLR, 2016.

[6] Y. W. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Had-
sell, N. Heess, and R. Pascanu, “Distral: Robust multitask reinforcement
learning,” in Conference on Neural Information Processing Systems
(NeurIPS), 2017, pp. 4499–4509.

[7] O. Watkins, A. Gupta, T. Darrell, P. Abbeel, and J. Andreas, “Teachable
reinforcement learning via advice distillation,” in Conference on Neural
Information Processing Systems (NeurIPS), 2021.

[8] R. Mendonca, A. Gupta, R. Kralev, P. Abbeel, S. Levine, and C. Finn,
“Guided meta-policy search,” in Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

[9] A. Zhou, E. Jang, D. Kappler, A. Herzog, M. Khansari, P. Wohlhart,
Y. Bai, M. Kalakrishnan, S. Levine, and C. Finn, “Watch, try, learn:
Meta-learning from demonstrations and reward,” in International Con-
ference on Learning Representations(ICLR), 2020.

[10] C. Lynch and P. Sermanet, “Language Conditioned Imitation Learning
Over Unstructured Data,” in Robotics: Science and Systems (RSS), 2021.

[11] A. Silva, N. Moorman, W. Silva, Z. Zaidi, N. Gopalan, and M. Gombo-
lay, “LanCon-Learn: Learning with Language to Enable Generalization
in Multi-Task Manipulation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 1635–1642, 2022.

[12] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International Conference on Machine Learning (ICML). PMLR,
2019, pp. 5331–5340.

[13] J. Zhang, J. Wang, H. Hu, T. Chen, Y. Chen, C. Fan, and C. Zhang,
“MetaCURE: Meta reinforcement learning with empowerment-driven
exploration,” in International Conference on Machine Learning (ICML).
PMLR, 2021, pp. 12 600–12 610.

[14] R. A. Williamson and E. M. Markman, “Precision of imitation as a func-
tion of preschoolers’ understanding of the goal of the demonstration.”
Developmental Psychology, vol. 42, no. 4, pp. 723–731, 2006.

[15] G. Rizzolatti and C. Sinigaglia, “The functional role of the parieto-
frontal mirror circuit: interpretations and misinterpretations,” Nature
Reviews Neuroscience, vol. 11, no. 4, pp. 264–274, 2010.

[16] M. B. Hafez and S. Wermter, “Behavior self-organization supports
task inference for continual robot learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
6739–6746.

[17] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “BC-z: Zero-shot task generalization with
robotic imitation learning,” in Conference on Robot Learning (CoRL),
ser. Proceedings of Machine Learning Research. PMLR, 2022, pp.
991–1002.

[18] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine, “Vision-
based multi-task manipulation for inexpensive robots using end-to-end
learning from demonstration,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 3758–3765.

[19] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and
P. Sermanet, “Learning latent plans from play,” in Conference on Robot
Learning (CoRL). PMLR, 2020, pp. 1113–1132.

[20] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from observation:
Learning to imitate behaviors from raw video via context translation,”
in IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1118–1125.

[21] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski,
C. Finn, S. Levine, and K. Hausman, “MT-Opt: Continuous Multi-
Task Robotic Reinforcement Learning at Scale,” arXiv preprint
arXiv:2104.08212, 2021.

[22] A. N. Meltzoff, “Understanding the intentions of others: re-enactment
of intended acts by 18-month-old children.” Developmental psychology,
vol. 31, no. 5, p. 838, 1995.

[23] M. Tomasello, M. Carpenter, J. Call, T. Behne, and H. Moll, “Un-
derstanding and sharing intentions: The origins of cultural cognition,”
Behavioral and brain sciences, vol. 28, no. 5, pp. 675–691, 2005.

[24] C.-T. Huang, C. Heyes, and T. Charman, “Infants’ behavioral reenact-
ment of “failed attempts”: Exploring the roles of emulation learning,
stimulus enhancement, and understanding of intentions.” Developmental
psychology, vol. 38, no. 5, p. 840, 2002.

[25] B. Elsner, “Infants’ imitation of goal-directed actions: The role of
movements and action effects,” Acta psychologica, vol. 124, no. 1, pp.
44–59, 2007.

[26] M. Schönebeck and B. Elsner, “ERPs reveal perceptual and conceptual
processing in 14-month-olds’ observation of complete and incomplete
action end-states,” Neuropsychologia, vol. 126, pp. 102–112, 2019.

[27] M. Nielsen, “12-month-olds produce others’ intended but unfulfilled
acts,” Infancy, vol. 14, no. 3, pp. 377–389, 2009.

14

[28] M. Paulus, S. Hunnius, and H. Bekkering, “Neurocognitive mechanisms
underlying social learning in infancy: infants’ neural processing of the
effects of others’ actions,” Social Cognitive and Affective Neuroscience,
vol. 8, no. 7, pp. 774–779, 2013.

[29] R. P. Cooper, R. Cook, A. Dickinson, and C. M. Heyes, “Associative (not
hebbian) learning and the mirror neuron system,” Neuroscience Letters,
vol. 540, pp. 28–36, 2013.

[30] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak,
“Planning to explore via self-supervised world models,” in International
Conference on Machine Learning (ICML), ser. Proceedings of Machine
Learning Research. PMLR, 2020, pp. 8583–8592.

[31] A. Sharma, M. Ahn, S. Levine, V. Kumar, K. Hausman, and S. Gu,
“Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning,” in Robotics: Science and Systems (RSS), July
2020.

[32] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim, “Demonstration-guided
reinforcement learning with learned skills,” in Conference on Robot
Learning (CoRL), ser. Proceedings of Machine Learning Research.
PMLR, 2022, pp. 729–739.

[33] S. Sodhani, A. Zhang, and J. Pineau, “Multi-task reinforcement learning
with context-based representations,” in International Conference on Ma-
chine Learning (ICML), ser. Proceedings of Machine Learning Research.
PMLR, 2021, pp. 9767–9779.

[34] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W.
Teh, R. Pascanu, and R. Hadsell, “Progress & compress: A scalable
framework for continual learning,” in International Conference on Ma-
chine Learning (ICML), ser. Proceedings of Machine Learning Research.
PMLR, 2018, pp. 4528–4537.

[35] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van
Hasselt, “Multi-task deep reinforcement learning with popart,” in AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 3796–
3803.

[36] J. Oh, S. Singh, H. Lee, and P. Kohli, “Zero-shot task generalization with
multi-task deep reinforcement learning,” in International Conference
on Machine Learning (ICML), ser. Proceedings of Machine Learning
Research. PMLR, 2017, pp. 2661–2670.

[37] A. K. Lampinen and J. L. McClelland, “Transforming task representa-
tions to perform novel tasks,” Proceedings of the National Academy of
Sciences, vol. 117, no. 52, pp. 32 970–32 981, 2020.

[38] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[39] S. Marsland, J. Shapiro, and U. Nehmzow, “A self-organising network
that grows when required,” Neural Networks, vol. 15, no. 8-9, pp. 1041–
1058, 2002.

[40] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning (ICML). PMLR, 2020, pp. 1597–1607.

[41] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement learn-
ing,” in International Conference on Learning Representations(ICLR),
2016.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[43] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in OSDI. USENIX Association, 2016,
pp. 265–283.

[44] M. Kerzel, E. Strahl, S. Magg, N. Navarro-Guerrero, S. Heinrich,
and S. Wermter, “NICO–Neuro-Inspired COmpanion: A developmental
humanoid robot platform for multimodal interaction,” in IEEE Inter-
national Symposium on Robot and Human Interactive Communication
(RO-MAN). IEEE, 2017, pp. 113–120.

[45] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly V-
REP): a versatile and scalable robot simulation framework,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2013, www.coppeliarobotics.com.

[46] D. Ha and J. Schmidhuber, “World models,” arXiv preprint
arXiv:1803.10122, 2018.

[47] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
International conference on machine learning (ICML), ser. Proceedings
of Machine Learning Research. PMLR, 2019, pp. 2555–2565.

[48] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
International Conference on Learning Representations (ICLR), 2014.

	Introduction
	Related Work
	Task-Agnostic Models and Skills
	Learning Task-Conditioned Policies
	Cross-Task Adaptive Regularization
	Leveraging Task Relationships

	Technical Approach
	Hierarchical Self-Organization of Behaviors
	Self-Supervised Learning of Task Representations
	End-to-End Continual Multi-Task Learning

	Experimental Results
	Experimental Setup
	Multi-Task Learning Evaluation
	Performance Evaluation on Incomplete Demonstrations
	Ablation Study
	One-Shot Task Generalization
	Performance Evaluation in the Real World

	Conclusion
	Appendix A: Hyperparamters of the Growing Self-Organizing Networks
	Appendix B: Baseline Details
	References

