
TYPE Original Research

PUBLISHED 27 June 2023

DOI 10.3389/fnbot.2023.1127642

OPEN ACCESS

EDITED BY

Nicolás Navarro-Guerrero,

L3S Research Center, Germany

REVIEWED BY

Andreas Schweiger,

Airbus, Netherlands

Tongle Zhou,

Nanjing University of Aeronautics and

Astronautics, China

Guangda Chen,

Zhejiang University, China

*CORRESPONDENCE

Muhammad Burhan Hafez

burhan.hafez@uni-hamburg.de

†These authors share first authorship

RECEIVED 19 December 2022

ACCEPTED 28 April 2023

PUBLISHED 27 June 2023

CITATION

Hafez MB, Immisch T, Weber T and Wermter S

(2023) Map-based experience replay: a

memory-e�cient solution to catastrophic

forgetting in reinforcement learning.

Front. Neurorobot. 17:1127642.

doi: 10.3389/fnbot.2023.1127642

COPYRIGHT

© 2023 Hafez, Immisch, Weber and Wermter.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Map-based experience replay: a
memory-e�cient solution to
catastrophic forgetting in
reinforcement learning

Muhammad Burhan Hafez*†, Tilman Immisch†, Tom Weber and

Stefan Wermter

Knowledge Technology Research Group, Department of Informatics, University of Hamburg, Hamburg,

Germany

Deep reinforcement learning (RL) agents often su�er from catastrophic forgetting,

forgetting previously found solutions in parts of the input space when training

new data. Replay memories are a common solution to the problem by

decorrelating and shu	ing old and new training samples. They naively store state

transitions as they arrive, without regard for redundancy. We introduce a novel

cognitive-inspired replay memory approach based on the Grow-When-Required

(GWR) self-organizing network, which resembles a map-based mental model

of the world. Our approach organizes stored transitions into a concise

environment-model-like network of state nodes and transition edges, merging

similar samples to reduce thememory size and increase pair-wise distance among

samples, which increases the relevancy of each sample. Overall, our study shows

that map-based experience replay allows for significant memory reduction with

only small decreases in performance.

KEYWORDS

continual learning, reinforcement learning, cognitive robotics, catastrophic forgetting,

experience replay, growing self-organizing maps

1. Introduction

Reinforcement learning (RL) has seen a lot of major advances over the last years.

This includes solving the game of Go (Silver et al., 2016) and other challenging games

(Silver et al., 2018; Schrittwieser et al., 2020), as well as achieving breakthroughs in

robotic manipulation (Levine et al., 2016), locomotion (Haarnoja et al., 2019), and

navigation (Zhu et al., 2017). Newer algorithms, such as AplhaZero (Silver et al., 2018)

and MuZero (Schrittwieser et al., 2020), have become more flexible and less dependent

on expert human knowledge, which can introduce biases into the learning process and

be come expensive to acquire. Furthermore, it has been shown that superhuman artificial

intelligence programs built using these newer algorithms contribute to improvements in

human decision-making by encouraging novelty in human decisions (Shin et al., 2023). A

major part of these advances has been the introduction of deep function approximators

based on neural networks (NNs) (Mnih et al., 2015), well suited to learning complex

functions over massive continuous input spaces, into RL. They are, however, prone to

catastrophic forgetting (McCloskey and Cohen, 1989), a phenomenon where the network

encounters a sudden and drastic drop in performance in known scenarios while learning

novel information. This is an especially challenging problem in RL, because catastrophic

forgetting is exacerbated by long sequences of highly correlated data, which is the

default for any RL task. If all incoming batches of data are always highly correlated,

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1127642
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1127642&domain=pdf&date_stamp=2023-06-27
mailto:burhan.hafez@uni-hamburg.de
https://doi.org/10.3389/fnbot.2023.1127642
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1127642/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

changing only by slight variations, then an agent could achieve

a high prediction accuracy by continuously adjusting to its

immediate environment while forgetting older experiences,

because the latter probably is insignificant in decision making in

the current surroundings. If such an agent was now exposed to

some part of the state space different from the one it was most

recently trained on, it would not know how to act.

Replay buffers are a popular method to mitigate catastrophic

forgetting (Riemer et al., 2019; Rolnick et al., 2019; Daniels et al.,

2022), as they can store and periodically retrain on inputs that

are very rare or lie far in the past, but that may become relevant

again when the input distribution changes or when generalizing to

new situations by learning from past experiences. This is because

over time the input space might change in some way that makes

previously rare inputs more common or relevant. For instance,

the NN might have been trained on data collected under certain

conditions, but later needs to work in a different context where

previously rare inputs are now more frequent. If the training data

for the NN is diverse, comprising both old and new samples from

all over the input space, the model has no choice but to adapt

to all of them to reduce the overall error. Traditionally, these

replay memories merely store something like (state, action, next-

state, reward)-tuples at every training step to construct a dataset

so that the agent can then batch-learn from it. Storing every one

of these tuples can be storage intensive and inefficient, not taking

into account the similarity of tuples, thus possibly storing some

that are virtually identical or only different to irrelevant degrees.

This will also increase the chances of training batches being more

correlated, that is, containing a high proportion of such samples

that are irrelevantly dissimilar.

Our approach, the Grow-When-Required-Replay (GWR-R),

uses a growing self-organizing network based on the Gamma-

Grow-When-Required (GGWR) algorithm (Parisi et al., 2017) that

maps an input space to a compact network. We merge similar

states into nodes and associate actions and rewards to directed

network edges. While this causes long computation times as

additional calculations have to be performed that are not necessary

for more straightforward storage methods, this approach can

reduce memory sizes significantly with disproportionally small

decreases in performance. As similar inputs are merged, we suspect

that diversity, meaning overall pairwise distances, of the memory

samples is increased. This theoretically leads to more diverse

training batches. Our approach is similar to a model-based RL

(Schrittwieser et al., 2020; Hansen et al., 2022), where the agent

learns a transition model of the environment and uses it to sample

synthetic transitions for training the policy and the value function

with higher sample efficiency.

We conduct a series of experiments regarding the influence

of two hyperparameters of the GWR-R on performance, namely,

the activation threshold aT and the habituation threshold hT ,

that both influence the compression of samples into fewer

nodes. Experiments are carried out by running the DDPG

algorithm (Lillicrap et al., 2016) on the continuous Multi-Joint-

Controller (MuJoCo) environments Inverted-Pendulum, Reacher,

HalfCheetah, and Walker2D (Todorov et al., 2012) and comparing

the results to the standard DDPG replay buffer. We find

that, by lowering the activation threshold, considerable memory

compression is possible, with only small losses in performance. An

implementation of our GWR-R approach can be found at https://

github.com/TilmanImmisch/GWRR.

The primary contributions of our work are summarized as

follows:

• We develop a cognitive architecture that resembles a mental

model of the world for simulating experiences in RL.

• We present a novel experience replay approach to address

catastrophic forgetting in RL that is more memory-efficient

than standard experience replay, supports state abstraction,

and simulates state transitions.

• We show that our approach significantly reduces the

amount of distinctly stored samples and achieves memory

reduction of 40−80% compared to an established RL baseline

with standard experience replay while retaining comparable

performances across four simulated robot control tasks

(Inverted-Pendulum, Reacher, HalfCheetah, and Walker2D).

2. Related work

The search for better replay memories and sampling methods

to train Deep RL agents is a popular topic as experience replay (ER)

presents an efficient and simple solution to catastrophic forgetting.

Improved methods promise potentially faster and more stable

convergence with smaller amounts of samples needed to be stored.

2.1. Selective sampling and training

We give a quick overview of methods of selective sampling

where the developed methods store all transitions encountered,

but deviate from standard uniform sampling methods. Daley

et al. (2021) proposed a Stratified Experience Replay (SER) to

counteract remaining correlation when sampling uniformly that

uses a stratified sampling scheme to efficiently implement a non-

uniform sampling distribution to correct for multiplicity bias,

which leads to much faster learning in small Markov Decision

Processes (MDPs).

The Remember and Forget Experience Replay (ReF-ER) (Novati

and Koumoutsakos, 2019) addresses false policy gradients caused

by changes in sample distributions as the policy changes. It

calculates the significant weights of all experiences by computing

the ratio of probability to choose a past action with the new policy

vs. the old (off-policy) behavior, clipping gradients to 0 when the

ratio is too large or too small. It achieves strong results in many

continuous environments by penalizing policy changes to stay

more in line with replay behavior.

By averaging overall stored rewards for a given state-action

pair and attaching all possible next states, von Pilchau et al.

(2020) generated synthetic samples for stabilizing learning in

non-deterministic environments. This way synthetic experiences

present a more accurate estimate of the expected long-term return

of a state-action pair, boosting performance in comparison to a

standard ER.

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://github.com/TilmanImmisch/GWRR
https://github.com/TilmanImmisch/GWRR
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

Using the temporal difference error (TD-error) as a substitute

measure for learning potential, Schaul et al. (2015) prioritized

sampling high TD transitions. The last computed TD-error is

stored along with each transition, and mini-batches of samples

are then selected stochastically, increasing the probabilities of

high TD and just encountered samples and leading to more

efficient learning.

2.2. Selective storage

In selective storage methods, the way the samples are stored

is different from standard approaches, that is, not storing full

transition information or skipping out on some transitions entirely.

Isele and Cosgun (2018) explored four measures for evaluating

which samples to store, namely, (1) surprise, favoring high TD

samples; (2) reward, favoring high expected return samples; (3)

distribution matching, which matches the global stored state

distribution; and (4) coverage maximization, which attempts to

cover the state space as fully and evenly as possible. In all (multi-

task) experiments, except in cases where tasks which received

limited training were more important, distribution matching was

the top performer, the exception was coverage maximization.

Using NNs, Li et al. (2021) learned a model of the environment

to reduce memory needs in a dual replay buffer architecture. They

trained Deep Q-Network (DQN) on both real data from a short-

term replay buffer and generated data from the Self-generated Long-

Term Experience Replay, in which they store just episode start states

and all following actions and rewards, letting intermediate states

be inferred by their environment model. This way they achieve

comparable performance on multi-task continual environments,

such as on Star Craft II (Vinyals et al., 2019), alleviating catastrophic

forgetting while saving on memory.

Another double replay approach (Zhang et al., 2019) employs

an exploration and an exploitation buffer, modulating the ratios

of samples between the two over the course of training. While

the former retains samples by reservoir sampling (Vitter, 1985),

storing and deleting samples by probability based on buffer

size, the latter uses a standard first-in-first-out (FIFO) scheme.

The selection ratio of exploration samples is then modulated

based on the maximum of either the exploration parameter ǫ or

another measure τ that increases as the policy target and in-use

network stabilize. This approach results in improved training and

generalization performance.

In GWR-Replay (GWR-R) approach, state abstraction is

supported by the growing self-organizing network and allows for

simulating transitions without the need for replay buffers. None of

the discussed selective sampling and selective storage approaches

are based on state abstraction or they avoid using replay buffers.

2.3. Developmental robotics

Growing self-organizing networks have recently been used to

support the research on developmental robotics as they enable

the continual learning of both representations and skills. The

instantaneous topological map (Jockusch and Ritter, 1999), a type

of growing self-organizing network, was used to self-organize the

sensory space into local regions. A local world model is assigned

to each region, and the model’s learning progress derives an

intrinsic reward to encourage directed exploration for vision-based

grasp learning on a developmental humanoid robot (Hafez et al.,

2019a,b). The self-organizing network is not used to simulate

experiences but a replay buffer with a large and fixed capacity

is used instead. In a different study, GWR was used to learn

separate unimodal mappings for sensory and motor information

in gaze and arm control and to learn multimodal associations

between the mappings (Rahrakhshan et al., 2022). While this was

shown to enable learning robotic eye-hand coordination skills,

it required collecting a large dataset of sensory-motor pairs for

learning and did not consider using GWR for memory-efficient

RL. In addition to learning single tasks, GWR was also used

for learning a behavior embedding space from unlabeled task

demonstrations for continual multi-task robot learning (Hafez

and Wermter, 2021), but disregarding memory efficiency. These

works were evaluated on our Neuro-Inspired COmpanion (NICO)

robot (Kerzel et al., 2017), a child-sized humanoid for research on

embodied neurocognitivemodels based on human-like sensory and

motor capabilities.

Our map-based experience replay approach presented in

this study strongly assists the above-mentioned research on

developmental robotics by providing a simple, cognitive-inspired,

and memory-efficient solution to catastrophic forgetting. We

suggest that our approach can be particularly useful for the

developmental and simultaneous learning of high-level world

models and skills as it supports state abstraction and simulates state

transitions inside a growing self-organizing network. Similarly, our

approach has a high potential for equipping our NICO robot with

continual learning abilities necessary for acquiring a diverse set

of skills.

3. Approach

We propose a self-organizing network experience replay based

on G-GWR (Parisi et al., 2017), called GWR-R, which is similar

to model-based RL approaches. The GWR-R represents the

movement of the agent through the input space as a directed graph

connecting states with directed edges of actions (and rewards), the

direction being forward in time. It merges seen states that are very

similar to each other into network nodes, reducing the size of the

sampling set in such a way that all sample experience tuples are

different from each other by a degree set by tuning the GWR-R.

The GWR-R approach abstracts and generalizes over the state

space of an RL agent by mapping input states to the closest node

in the network. Since the distance between two temporally adjacent

nodes in the resulting map, which is the graphical representation

of the data, is larger than the distance between any two states

that belong to either node, we theorize that this approach creates

a more diverse set of samples. Thus each batch the RL agent

samples and trains on should on average be more diverse than a

batch from a classical replay buffer, making the agent relearn more

diverse parts of the state space each iteration, which should reduce

catastrophic forgetting overall and lead tomore stable performance.

However, the methods by which nodes and edges are constructed

can make them deviate from reality, perhaps by creating tuples

that are impossible or improbable in the real environment, which

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

would impact learning negatively. We retain the structure of inputs

and outputs the same as in the DDPG’s replay buffer, making it

easy to attach to many state-of-the-art RL algorithms that use a

replay buffer.

4. GWR-replay

The GWR-R is map-based experience replay, because it replays

experiences in the map space rather than the state space during

training. It functions very similarly to the GGWR (Parisi et al.,

2017). The GWR-R is initialized with two nodes in random

positions in the map space. The map space is set to have the same

dimensions as the state space of the environment the agent lives

in. Like most standard replay memories, the GWR-R receives an

input of tuples of (st , s
′
t , at , rt , and dt) at time step t, st being the

previous state the agent was in, s′t being the state the agent is in

now, after having performed an action at , receiving a reward rt ,

and binary information dt regarding whether the episode is now

completed or not. Each state is input into the GWR-R as a sample

x(t), after which it selects the respective best-matching unit (BMU),

that is, the closest existing node to x(t) in the map space, and

either updates the BMU or creates a new node, depending on the

condition ab < aT ∧ hb < hT , where aT and hT are the activation

and habituation thresholds, ab hb are the activation and habituation

of the BMU. The activation ab is a measure of the distance dist from

BMU to x(t), computed as ab = e(−dist), and the habituation hb is

a counter storing the number of times a node has been selected as

BMU, but in a descending logarithmicmeans from 1 to 0, thus it can

also be used to decrease the learning rate with time. Differing from

the original implementation, when a new node n is to be inserted,

it is not inserted halfway between the BMU and x(t), but exactly at

the position of x(t). That way, the nodes in the GWR-R represent

the states the agent sequentially visits.

We consider the state st in the first experience tuple of the

current episode and the next state s′t in the last tuple of the previous

episode as two different (temporally disconnected) samples in two

sequential training iterations, while in the middle of an episode, as

s′t−1 ≡ st , usually, per tuple we just input s′t into the GWR-R to

be learned. To account for the rest of the tuple, the done flag dT
is associated with either the BMU bs′t , closest to s′t , or when a new

node is created, to that new node. It is integrated with an existing

done flag through an exponentially weighted average

dbs′t
(n)← φ · dt + (1− φ) · dbs′t

(n− 1) (1)

and for a new node simply set to dt

dbs′t
(1) = dt , (2)

where n is the number of times a node has been activated and

trained and φ is a weight coefficient controlling the influence of the

current sample on the existing average.

For processing the action at and the reward rt , we use

directed temporal edges, which extend on the temporal connections

introduced in Parisi et al. (2016). Similar to the GGWR, we create

a temporal count matrix TC with dimensions (network size x

network size) that simply counts how often two network nodes have

been activated sequentially as BMUs. It does so by setting

TC
{bst ,bs′t

}
+ = 1, (3)

each time bs′t comes after bst , with all entries being initialized

as 0. In this case, two consecutively activated BMUs represent two

states the agent experiences one after the other, TC thus counting

the number of times a particular state was followed by another.

We additionally introduce two new temporal matrices for

action and reward, TA and TR, which store the action at and reward

rt as directed edges between bst and bs′t . at and rt are also averaged

into existing values by an exponentially weighted average as follows:

TA
{bst ,bs′t

}(j)← φ · at + (1− φ) · TA
{bst ,bs′t

}(j− 1), (4)

TR
{bst ,bs′t

}
(j)← φ · rt + (1− φ) · TR

{bst ,bs′t
}
(j− 1), (5)

setting TA
{bst ,bs′t

}
(1) ← at and TR

{bst ,bs′t
}
(1) ← rt , where j is the

number of times an edge has been trained and φ is the same weight

as in Equation 1. Overall, we define a temporal edge (directed)

to consist of the three values of the count, average action, and

average reward.

Each time an episode in the RL environment starts, the first

state is learned without a temporal connection to the preceding

BMU, in this case, the final state of the previous episode. Processing

tuples like this results in long temporal trajectories of BMU

activations in the GWR-R representing episodes. We now have

two different kinds of network edges, the undirected neighborhood

edges (Parisi et al., 2017) that connect nodes that were activated

at the same time as BMU and second-BMU and the newly

introduced temporal edges in T that connect nodes that were

activated consecutively as BMUs. An illustration of the GWR-R is

shown in Figure 1.

After training the GWR-R, to sample a tuple of shape

(s, s′, a, r, d) for training an RL agent, a random node in the network

is selected to represent s. Then, a follow-up candidate temporally

connected to s is selected from all non-zero entries I in TC
{s,∗}, where

the probability for choosing s′ is Pr[s′] =
TC
{s,s′
}

∑
i∈I T

C
{s,i}

, retrieving the

done flag of s′, d← d′s, and the action and reward stored along the

edge as a← TA
{s,s′} and r← TR

{s,s′}.

When setting aT and hT as very high, the GWR-R inserts a node

for every sample, exactly mimicking the original replay memory.

Lowering either threshold increases the number of samples that

are merged into existing nodes, thereby increasing abstraction. The

complete algorithm for training an RL agent with the GWR-R is

given in the Algorithm 1.

5. Experiments

We perform several experiments with our approach to

explore how far abstraction can go while maintaining reasonable

performance on different tasks and to test our hypothesis that the

proposed method may also stabilize learning. For all experiments,

every parameter configuration is run multiple times and averaged,

as the training of RL agents is stochastic and results can differ

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

 d=1

h=1
s’

d=0 2

d=0 1

d=0

 h=0.7

1 3
 d=0.7

h=0.45

s’

1,a,r

4,a,r

3,a,r

2,a,r

a,r

Ac!va!on threshold

Environment

RL Agent

Ac!on a State s

Store (a,s’,r,d)

Sample batch of (s,a,s’,r,d)

FIGURE 1

A simplified representation of the GWR-R. The RL agent uses the DDPG algorithm and is placed into some environment, which is initialized at some

start state s. The DDPG responds to that state with an action a it thinks is most appropriate, to which in turn the environment responds and returns a

new state s
′, along with the reward r for that state and whether or not it is a final state as binary flag d. s′ is again put into the DDPG for it to react,

along with the prior action a, r, and d are stored in the GWR-R. The GWR-R stores the states as nodes (white circles), each with an associated

probability of being final d and a habituation counter h. Action a and reward r are stored as temporal edges with an associated count of how often

the edge has been updated. Two scenarios are shown, one where the input s′ (top-center) is outside of the BMU’s activation threshold (BMU in this

scenario is the white circle with number 2 inside) and is inserted as a new node (circle with a solid brown line) with habituation h = 1, and one where

the input s′ (bottom-right) is inside and the BMU (bottom-right circle with a solid black line) learns toward the input, moving to the new position

(circle with a dotted purple line), decreasing its habituation and averaging the action/reward vectors (purple ã and r̃) and the done flags. In this

second scenario, s′ is discarded after the BMU has adjusted position. Note that through this procedure, the resulting average action vectors are not

guaranteed to directly point at the position of the associated target node in the environment.

1: s = env.reset()

2: for t =0, t < max_timesteps, t + 1 do

3: if t < start_timesteps then

4: a = env.action_space.sample()

5: else

6: a = policy.select_action(s)

7: end if

8: (s′, r, d) = env.step(a)

9: gwrr.add(s′, a, r, d) (see Algorithm 2)

10: if t ≥ start_timesteps then

11: samples = gwrr.sample(batch_size)

12: policy.train(samples)

13: end if

14: s = s′

15: if d==1 then

16: s = env.reset()

17: gwrr.add(s) (see Algorithm 2)

18: end if

19: end for

Algorithm 1. Training of an RL-agent with the GWR-R.

substantially from run to run. We modulate the thresholds aT
and hT that we deem, especially, relevant to our approach.

Hyperparameter values that are not explicitly stated are set to the

values in Table 1. We compare our approach to a baseline, focusing

on the performance and memory size.

5.1. Setup

Our RL algorithm of choice is the open source implementation

of DDPG included in the repository of Fujimoto et al. (2018) with

the configuration of the original DDPG paper (Lillicrap et al.,

2016). The hyperparameters are listed in Table 1. Experiments

were conducted using the MuJoCo Library v. 2.0.0 (Todorov

et al., 2012) from DeepMind, because it supports continuous

control with accurate and efficient physics simulation. We selected

the environments InvertedPendulum, Reacher, and HalfCheetah,

which have 4-, 11- and 17-dimensional state spaces and 1-,

2- and 6-dimensional action spaces respectively, to see possible

changes in performance with increasing problem complexities.

More experiments are detailed in Appendix A. To get indicative

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

1: Start with two random neurons

2: Initialize set of neighborhood edges and global

context

3: [GWR-REPLAY] Initialize three empty sets of

temporal connections TC = ∅, TA = ∅ and TR = ∅

for storing Count, Action and Reward.

4: [GWR-REPLAY] Receive an input sample (s′t , at , rt , dt)

5: Select BMU (bt) and second-BMU (sbt)

6: if abt < aT and hbt ≤ hT then

7: a: Add a new neuron k at position s′t with hk = 1

8: b: Create neighborhood edges to BMUs

9: c: [GWR-REPLAY] Create a temporal connection by

T = T ∪ {bt−1, bt} for TA,TR,TC and set TA
{bt−1 ,bt }

= at,

TR
{bt−1 ,bt }

= rt and TC
{bt−1 ,bt }

= 1 and set dbt = dt

10: else

11: a: Create or reset neighborhood edge between

BMUs

12: b: Update winning neuron and its neighbors

13: c: [GWR-REPLAY] Increment TC and update TA, TR

and dbt by Equations 4, 5 and Equation 1

14: Increment age of neighborhood edges, remove old

edges and neurons with no edges left

15: Reduce hbt and h of neighbors

16: end if

17: Update global context

18: If the stop criterion is not met, repeat from

step 4.

Algorithm 2. The GWR-R algorithm in contrast to the standard GWR

training.

results, all selected parameter configurations were run a total of 10

times, for 100,000 time steps, using the ray-tune library (Liaw et al.,

2018) (It is chosen because it supports distributed hyperparameter

tuning.), and then averaged.

We tracked the performance by running evaluation episodes at

fixed intervals to evade the Gaussian noise added to each action

(the policy output) during normal training for some random

exploration of the environment. At every evaluation step, six

evaluation episodes were completed and their scores were averaged.

We compared our approach to the DDPG with its standard replay

buffer as the baseline, which simply stores a tuple at each time

step in a table and returns a batch of randomly sampled table

rows for training. The standard replay buffer stores a maximum

of 1,000,000 samples and starts replacing the oldest samples on

reaching that threshold by a FIFO scheme. We also tracked

memory size, which is the amount of stored non-zero rows in

the baseline and the number of nodes in the GWR-R. This

might seem unfair at first, as nodes in the GWR-R correspond

to a single state and samples in the baseline to two states (s, s′),

but for each input tuple action, reward and done are processed

in the same proportion as with the original, so we chose to

keep these definitions of memory size as they provide for very

intuitive comparison.

InvertedPendulum experiments were run on a server with two

GeForce RTX 2080TI GPUs and an Intel(R) Xeon(R) CPU E5-2620

v4 @ 2.10GHz. HalfCheetah and Reacher were run on different

TABLE 1 Default hyperparameters for experiments.

Hyperparameters Values

GWR-R Activation threshold aT = 0.95

Habituation threshold hT = 0.8

Habituation count τB = 0.3, τN = 0.1, κ = 1.05

Edge averaging weight φ = 0.7

No. of context descriptors K = 4

Influence of context descriptor β = 0.7

Maximum age (Edge) agemax = 10

Learning rates ǫB = 0.1, ǫN = .001

DDPG Exploration noise 0.1 (Std of Gaussian)

Batch size 64

Discount factor 0.99

Target network update rate 0.005

Actor learning rate 0.0004

Critic learning rate 0.001

Training Start time steps 15,000

Max time steps 100,000

No. of repeated runs 10

Evaluation frequency 2,500

Episodes per evaluation Step 6

All parameters not explicitly stated in the respective experiment sections are set to the default

presented here.

TABLE 2 Comparison of the total average runtimes for the aT and hT trials

on InvertedPendulum.

Run Mean total runtime

aT Baseline 54min

aT = 0.98 4h 2 min

aT = 0.96 3h 42 min

aT = 0.92 2h 12 min

aT = 0.92 1h 42 min

hT hT = 0.9 2h 54 min

hT = 0.65 2h 42 min

hT = 0.45 2h 12 min

hT = 0.3 2h 12 min

servers with the same GPU setup, but equipped with an AMD

EPYC 7551P 32-Core Processor CPU. We always ran two trials in

parallel. Each experiment took approximately 2-6 days to complete,

as shown in Tables 2–4 for runtimes.

5.2. Results

We ran two experiments for each environment comparing

the effect of the activation and habituation thresholds, as shown

in Figures 2, 3. Both thresholds allow for memory reduction and

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

TABLE 3 Comparison of the total average runtimes for the aT and hT trials

on Reacher.

Run Mean total runtime

aT Baseline 18min

aT = 0.91 4h 25min

aT = 0.83 4h 18min

aT = 0.68 2h 52min

aT = 0.55 1h 58min

hT hT = 0.9 4h 45min

hT = 0.65 3h 51min

hT = 0.45 3h 23min

hT = 0.3 3h 7min

TABLE 4 Comparison of the total average runtimes for the aT and hT trials

on HalfCheetah.

Run Mean total runtime

aT Baseline 18min

aT = 0.55 6 h 31 min

aT = 0.29 5 h 42 min

aT = 0.15 4 h 38 min

aT = 0.07 3 h 44 min

hT hT = 0.9 3 h 6 min

hT = 0.65 2 h 32 min

hT = 0.45 2 h 14 min

hT = 0.3 2 h 1 min

the modulation of node density by causing more states to be

merged into nodes. For each experiment, we reduced one of

the threshold values while keeping the respective other one at

1, to isolate their influence on node insertion. All experiments

show a general decrease in performance as the memory size is

reduced. However, the decline is much more drastic when using

the habituation threshold.

5.2.1. Activation threshold
For InvertedPendulum (Figure 2), lowering aT to 0.96 leads

to a significant drop in memory size (Figure 2B). Although with

an increased standard deviation, the performance stays close to

that of the baseline, with only approximately 75% of baseline

memory (Figure 2A). Setting aT = 0.92 causes a decrease in

performance that is, however, not proportional to the large decrease

in memory size to only approximately 30% of the baseline’s

memory (Figure 2B). Here, the standard deviation becomes very

large with some runs performing close to the baseline and some

underperforming greatly. Going lower to approximately 15% of

memory size with aT = 0.88, we can observe a very sharp decrease

in performance. When aT = 0.98, the performance is almost

identical to the baseline, which is expected as the memory size is

roughly the same, leading to very similar sample batches.

The results are similar for the much more complex Half

Cheetah when using much lower aT-values. The values 0.55, 0.29,

and 0.15 yield baseline performance (Figure 2E), with the latter

two saving about 80% and 60% memories, respectively (Figure 2F);

and the deviation staying similar. When memory size is reduced to

approximately 40% with aT = 0.07, the performance is worsened

significantly with the standard deviation increasing continuously.

This suggests a dynamic of some runs starting out well, due to

favorable random initialization, and being able to progress steadily

and gather useful data, whereas others fail to converge to successful

policies and are unable to build up a comprehensive memory, a

vicious cycle for the latter.

Reacher trials surprisingly do not seem to be affected by

lowered memory at all. Neither the aT-trials (Figure 2C) nor the

hT-trials diverge in performance (Figure 3C). Memory behaves

somewhat logarithmically, as using the aT-threshold causes the

network to fill out the whole state space with nodes, leading to a

converging behavior. Remarkably, convergence at approximately

20% of memory is achieved for Reacher with aT = 0.55

(Figure 2D), with no impact on performance.

For the HalfCheetah runs, the lower the aT , the higher

the standard deviation for memory (Figure 2F). We assume a

positive correlation between performance and memory size, as

better performing runs reach farther in the HalfCheetah setup,

experiencing more different parts of the state space (meaning more

inserted nodes) than those that start out poor and just move back

and forth at the initialized position.

For InvertedPendulum, the memory for aT = 0.98 is for a

short moment slightly higher than the baseline (Figure 2B), which

is due to the different definitions of memory size, where the GWR-

R increases its memory size by two at the start of each episode as

it creates nodes for both the new start state and the next state. The

baseline, on the other hand, only stores one tuple comprising both

states. This effect is more pronounced at the start of the training

when episodes are shorter as the agent is still poor at balancing the

pendulum for long.

5.2.2. Habituation threshold
The results for the habituation threshold shown in Figure 3

stand in contrast to those for the activation threshold. While

our tested values lead to different memory sizes, notably worse

proportional performance becomes clear.

On InvertedPendulum, all runs approach themaximum reward

of 1000 slowly, while only hT = 0.9 and hT = 0.65 approach

closer to it at the end of training (Figure 3A). Although hT = 0.45

and hT = 0.3 have very comparable relative memory sizes to

aT = 0.92 of approximately 40% and 30%, respectively (Figure 3B),

they have trouble surpassing even a reward of 400, with hT = 0.3

declining in performance at the end of training. There is a very

minor difference in memory size between hT = 0.65 and hT =

0.45 runs, but a stark difference in performance. For HalfCheetah,

the results are even more unfortunate, with all values leading to

significantly reduced performance and never growing beyond a

maximum of 1500 reward (Figure 3E). Similar to the previous

experiment, Reacher is again not impacted by reduced memory

(Figure 3C).

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

5.2.3. Threshold comparison
We summarize the comparison of the two thresholds in

Figure 4, which plots the averaged reward over all timesteps against

the total memory at the end of the run on InvertedPendulum

(Figure 4A), Reacher (Figure 4B), and HalfCheetah (Figure 4C).

Here, the performance differences between the two thresholds

become apparent with the curve for hT declining more steeply in

reward collected in proportion to reduced memory size.

The use of the GWR-R unfortunately yields heavily increased

learning times, as the distance calculation for finding the BMU

takes longer, the network grows larger. This reaches from 2x to

more than 22x the required training time, as shown in Tables 2–4.

6. Discussion

The results do not confirm our hypothesis that our approach

causes more stable learning. The learning stability does not

improve with reduced memory, it rather becomes poor. In general,

the more compressed the memory, the poor the performance

we obtain, but this does not happen in proportion to the

decrease in memory. It seems that a good reduction in memory

of approximately 20% to 40% is feasible without impacting

the performance too much. Furthermore, it appears that a

reduction in memory through the use of the activation threshold

yields a minor decrease in performance than when using the

habituation threshold.

We did not expect to see this result, as the habituation

counter is a common feature of the GWR models, but when

introducing temporal relations as we do and connecting nodes

from non-independent and identically distributed (non-I.I.D) data

that is highly correlated, merging samples into nodes in this

way seems to be a problem. We theorize that one reason for

decreases in performance with lower memory size is that the

amount of incorrect tuples in the replay buffer (or rather their

deviation from reality) rises due to averaging. When merging two

consecutive samples into two existing nodes, the way nodes and

edges are updated is different. Nodes are moved by some learning

rate, while the action and reward are averaged with a moving

average, with fresher samples weighting more. This will cause

the stored action to deviate from the real action that connects

the stored states in the environment, indicating that using an

action stored along an edge between s and s′ would in reality

not lead from s to s′, but only to a state near s′. As we are in

the continuous domain, however, the action should always still

be possible and because of the way the model is constructed, the

maximum distance between the state one would actually end up

in when using a from s and the stored s′ (the updated center of

the node that best matches s′) is influenced by the thresholds,

although a specific threshold choice seems to be vital. When

decreasing the memory size through the activation threshold, the

error along edges is somewhat limited as all actions integrated

do originate and end at least in the vicinity of the node centers.

The error will increase when lowering the activation threshold

as this will lead to a greater region a node is responsible for.

If the activation threshold is too low, the maximum distance

from the node to a sample will increase, increasing the potential

error along the node’s edges. It would also cause more merging

in general, which would lead not only to larger but generally

more such errors over all the stored edges (as they stem from the

merging process).

When using the habituation threshold, the potential of such

errors is magnified. As the habituation threshold allows for samples

to be merged irrespective of their distance to the BMU, as long as

there is no closer node, the matching action and state values might

further and further drift apart to something unrepresentative of the

actual environment dynamics.

A related problem is that nodes are often part of multiple

trajectories (e.g., the trajectory from node 1 to node 2 and then to

node 3, as shown in Figure 1). If a new trajectory is learned and

nodes change positions, existing edges from other trajectories are

not updated. This will lead the stored actions along those edges to

deviate more and more from the actual action that would connect

the moved node to its neighbors in the trajectory. The habituation

threshold allows very drastic changes in a position toward far

away samples which will render parts of the established trajectories

virtually unusable. Only by altering the activation threshold, edge

errors, produced in this way, are again limited in proportion to the

maximum distance from the node center.

In the InvertedPendulum habituation trial, it is interesting to

note, however, the slow but steady performance increase of runs

shown in green and orange (Figure 3A). We explain this as follows,

While the habituation counter does allow samples to theoretically

be arbitrarily far away from the BMU, the BMU is still the best-

matching-unit, that is, the closest node to the sample of all the

nodes. With increasing memory size and the map space being

filled out more and more, the average distance between the sample

and the BMU should decrease so the potential damage made by

the habituation threshold will become smaller and new transitions

will become more accurate – although the old, errorful ones can

still be sampled and will not be corrected, continuing to play a

disruptive role. The HalfCheetah environment on the other hand

has state and action spaces that are too large for this to play a

role in the limited training time we have set. It should follow

that the harmful role played by the habituation threshold will also

increase errors when combined with a lowered activation threshold,

and we conclude that reducing memory size only through the

activation threshold will lead to a minor decrease in performance

proportional to memory.

The experiments we ran to explore the influence of φ, the

parameter controlling the decay of old samples in the moving

average for network edges, are not shown as we found little to

no influence on performance. A φ value of 1 might increase

instability as it would increase the above-mentioned error where

the action values move further toward a new sample than the state

values, so it is probably best to keep φ somewhere in between

the extremes. We would theoretically recommend something

close to 0.1.

A thorough investigation of the actual extent of the above-

suspected errors, comparing different thresholds and values, might

give better intuitive insight into ways to mitigate them. A way to

avoid learning from errorful samples might be to use the GWR-R’s

structure only to guide the selection of representative samples while

not merging any values. Some further experiments and analyses are

needed to investigate the source of the memory advantage and the

ways to implement it in a more concise form.

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

A B

C D

E F

FIGURE 2

Episode reward and memory size for di�erent activation threshold values (hT = 1). The shaded area shows standard deviation. (A) Episode Reward for

InvertedPendulum. (B) Memory Size for InvertedPendulum. (C) Episode Reward for Reacher. (D) Memory Size for Reacher. (E) Episode Reward for

HalfCheetah. (F) Memory Size for HalfCheetah.

7. Conclusion

We propose a novel approach for replacing standard RL

replay buffers, which store state transitions as they are, with

a more semantic, world model-like approach using a modified

GGWR (Parisi et al., 2017) architecture, the GWR-R, which

merges similar states into nodes and stores state transitions along

network edges.

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

A B

C D

E F

FIGURE 3

Episode reward and memory size for di�erent habituation threshold values (aT = 1). The shaded area shows standard deviation. (A) Episode Reward

for InvertedPendulum. (B) Memory Size for InvertedPendulum. (C) Episode Reward for Reacher. (D) Memory Size for Reacher. (E) Episode Reward for

HalfCheetah. (F) Memory Size for HalfCheetah.

Only decreasing the activation threshold that modulates the

proportion of node insertion and node merging by changing the

size of the merge area of a node, we were able to significantly

reduce the amount of distinctly stored samples by 40−80% with

minor to disproportionately small performance losses compared to

the baseline on four different MuJoCo environments. We found

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

A B

C

FIGURE 4

Comparison between the aT-trial (dots) and the hT-trial (triangles) of the ratio of average reward over all episodes to the memory size after training.

Each run is one dot/triangle; dots/triangles are connected for easier comparison of approximate underlying functions. Error bars show the mean

standard deviation. (A) Threshold Comparison for InvertedPendulum. (B) Threshold Comparison for Reacher. (C) Threshold Comparison for

HalfCheetah.

that decreasing the memory size through the habituation threshold

yields a sharper decline in performance. Our study opens up many

questions and avenues to continue research for more compact,

semantic replay memories (see Section 7.1). One limitation of

our approach is that it requires additional computational time for

constructing and adapting the growing self-organizing network

necessary for experience replay. Overall, our study shows that map-

based experience replay allows for significant memory reduction

with only small decreases in performance. We suggest that our

findings can make an important step toward efficiently solving

catastrophic forgetting in RL, contributing to the development in

the emerging research direction of continual robot learning.

7.1. Future work

Due to its demonstrated potential in overcoming catastrophic

forgetting, we plan to extend our approach to address vision-

based RL in more complex robotic scenarios, such as learning

human-like gestures in our NICO robot (Kerzel et al., 2017).

To enable this, our GWR-R approach can be used to generalize

over raw pixels and learn a representation space with a graph

structure that facilitates generating more diverse experiences,

potentially speeding up learning control policies from pixels.

Another direction for future work is to train our approach in

continual multi-task RL settings, which we hypothesize could

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

greatly benefit from our incrementally learned transition map. For

example, our approach can replay experiences of old and new

tasks easily by traversing the temporal edges built between visited

states of different tasks, which would otherwise be difficult to

perform with standard experience replay. Additionally, training

our approach from multimodal sensory feedback (e.g., sound

and vision Zhao et al., 2022) is an interesting direction for

future work.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Funding

This research was partially supported by the Federal Ministry

for Economic Affairs and Climate Action (BMWK) under the

project VeriKas and the German Research Foundation (DFG)

under the projects Transregio Crossmodal Learning (TRR 169)

and MoReSpace.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnbot.2023.

1127642/full#supplementary-material

References

Daley, B., Hickert, C., and Amato, C. (2021). “Stratified experience replay:
correcting multiplicity bias in off-policy reinforcement learning,” in Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS. p. 1474–1476.

Daniels, Z. A., Raghavan, A., Hostetler, J., Rahman, A., Sur, I., Piacentino, M., et al.
(2022). “Model-free generative replay for lifelong reinforcement learning: application
to starcraft-2,” in Conference on Lifelong Learning Agents. Westminster: PMLR. p.
1120–1145.

Fujimoto, S., Van Hoof, H., and Meger, D. (2018). “Addressing function
approximation error in actor-critic methods,” in 35th International Conference on
Machine Learning, ICML 2018. (PMLR), p. 2587–2601.

Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and Levine, S. (2019).
Learning to alk via deep reinforcement learning. Robotics: Science and Systems (RSS).
doi: 10.15607/RSS.2019.XV.011

Hafez, M. B., Weber, C., Kerzel, M., and Wermter, S. (2019a). Deep intrinsically
motivated continuous actor-critic for efficient robotic visuomotor skill learning.
Paladyn J. Behav. Robot. 10, 14–29. doi: 10.1515/pjbr-2019-0005

Hafez, M. B., Weber, C., Kerzel, M., andWermter, S. (2019b). “Efficient intrinsically
motivated robotic grasping with learning-adaptive imagination in latent space,”
in 2019 Joint IEEE 9th International Conference on Development and Learning
and Epigenetic Robotics (ICDL-EpiRob) p. 240–246. doi: 10.1109/DEVLRN.2019.885
0723

Hafez, M. B., and Wermter, S. (2021). “Behavior self-organization supports task
inference for continual robot learning,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE), p. 6739–6746.

Hansen, N. A., Su, H., and Wang, X. (2022). “Temporal difference learning
for model predictive control,” in International Conference on Machine Learning.
Westminster: PMLR. p. 8387–8406.

Isele, D., and Cosgun, A. (2018). Selective experience replay for lifelong learning.
AAAI. 32, 3302–3309. doi: 10.1609/aaai.v32i1.11595

Jockusch, J., and Ritter, H. (1999). “An instantaneous topological mapping model
for correlated stimuli,” in IJCNN’99. International Joint Conference on Neural Networks.
Proceedings (Cat. No. 99CH36339). (IEEE), 529–534.

Kerzel, M., Strahl, E., Magg, S., Navarro-Guerrero, N., Heinrich, S., and Wermter,
S. (2017). “Nico—neuro-inspired companion: A developmental humanoid robot
platform for multimodal interaction,” in 2017 26th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN). Piscataway, NJ: IEEE. p.
113–120. doi: 10.1109/ROMAN.2017.8172289

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. J. Mach. Lear. Res. 17, 1334–1373.

Li, C., Li, Y., Zhao, Y., Peng, P., andGeng, X. (2021). SLER: Self-generated long-term
experience replay for continual reinforcement learning. Appl. Intellig. 51, 185–201.
doi: 10.1007/s10489-020-01786-1

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., and Stoica, I. (2018).
“Tune: A research platform for distributedmodel selection and training,” in Proceedings
of the ICMLWorkshop on Automatic Machine Learning (AutoML).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al.
(2016). “Continuous control with deep reinforcement learning,” in 4th International
Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.

McCloskey, M., and Cohen, N. J. (1989). Catastrophic interference in connectionist
networks: The sequential learning problem. Psychol. Learn. Motivat. 24, 109–165.
doi: 10.1016/S0079-7421(08)60536-8

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature. 518,
529–533. doi: 10.1038/nature14236

Novati, G., and Koumoutsakos, P. (2019). “Remember and forget for
experience replay,” in Proceedings of the 36th International Conference on Machine
Learning, Chaudhuri, K. and Salakhutdinov, R., (eds). Westminster: PMLR. p.
4851–4860.

Parisi, G. I., Magg, S., and Wermter, S. (2016). “Human motion assessment in
real time using recurrent self-organization,” in 25th IEEE International Symposium
on Robot and Human Interactive Communication, RO-MAN 2016. (IEEE), 71–76.
doi: 10.1109/ROMAN.2016.7745093

Parisi, G. I., Tani, J., Weber, C., andWermter, S. (2017). Lifelong learning of human
actions with deep neural network self-organization. Neural Networks. 96, 137–149.
doi: 10.1016/j.neunet.2017.09.001

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1127642/full#supplementary-material
https://doi.org/10.15607/RSS.2019.XV.011
https://doi.org/10.1515/pjbr-2019-0005
https://doi.org/10.1109/DEVLRN.2019.8850723
https://doi.org/10.1609/aaai.v32i1.11595
https://doi.org/10.1109/ROMAN.2017.8172289
https://doi.org/10.1007/s10489-020-01786-1
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ROMAN.2016.7745093
https://doi.org/10.1016/j.neunet.2017.09.001
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hafez et al. 10.3389/fnbot.2023.1127642

Rahrakhshan, N., Kerzel, M., Allgeuer, P., Duczek, N., and Wermter,
S. (2022). “Learning to autonomously reach objects with nico and grow-
when-required networks,” in 2022 IEEE-RAS 21st International Conference
on Humanoid Robots (Humanoids). Piscataway, NJ: IEEE. p. 217–222.
doi: 10.1109/Humanoids53995.2022.10000092

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., et al. (2019). “Learning
to learn without forgetting by maximizing transfer and minimizing interference,”
in International Conference on Learning Representations. International Conference on
Learning Representations, ICLR.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). “Experience
replay for continual learning,” in Advances in Neural Information Processing Systems. p.
32.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). “Prioritized Experience
Replay,” in 4th International Conference on Learning Representations, ICLR 2016 -
Conference Track Proceedings.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., et al.
(2020). Mastering atari, go, chess and shogi by planning with a learned model. Nature.
588, 604–609. doi: 10.1038/s41586-020-03051-4

Shin, M., Kim, J., van Opheusden, B., and Griffiths, T. L. (2023). Superhuman
artificial intelligence can improve human decision-making by increasing novelty. Proc.
Natl. Acad. Sci. U.S.A. 120, e2214840120. doi: 10.1073/pnas.2214840120

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et
al. (2016). Mastering the game of go with deep neural networks and tree search.Nature.
529, 484–489. doi: 10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
et al. (2018). A general reinforcement learning algorithm that masters chess,

shogi, and go through self-play. Science. 362, 1140–1144. doi: 10.1126/science.aar
6404

Todorov, E., Erez, T., and Tassa, Y. (2012). “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Piscataway, NJ: IEEE. p. 5026–5033. doi: 10.1109/IROS.2012.6386109

Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung, J., et
al. (2019). Grandmaster level in starcraft II using multi-agent reinforcement learning.
Nature. 575, 350–354. doi: 10.1038/s41586-019-1724-z

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Trans. Math. Softw. 11,
37–57. doi: 10.1145/3147.3165

von Pilchau, W. B. P., Stein, A., and Hähner, J. (2020). “Bootstrapping a DQN
replay memory with synthetic experiences,” in IJCCI 2020 - Proceedings of the
12th International Joint Conference on Computational Intelligence. Setbal, Portugal:
SciTePress. p. 404–411. doi: 10.5220/0010107904040411

Zhang, L., Zhang, Z., Pan, Z., Chen, Y., Zhu, J.,Wang, Z., et al. (2019). “A framework
of dual replay buffer: balancing forgetting and generalization in reinforcement
learning,” in Workshop on Scaling Up Reinforcement Learning (SURL), International
Joint Conference on Artificial Intelligence (IJCAI).

Zhao, X., Weber, C., Hafez, M. B., and Wermter, S. (2022). “Impact makes a
sound and sound makes an impact: Sound guides representations and explorations,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Piscataway, NJ: IEEE. p. 2512–2518. doi: 10.1109/IROS47612.2022.9981510

Zhu, Y.,Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., et al. (2017). “Target-
driven visual navigation in indoor scenes using deep reinforcement learning,” in IEEE
International Conference on Robotics and Automation (ICRA). Piscataway, NJ: IEEE. p.
3357–3364. doi: 10.1109/ICRA.2017.7989381

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1127642
https://doi.org/10.1109/Humanoids53995.2022.10000092
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1073/pnas.2214840120
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1145/3147.3165
https://doi.org/10.5220/0010107904040411
https://doi.org/10.1109/IROS47612.2022.9981510
https://doi.org/10.1109/ICRA.2017.7989381
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning
	1. Introduction
	2. Related work
	2.1. Selective sampling and training
	2.2. Selective storage
	2.3. Developmental robotics

	3. Approach
	4. GWR-replay
	5. Experiments
	5.1. Setup
	5.2. Results
	5.2.1. Activation threshold
	5.2.2. Habituation threshold
	5.2.3. Threshold comparison

	6. Discussion
	7. Conclusion
	7.1. Future work

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

