
CycleIK: Neuro-inspired Inverse
Kinematics

Jan-Gerrit Habekost(B), Erik Strahl, Philipp Allgeuer, Matthias Kerzel,
and Stefan Wermter

Knowledge Technology, Department of Informatics, University of Hamburg,
Hamburg, Germany

{jan-gerrit.habekost,stefan.wermter}@uni-hamburg.de

Abstract. The paper introduces CycleIK, a neuro-robotic approach
that wraps two novel neuro-inspired methods for the inverse kinematics
(IK) task—a Generative Adversarial Network (GAN), and a Multi-Layer
Perceptron architecture. These methods can be used in a standalone fash-
ion, but we also show how embedding these into a hybrid neuro-genetic
IK pipeline allows for further optimization via sequential least-squares
programming (SLSQP) or a genetic algorithm (GA). The models are
trained and tested on dense datasets that were collected from random
robot configurations of the new Neuro-Inspired COLlaborator (NICOL),
a semi-humanoid robot with two redundant 8-DoF manipulators. We
utilize the weighted multi-objective function from the state-of-the-art
BioIK method to support the training process and our hybrid neuro-
genetic architecture. We show that the neural models can compete with
state-of-the-art IK approaches, which allows for deployment directly to
robotic hardware. Additionally, it is shown that the incorporation of the
genetic algorithm improves the precision while simultaneously reducing
the overall runtime.

Keywords: Neuro-inspired Inverse Kinematics · Humanoid Robots ·
Genetic Algorithms · Generative Adversarial Networks

1 Introduction

The inverse kinematics task searches for suitable joint configurations for a kine-
matic chain in order to achieve a specified end-effector Cartesian pose. Recent
collaborative and humanoid robot designs often rely on redundant manipulators
with more than six degrees of freedom (DoF). The complexity of the inverse
kinematics task is therefore increased, as the problem is then under-determined
and a set of redundant solutions for a single pose can be found, referred to as the
nullspace. The Python-based genetic IK solver Gaikpy [10], originally developed
for the child-sized NICO robot [11] with 6-DoF arms, requires a long runtime
in order to deal with the 8-DoF manipulators of the recently developed Neuro-
Inspired COLlaborator [9], pictured in the top-left image in Fig. 1.

c© The Author(s) 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 457–470, 2023.
https://doi.org/10.1007/978-3-031-44207-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44207-0_38&domain=pdf
https://doi.org/10.1007/978-3-031-44207-0_38


458 J.-G. Habekost et al.

Fig. 1. CycleIK deployed to physical NICOL hardware (top-left). CycleIK hybrid
neuro-genetic inverse kinematics pipeline (top-right). Visualization of the nullspace
manifold from the CycleIK Generative Adversarial Network (bottom).

Traditionally, Jacobian-based methods are utilized for the IK task, such as
KDL [17] and Trac-IK [5] which are popular plug-ins in the MoveIt [7] framework
and can currently be seen as the industry standard. Both analytical solvers
require a high runtime when deployed to NICOL, and have a higher error than
Gaikpy [9]. We initially configured BioIK [18] to be the default solver, a popular
state-of-the-art genetic approach, which was also deployed via Moveit. MoveIt,
however, does not return a solution for an IK query, when the error is higher
than the internal threshold, leaving the control cycle of the robot with no action.

Neural inverse kinematics is a field that unites a wide range of neuro-robotic
applications that control the configuration space of a robotic system. The inverse
kinematics task is fundamentally embodied in every action-generating neural
architecture that takes data from Cartesian space as input. Explicit neural
approaches to the task, however, rarely show results with high precision and are
distributed over the different application domains of inverse kinematics ranging
from robotics to character animation.

Two neural architectures, an auto-regressive Multi-Layer Perceptron (MLP)
and a normalizing flow-based Generative Adversarial Network, are proposed in
this work. The models solve the inverse kinematics task for a given pose in the
reachability space of NICOL and can be deployed directly to robotic hardware,
or alternatively be optimized with Gaikpy. The MLP returns exactly one solution
for the IK task, while the GAN allows for the exploration of the nullspace mani-
fold. The method is inspired by CycleGAN [20], which trains a dual-GAN archi-
tecture in an unsupervised fashion, to transform between two image domains.
The positional and rotational errors are measured in Cartesian space by calcu-
lating the forward kinematics (FK) for a set of IK solutions that are inferred
from the neural models. The FK function calculates the end-effector pose from a



CycleIK: Neuro-inspired Inverse Kinematics 459

given robot configuration and has a short runtime of below 1ms. Consequently, a
second generator as in the original dual-GAN setup of CycleGAN, that approx-
imates the FK function to transform from configuration to Cartesian space, is
not necessarily needed for this application.

2 Related Work

The most similar normalizing flow-based approaches to ours are IKFlow from
Ames et al. [3] and the work of Kim and Perez [12]. IKFlow is a recent and
promising neural IK approach. The authors propose a conditional normalizing
flow network for the inverse kinematics task, a form of Invertible Neural Network
(INN) [4], introduced by Ardizzone et al. for invertible problems. Samples from
a simple normal distribution are transformed into valid solution manifolds in
the configuration domain through coupling layers that consist of multiple simple
invertible functions. The solution manifold can optionally be further optimized
with Trac-IK[5].

The approach of Kim and Perez [12] has a very similar architecture to
IKFlow. Compared to IKFlow, which calculates the error with analytical for-
ward kinematics, Kim and Perez use a second neural network to approximate
the FK function in an autoencoder architecture. The approach of Kim and Perez
has a comparably high error in the centimeter range and requires further opti-
mization with the Jacobian, while IKFlow reaches a millimeter range of error.

Lembono et al. [14] present an ensemble architecture in which multiple GAN
generators learn to sample from disjunct patches of the configuration space.
A single forward kinematics discriminator is used that also checks for further
constraints, e.g. minimal displacement of the arms. A more detailed investigation
of GANs in the context of IK is given by Ren and Ben-Tzvi [16]. The paper
modifies four different types of GAN architectures to solve the inverse kinematics
problem. The discriminator produces binary output, while most GAN designs
perform regression and calculate the continuous error to the target pose.

Bensadoun et al. [6] introduce a Gaussian Mixture Model (GMM) ensemble to
calculate multiple solutions for the IK problem. A GMM is created for every joint
in the kinematic chain. A hypernet parameterizes the GMMs conditioned to the
target pose. Volinski et al. [19] utilize Spiking Neural Networks (SNN) to solve
the inverse kinematics problem. The approach trains three different variations
of simple SNN architectures. ProtoRes [15] was introduced by Oreshkin et al. to
reconstruct natural body poses from sparse user input for animation tasks. The
framework consists of a pose encoder that creates a latent embedding from the
user input and then solves the IK task with a pose decoder.



460 J.-G. Habekost et al.

3 Method

Fig. 2. CycleIK neuro-inspired training
and architecture overview. A batch of
Cartesian poses X is inferred by the net-
work to predict a set of valid robot config-
urations Θ under constraints L.

We propose CycleIK, a neuro-inspired
inverse kinematics solver that makes
use of the cyclic dependency between
the transformation from configuration
to Cartesian space and its inverse.
An overview of the architecture is
given in Fig. 2. The framework enables
either training a single-solution auto-
regressive Multi-Layer Perceptron or a
normalizing flow-based GAN architec-
ture that allows the parallel inference
of multiple redundant solutions within
1 ms. Furthermore, the approach can
be utilized as a neuro-kinematic tool-
box. The default networks can be sub-
stituted by any end-to-end or multi-stage robotic control architecture that pre-
dicts joint angles and provides a Cartesian pose as a label. CycleIK is imple-
mented in PyTorch, to be as openly available as possible. Most IK solvers are
implemented in C++ and generally rely on iterative numerical methods for the
optimization process, often leading to a higher runtime compared to the inference
of a neural network.

CycleIK treats the joint space as a semi-hidden domain, and calculates posi-
tional and rotational losses only in Cartesian space, by inferring a full cycle back
to Cartesian space, as shown in the following equations (Eq. 1 and 2):

X̂ = FK(IK(X )) (1)

eIK = ‖X̂ − X‖ (2)

where X is a batch of an arbitrary natural number of target poses, and eIK is
the linear Cartesian error. While learning a one-to-one mapping between data
from Cartesian space and corresponding joint angles θ can work for lower-DoF
manipulators [10], the approach shows a high error for redundant manipulators
like on the NICOL robot [9], as these manipulators have a one-to-many mapping
in the form of the redundant nullspace manifold Θ. Thus, we minimize the linear
Cartesian error eIK instead, which in our experience learns and generalizes more
smoothly.

Similar to neuro-inspired multi-solution solvers like IKFlow and CycleIK,
genetic algorithms produce multiple solutions for an IK query, and have shown
good results for the IK task [1,10,18]. The most popular genetic IK approach is
BioIK [18], which is available in both MoveIt and Unity. The method supports
genetic algorithms by hybridization with particle swarm optimization (PSO).
The architecture allows generic IK queries through a weighted partial cost func-
tion φ(Θ,L) that is applied to the set of IK solutions Θ under the constraints L.
The constraints can be reformulated at every IK query, so complex dynamic tasks



CycleIK: Neuro-inspired Inverse Kinematics 461

Fig. 3. Visualization of NICOL’s right arm workspace, with the Small1000 dataset on
the left and the Full1400 dataset on the right.

such as collision avoidance in motion planning can be performed. Different goal
types can be set for either the links or joints of the robot. We adapt the weighted
partial cost function from BioIK for both of our models. CycleIK’s single-solution
model optionally makes use of a set of weighted constraints L = LC ∪ LJ , that
consists of specified goals, either in Cartesian or joint space. The constraints are
applied by the multi-objective function in every training step. Both, the single-
solution MLP as well as the multi-solution GAN, can optionally be further opti-
mized by the Python-based genetic IK Gaikpy [10] or non-linear sequential least
squares quadratic programming [13], where again a partial weighted cost func-
tion can be used to select the optimal solution. An overview of the neuro-genetic
IK pipeline is given in the top-right image of Fig. 1.

3.1 Dataset

Three datasets were collected from NICOL’s workspace: Small1000, Full1000
and Full1400. Uniform random collision-free robot configurations were sampled.
The Small1000 and Full1400 dataset are shown in Fig. 3. The Small1000 dataset
contains 1,000,000 samples and is limited to the right side of the tabletop, which
is located 80cm above the ground. The Full1000 and Full1400 datasets with
1, 000, 000 and 1, 400, 000 poses are sampled from the whole workspace of the
right arm over the tabletop. We built test sets with 10% size and validation sets
with 1% size for each of the training datasets. In all datasets, a 20cm safety
margin was included at the back of the workspace on the x-axis, as well as a
10cm safety margin on the y-axis on the right-hand side of the robot workspace.
All properties of the datasets can be seen in Table 1. A convex hull was generated
around the data points to approximate the Cartesian volume of each dataset.



462 J.-G. Habekost et al.

Table 1. Overview of the training datasets and the corresponding 10% test sets
(Small100, Full100 and Full140) and 1% validation sets (Small10, Full10 and Full14).

Dataset Workspace Samples Volume Sample Density

[x, y, z] (m) (cm3) (samples per cm3)

Small1000 106 295.56 · 103 3.383

Small100

[
0.2 −0.9 0.8

0.85 0.0 1.4

]
105 293.34 · 103 0.341

Small10 104 287.11 · 103 0.035

Full1000 106 420.11 · 103 2.38

Full100

[
0.2 −0.9 0.8

0.85 0.48 1.4

]
105 415.13 · 103 0.241

Full10 104 401.75 · 103 0.025

Full1400 1.4 · 106 420.43 · 103 3.33

Full140

[
0.2 −0.9 0.8

0.85 0.48 1.4

]
1.4 · 105 416.09 · 103 0.336

Full14 1.4 · 104 405.07 · 103 0.035

3.2 Architecture

The basic network architecture is very similar for both models. The pose is
encoded as a 7-dimensional vector, i.e. the 3-dimensional position [xp, yp, zp]T

concatenated with the rotation represented as a 4-dimensional unit quaternion
[xr, yr, zr, wr]T , as shown in Fig. 2. The output of the network has the same
dimension as the robot DoF, so every field of the output vector corresponds to
a motor position in the kinematic chain. The GAN additionally concatenates
the pose with a second input, a random uniform noise vector that is utilized to
sample from the nullspace manifold. The models utilize two different activation
functions. While Gaussian-Error Linear Units [8] (GELU) are generally used for
all the layers, the Tanh activation is applied to the last one to three layers of
the network, as this highly improves the results. The data is normalized to lie
in the interval [−1, 1], which is equivalent to the limits of the network input and
output. Thus, the method cannot push the joint angles through their joint limits,
which is a shortcoming of a lot of Jacobian-based IK solvers. Visualizations of
the two network architectures for the NICOL robot can be found in Fig. 4.



CycleIK: Neuro-inspired Inverse Kinematics 463

Fig. 4. Neural architectures optimized for the Small1000 dataset, Multi-Layer Percep-
tron (left) and Generative Adversarial Network (right).

3.3 Training

In every training step, a batch of poses X is inferred by the network. For the
single-solution network, the training step is straightforward—after inference, for-
ward kinematics are applied to the batch of solutions Θ to determine the reached
poses X̂ and then apply the multi-objective loss function, as in Eq. 3:

lossL = φ(Θ, X̂ ,L) (3)

Here, L holds at least the positional and rotational error. For the NICOL robot,
we applied a zero-controller goal that minimizes the displacement of the motor
position from the zero position of the selected subset of redundant joints in the
kinematic chain. Our preliminary experiments showed the best performance by
using the mean absolute error for Cartesian space losses and mean squared error
for the joint space losses, as the error increased for all other evaluated error
terms. The learning rate is decreased linearly at the end of each epoch.

The training process for the multi-solution GAN extends the training process
of the MLP. After calculation of the positional and rotational loss for a batch of
Cartesian samples from the training set, one of the poses is randomly chosen from
the batch. A tensor of the same size as the training batch is created and filled
with the chosen pose. Random uniform noise Z of the required batch size and
noise vector size is then generated and used for the forward pass. The training
aims to maximize the variance in the solution batch Θ. The normalizing flow
method is applied, as the network is not being forced to regress to only one
solution, but instead fit the nullspace distribution Θ to the noise Z, as in Eq. 4:

lossvar = MSE(var(Θ) − var(Z)) (4)

The method can produce multiple valid solutions for the NICOL robot with
millimeter-level accuracy. One possible extension would be to combine Kullback-
Leibler divergence for the loss and normally distributed noise in the input, as
done by IKFlow [3] and Kim and Perez [12].



464 J.-G. Habekost et al.

3.4 Optimization

Each of the models was optimized over 250 trials for both the Small and Full
workspace. The results are shown in Table 2. For the Full workspace, we chose to
optimize the models with the Full1400 dataset. We used the Optuna framework
[2] to optimize the models with a Tree-structured Parzen Estimator (TPE) for
sampling, and a hyperband pruner. Four parameters were defined for the opti-
mization process, which are the batch size, learning rate, number of layers in
the network, and the number of layers with tanh activations at the end of the
network. Additionally, we optimized the number of neurons in every layer. An
overview of the exact network layouts can be found in Table 3, and a visualiza-
tion of the network structures for the Small workspace is shown in Fig. 4. For
the GAN only, we also optimized the size of the input noise vector.

Table 2. Training parameters for the different network types, optimized for the
Small1000 and Full1400 datasets.

Parameter MLP GAN Parameter Limits

Small Full Small Full min./max. step size

Batch Size 150 300 350 300 100 / 600 50

Learning Rate 1.6 · 10−4 10−4 2.1 · 10−4 1.9 · 10−4 10−5 / 10−3 10−5

Number Layers 8 8 8 8 7 / 9 1

Number 3 3 3 2 1 / 3 1

Tanh Layers

Noise Vector – – 8 10 3 / 10 1

Size

Table 3. Network structures of the different network types optimized for the Small1000
and Full1400 workspace.

Model Workspace Neurons per Layer

MLP Small [3380, 2250, 3240, 2270, 1840, 30, 60, 220]

Full [2200, 2400, 2400, 1900, 250, 220, 30, 380]

GAN Small [790, 990, 3120, 1630, 300, 1660, 730, 540]

Full [1180, 1170, 2500, 1290, 700, 970, 440, 770]

4 Results

The application of the weighted partial cost function on the MLP network and
the variance loss on the GAN created stability issues in the training process
of differing severity for the two models. The MLP rarely shows stability issues
during the training process, but they sometimes occur when trained for more



CycleIK: Neuro-inspired Inverse Kinematics 465

Fig. 5. Average positional and rotational error of the MLP and GAN model under
training for varying numbers of epochs.

than 100 epochs, and can be dealt with using gradient clipping. The GAN suffers
more severe stability issues, and could not be trained for more than 50 epochs in
our experiments. We hypothesize it is due to the competition of maximizing the
nullspace manifold variance while maintaining precise IK regression. Gradient
clipping cannot be applied as easily in the case of the GAN because it prevents
learning proper minimization of the variance loss.

4.1 Optimal Number of Epochs

To determine the optimal number of epochs for the training process, we trained
both presented models for each of the three datasets that were generated, so that
six models in total were evaluated under different epoch configurations. A stan-
dalone training was performed for every individual model and number of epochs.
To handle the stability issues of the models, we gave every evaluated epoch con-
figuration a number of restarts in case stability issues occur. Each choice of
maximum epochs was allowed two restarts for the MLP and nine for the GAN.
If exploding gradients occurred in every observed training, the combination was
considered to have failed. The results of our experiments are shown in Fig. 5.
We calculated the positional and rotational error for the MLP by first taking
the average over the three corresponding axes of the 6-DoF pose error, and then
averaging the results for the whole 10% test sets. For the multi-solution GAN,
we first calculated the average error over single batches of nullspace solutions,
before taking the mean over the whole test set. We take the success definition for
the inverse kinematics task from Kerzel et al. [10], which allows 10mm positional
and 20-degree rotational error.



466 J.-G. Habekost et al.

GAN. It can be seen that the training process of the Small1000 dataset had
the lowest error for most of the epoch configurations when compared to the
training of the Full1000 and Full1400 datasets. For a higher number of epochs,
the positional error of the GAN models behaves similarly for the Small1000 and
Full1400 datasets. Instabilities occur for short training and with regard to the
rotational error. The training of the Full1000 GAN model already starts to fail
when training for more than 40 epochs, while the rotational error can compete
with the loss of the Full1400 model for a lot of configurations.

MLP. The results of the single-solution MLP for the training on the Small and
Full workspace differ more strongly than for the GAN. Different from the GAN,
where the exact same loss is used for both workspaces, the zero-controller goal
that we set for the training of the MLP has to be tuned for a specific workspace
and therefore differs. The additional joint space goal can therefore explain the
differences in training behavior to some degree. The training with the Full1000
dataset can also for the MLP compete with the Full1400 training for some epoch
configurations. Overall, the best model for the Full1400 dataset exceeds the best
model for the Full1000 dataset.

The training with the Small1000 dataset proceeded the smoothest, and we did
not experience any stability issues. In contrast to the GANs, where the smallest
positional error is achieved after 50 epochs for both workspaces, with slightly
below 3mm average error, the MLP models differ in the ideal training length
as well as in the smallest error. While the lowest positional error for the Full
workspace is achieved after 100 epochs, the best results for the Small workspace
are found after 300 training epochs. The best results for the Full1000 dataset
are also achieved with 300 training epochs, but cannot compete with the best
model of the Full1400 dataset. We evaluated the performance of the different
models for the Full1400 dataset on the Small100 test set to make the Small1000
and Full1400 models directly comparable. It can be seen from the green dotted
line in Fig. 5 that the Full1400 models perform very similarly when evaluated
on the same test data as the Small1000 models. Positional and rotational errors
only show small differences until 100 training epochs are exceeded.

Overall, we focus more on the positional error rather than the rotational
error, as the rotational error is far below our success limit of 20 ◦C in almost all
cases. Especially the models that were only trained for 10 or 20 epochs can show
up to 5 mm average positional error, and therefore a lot of solutions around the
upper bound of the error exceed the limit of 1 cm.

4.2 Precision Analysis

From the previous experiment, the best-performing models were selected and
evaluated for the Small100 and Full140 test sets. We seeded 50% of Gaikpy’s
initial population with solutions from the neural models in a follow-up exper-
iment and filled the other half of the population with uniform random robot
configurations within the joint limits. As a baseline, errors for standalone BioIK
and Gaikpy were evaluated. The results of our IK experiments on the Small



CycleIK: Neuro-inspired Inverse Kinematics 467

and Full workspace can be seen in Table 4. The framework offers SLSQP for
further optimization but we did not use it in the experiments, as the solutions
are already precise enough to be deployed to the physical hardware.

The performance of BioIK on the test sets was measured via MoveIt. Since
MoveIt reports an exception for solutions whose error lies over a specified thresh-
old, as this threshold cannot be influenced, no solution can be evaluated for the
failed requests. This behavior is different from all other methods that are utilized
in this work, as they always report at least some kind of solution. For the failed
MoveIt requests, we calculated the distance between the initial rest end-effector
pose and the target pose, which increases the average positional and rotational
error in comparison to the other methods. The positional error lies around 0.02
to 0.05mm for the successful requests and would therefore outperform the pre-
sented Python-based methods.

For the GAN, 500 solutions for the same pose were generated, and the average
error for every pose was calculated before the mean was taken over the whole
test set. For all other methods, we only analyzed the error of the best solution
for every test pose. For the GAN results, the average error of the best solution
for every test pose is the average minimum error reported in Table 4.

It can be seen that the GAN model performs better for the Full workspace,
while the MLP performs better for the Small workspace. The average error of the
GANs is between three to ten times higher than for the MLPs. However, it was
possible to improve the solutions of the GANs as well as the MLPs through opti-
mization with Gaikpy. In general, the orientation errors of the MLPs increased
while the positional errors decreased. Moreover, while the average maximum
error of the GANs is near the upper limit we defined for the error, which is
generally good as it indicates that most solutions are within the error limit,
the success rate of the GANs can only compete with BioIK and the CycleIK
MLP model through the genetic optimization. Both the MLP and GAN models
can be deployed directly to real hardware without further optimization, as the
positional error stays far below 1 cm on average.

The standalone Gaikpy method shows a lower average positional error than
BioIK and a similar to slightly lower rotational error. The divergent success
definition of BioIK is the reason that its success rate of over 98% outperforms
the success rate of Gaikpy by about 3–5%, while the average error of BioIK
is tremendously higher. When Gaikpy is seeded with the neural models from
CycleIK, the error of the solutions can be reduced by around 60% to 90% while
the timeout of the genetic algorithm can be reduced by over 98%, enabling the
neuro-genetic method to directly compete with BioIK regarding success rate as
well as average error. The standalone Gaikpy method overcomes both neuro-
only architectures as well as the Gaikpy variant that was seeded with the GAN
solutions with regard to the positional error. In contrast, Gaikpy’s orientation
error is higher than for all CycleIK setups, which indicates that the seeding with
neural solutions increases Gaikpy’s performance with regard to the orientation.



468 J.-G. Habekost et al.

Table 4. Results of different CycleIK variants and standalone Gaikpy and BioIK on
the Small100 and Full140 test set.

Model Work- Position (mm) Orientation (◦) Success Timeout

space Avg. Min./Max. Avg. Min./Max. Rate (%) (ms)

CycleIKMLP Small 0.295 5.36 · 10−4 / 0.033 2.39 · 10−4 / 99.48 0.242

143.56 85.73

Full 1.022 1.12 · 10−3 / 0.152 3.92 · 10−4 / 98.49 0.243

376.39 127.41

CycleIKMLP Small 0.074 4.83 · 10−6 / 0.089 2.74 · 10−4/ 99.85 19.589

w. Gaikpy 245.57 93.43

Full 0.163 3.44 · 10−6 / 0.308 1.59 · 10−4 / 99.38 19.603

271.33 128.11

CycleIKGAN Small 2.892 0.602 / 0.266 0.046 / 92.07 0.458

11.87 2.82

Full 2.795 0.7 / 0.563 0.134/ 94.77 0.448

10.84 3.56

CycleIKGAN Small 0.525 6.84 · 10−6 / 0.308 4.22 · 10−4 / 98.46 19.922

w. Gaikpy 169.33 127.27

Full 0.4 9.34 · 10−6 / 0.407 7.58 · 10−4 / 98.97 19.572

366.22 133.89

Gaikpy Small 0.113 5.16 · 10−6 / 8.066 0.09 / 93.33 1022.534

62.83 139.45

Full 0.062 3.19 · 10−6 / 5.969 0.03 / 96.06 1106.849

100.83 143.06

BioIK Small 33.487 1.24 · 10−6 / 7.625 1.39 · 10−6 / 98.72 1

654.83 142.48

Full 41.468 9.93 · 10−6 / 8.349 1.54 · 10−6 / 98.05 1

575.57 147.08

5 Conclusion

This work presented two novel neuro-inspired architectures for the inverse kine-
matics task that deliver state-of-the-art performance when compared to other
bio-inspired methods. We showed that the neuro-only architectures are precise
enough to be directly deployed to real-world robots. It was also shown that the
solutions from the GAN, as well as the MLP architecture, can additionally be
used as seeds for a genetic algorithm. The results showed that seeding the GA
with the CycleIK output did not only improve the Cartesian precision of the
neural solutions, but also reduced the runtime of the GA by over 98%. The
weighted multi-objective function that was applied during the training of the



CycleIK: Neuro-inspired Inverse Kinematics 469

MLP proved to successfully support the training and made it possible to influ-
ence the kinematic behavior of the model. Finally, the importance of the pre-
sented normalizing-flow method for the IK task is underlined, as the GAN model
reaches a similar precision as IKFlow and therefore has better performance than
most neuro-inspired IK approaches. CycleIK will be utilized for more sophisti-
cated experimental setups in the future, such as collision-free motion planning
in human-robot interaction and multi-modal grasping.

Acknowledgements. The authors gratefully acknowledge support from the DFG
(CML, MoReSpace, LeCAREbot), BMWK (SIDIMO, VERIKAS), and the European
Commission (TRAIL, TERAIS).

References

1. Aguilar, O.A., Huegel, J.C.: Inverse kinematics solution for robotic manipula-
tors using a CUDA-based parallel genetic algorithm. In: Batyrshin, I., Sidorov, G.
(eds.) MICAI 2011. LNCS (LNAI), vol. 7094, pp. 490–503. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25324-9 42

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2019, pp. 2623–2631. Association for Computing Machinery, New York, NY,
USA (2019)

3. Ames, B., Morgan, J., Konidaris, G.: IKFlow: generating diverse inverse kinematics
solutions. IEEE Robot. Autom. Lett. 7(3), 7177–7184 (2022)

4. Ardizzone, L., Kruse, J., Rother, C., Kűthe, U.: Analyzing inverse problems with
invertible neural networks. In: International Conference on Learning Representa-
tions (2019)

5. Beeson, P., Ames, B.: TRAC-IK: an open-source library for improved solving of
generic inverse kinematics. In: 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), pp. 928–935 (2015)

6. Bensadoun, R., Gur, S., Blau, N., Wolf, L.: Neural inverse kinematic. In: Chaud-
huri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings
of the 39th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 162, pp. 1787–1797. PMLR, 17–23 July 2022

7. Coleman, D., Sucan, I.A., Chitta, S., Correll, N.: Reducing the barrier to entry of
complex robotic software: a moveit! case study. J. Softw. Eng. Robot. 5(1), 3–16
(2014)

8. Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs). arXiv e-prints
arXiv:1606.08415, June 2016

9. Kerzel, M., et al.: Nicol: a neuro-inspired collaborative semi-humanoid robot
that bridges social interaction and reliable manipulation. arXiv e-prints
arXiv:2305.08528 (2023)

10. Kerzel, M., Spisak, J., Strahl, E., Wermter, S.: Neuro-genetic visuomotor archi-
tecture for robotic grasping. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN
2020. LNCS, vol. 12397, pp. 533–545. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61616-8 43

https://doi.org/10.1007/978-3-642-25324-9_42
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2305.08528
https://doi.org/10.1007/978-3-030-61616-8_43
https://doi.org/10.1007/978-3-030-61616-8_43


470 J.-G. Habekost et al.

11. Kerzel, M., et al.: NICO-neuro-inspired companion: a developmental humanoid
robot platform for multimodal interaction. In: 2017 26th IEEE International Sym-
posium on Robot and Human Interactive Communication (RO-MAN), pp. 113–120
(2017)

12. Kim, S., Perez, J.: Learning reachable manifold and inverse mapping for a redun-
dant robot manipulator. In: 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4731–4737 (2021)

13. Kraft, D.: A Software Package for Sequential Quadratic Programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungs-
bericht, Wiss. Berichtswesen d. DFVLR (1988)

14. Lembono, T.S., Pignat, E., Jankowski, J., Calinon, S.: Learning constrained distri-
butions of robot configurations with generative adversarial network. IEEE Robot.
Autom. Lett. 6(2), 4233–4240 (2021)

15. Oreshkin, B.N., Bocquelet, F., Harvey, F.G., Raitt, B., Laflamme, D.: Protores:
proto-residual network for pose authoring via learned inverse kinematics. In: Inter-
national Conference on Learning Representations (2022)

16. Ren, H., Ben-Tzvi, P.: Learning inverse kinematics and dynamics of a robotic
manipulator using generative adversarial networks. Robot. Autonom. Syst. 124,
103386 (2020)

17. Smits, R.: KDL: kinematics and dynamics library. http://www.orocos.org/kdl
18. Starke, S., Hendrich, N., Zhang, J.: A memetic evolutionary algorithm for real-time

articulated kinematic motion. In: 2017 IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 2473–2479 (2017)

19. Volinski, A., Zaidel, Y., Shalumov, A., DeWolf, T., Supic, L., Ezra Tsur, E.:
Data-driven artificial and spiking neural networks for inverse kinematics in neuro-
robotics. Patterns 3(1), 100391 (2022)

20. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: 2017 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 2242–2251 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://www.orocos.org/kdl
http://creativecommons.org/licenses/by/4.0/

	CycleIK: Neuro-inspired Inverse Kinematics
	1 Introduction
	2 Related Work
	3 Method
	3.1 Dataset
	3.2 Architecture
	3.3 Training
	3.4 Optimization

	4 Results
	4.1 Optimal Number of Epochs
	4.2 Precision Analysis

	5 Conclusion
	References




