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Abstract. Neural fields are neural networks which map coordinates to a
desired signal. When a neural field should jointly model multiple signals,
and not memorize only one, it needs to be conditioned on a latent code
which describes the signal at hand. Despite being an important aspect,
there has been little research on conditioning strategies for neural fields.
In this work, we explore the use of neural fields as decoders for 2D seman-
tic segmentation. For this task, we compare three conditioning methods,
simple concatenation of the latent code, Feature-wise Linear Modulation
(FiLM), and Cross-Attention, in conjunction with latent codes which
either describe the full image or only a local region of the image. Our
results show a considerable difference in performance between the exam-
ined conditioning strategies. Furthermore, we show that conditioning via
Cross-Attention achieves the best results and is competitive with a CNN-
based decoder for semantic segmentation.
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1 Introduction

Lately, neural networks for semantic segmentation have been mostly based on the
fully convolutional network (FCN) [11] paradigm. FCN models typically consist
of an encoder and a decoder which are both built with stacked convolution layers.
The purpose of the encoder is to extract features from the image. With increasing
depth of the encoder, the features get more abstract and the resolution of the
feature maps is progressively reduced. The decoder on the other hand takes the
low-resolution feature maps from the encoder as an input and upscales them
to the resolution of the original image so that pixel-level classification can be
performed.

While encoders in the form of convolutional neural networks (CNN) have
been rigorously studied, considerably less research has been conducted on the
decoder side of semantic segmentation networks. The main challenge for the
decoder is to upscale the feature maps to the original resolution of the image
and simultaneously produce accurate region borders. In CNN-based decoders,
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upsampling or transposed convolution operators are typically used to progres-
sively increase the spatial resolution of the feature maps. These operations intro-
duce a particular kind of inductive bias. For example, transposed convolutions
can create spectral artifacts in the upscaled feature maps [5]. Another appar-
ent disadvantage of CNN decoders is that they struggle to capture long-range
dependencies between different parts of the image due to their locally connected
structure.

In the last few years, neural fields, aka implicit neural representations or
coordinate-based networks, have received much attention for learning a variety
of different signals, for example, 1D audio signals [22], 2D images [4,26] and 3D
geometries [12,24]. A neural field takes (spatial) coordinates x ∈ R

d as input and
maps them to a task-dependent signal y = Φ(x) through a neural network. For
example, a neural field representing an RGB image takes 2D image coordinates as
input and produces three RGB values at each location. One interesting property
of neural fields is that they represent signals as continuous functions on their
respective spatial domain.

Inspired by the recent success of neural fields, we explore the use of neural
fields as decoders in semantic segmentation networks. In this regard, we hypoth-
esize that (continuous) neural fields provide an inductive bias which can be
better suited for reconstructing high-resolution semantic maps compared with
(discrete) CNN-based decoders. In our work, we examine multiple conditioning
strategies which enable the neural field decoder to make use of the information
in the latent feature maps produced by the encoder. Through our compara-
tive study, we aim to provide more insights into conditioning methods of neural
fields, as research has been extremely sparse in this regard. Furthermore, we
believe that 2D semantic segmentation provides a well-defined task for studying
conditioning methods, as it has comprehensive metrics and the possibility for
insightful visualizations of the learned geometries.

2 Related Work

Semantic Segmentation. Encoder-decoder fully convolutional networks [11]
have become the predominant approach for semantic segmentation. They share
the challenge how to encode high-level features in typically low-resolution fea-
ture maps and subsequently upscale these feature maps to retrieve pixel-accurate
semantic predictions. One drawback of CNNs is that, because of their locally
connected structure, they struggle to combine information which is spatially
distributed across the feature maps. Research attempting to mitigate this draw-
back has proposed attention mechanisms over feature maps to selectively cap-
ture and combine information on a global scale [6]. Extending the concept of
attention further, neural network architectures based fully on transformers have
been proposed recently for semantic segmentation [25]. In our work, we utilize a
CNN, which is more efficient than transformers, for extracting features and use
attention in one of our conditioning methods.
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CNN Decoders. Research on decoders has been more sparse than research
on neural network encoders, i.e. CNN backbones. Wojna et al. [28] compare
different CNN-based decoders for several pixel-wise prediction tasks and observe
significant variance in results between different types of decoders. Multiple works
[5,14] provide evidence that upscaling using transposed convolution operators
introduces artifacts in the feature maps and therefore the decoder’s output. We
aim to avoid any explicit or implicit discretization artifacts by using a continuous
neural field decoder.

Neural Fields. Neural fields were introduced in 2019 as a representation for
learning 3D shapes [12,15]. Following works extended neural fields by learning
colored appearances of scenes and objects [13,24]. Particularly NeRF [13] has
attracted a lot of attention, as it is able to generate very realistic novel views of
a scene, learning from images and associated poses. NeRF effectively overfits a
neural network for one individual scene. This limits the usability as the neural
field needs to be re-trained for every new scene. Some works have explored
the use of neural fields for semantic segmentation. Vora et al. [27] built a 3D
segmentation on top of the NeRF approach. Hu et al. [9] used neural fields in
conjunction with CNNs for upsampling and aligning feature maps in the decoder
of a semantic segmentation network.

Neural Field Conditioning. When a neural field should share knowledge
between different signals, it needs to be conditioned on a latent code which
describes the signal at hand. Several conditioning approaches have been explored
in the literature. Methods based on global conditional codes use one code to
describe the whole signal [12,23]. Methods based on local conditional codes [4,29]
use a different code for each spatial area in the signal. On top of these, there
exist multiple methods how a neural field can actually consume a conditional
code, which we describe in detail in Sect. 3.3. Rebain et al. [18] compare different
methods for conditioning neural fields for 2D and 3D tasks, but did not consider
global and local conditional codes. In the neural field community, there is a lack
of comparative research on what conditioning strategies work well for which
task. We attempt to shed more light on this by comparing different conditioning
strategies for the well-defined task of 2D semantic segmentation.

3 Method

3.1 Neural Network Architecture and Training Procedure

Our high-level architecture involves a CNN encoder and a neural field decoder
(see Fig. 1). We use a CNN to efficiently encode an image into a feature volume
with size c×h×w, where c is the number of channels, w is the spatial width and
h is the spatial height. From this feature volume, we calculate the conditional
code for the neural field decoder in different ways, depending on the conditioning
strategy. During training, for every image, we sample S random points within the
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Fig. 1. Our high-level neural network architecture. A CNN encoder encodes an image
into a feature volume consisting of multiple feature maps. During training, S points
per image are sampled within the image (red) and fed into the decoder. The decoder is
a conditional neural field for which we use different conditioning strategies. For every
point the decoder outputs a prediction of the semantic class at this position (purple).
(Color figure online)

image. At test time, the points are densely sampled so that there exists one point
for each pixel. The point coordinates are normalized to the [0,1] range, stacked,
and fed to the neural field decoder as input. For every point, the decoder predicts
the semantic class at that position in the image. We use a cross-entropy loss to
train the whole setup in an end-to-end fashion. At test time, the class predictions
per point are arranged into an image. Thereby, we can compare the predictions
with the class labels using standard image segmentation metrics, such as the
Intersection over Union (IoU).

3.2 Latent Code Source: Global vs. Local

First, we differentiate how the conditional code is calculated based on the feature
volume from the encoder. We consider a global code and a local code. The global
code represents the content of the complete image. Naturally, it can capture the
global context in the image well. However, due to its limited capacity, it might
not be able to capture fine, local geometries. On the other hand, the local code
represents a spatially limited area in the image. It can utilize its full capacity
for modeling the geometry in one area with high fidelity, however, it might lack
global context. For example, the probability of detecting a car rises when a street
is detected somewhere in the image.



524 M. Gromniak et al.

c

w

h

Latent Feature Volume
From Encoder

Global Avrg Pooling

Local Bilinear Interpolation

Reshape to Tokens

Global 
Conditional Code

Local 
Conditional Code

FiLM Conditioning

Concat Conditioning

Cross-Attention
Transformer

Fig. 2. A visualization of our conditioning strategies. We consider three conditioning
methods: Concat conditioning, FiLM conditioning and Cross-Attention conditioning
(right side). For Concat and FiLM conditioning, one feature vector is used, which can
be calculated from global features (top path) or local features (mid path). The input
to the Cross-Attention Transformer is the whole feature volume, which is reshaped and
treated as tokens (bottom path).

We calculate the global code vector by applying a global average pooling
operation. It averages all the entries in the feature maps across the spatial dimen-
sions (see the top path in Fig. 2). This is a standard operation which is used,
for example, in the ResNet classification head [8]. Through this procedure, we
calculate one global code per image. For calculating the local code, we utilize
the point coordinates, in addition to the feature volume. For every point, we
“look up” the value of the feature maps at this position. For this purpose, we
normalize the feature maps’ spatial dimensions to the [0,1] range, and therefore
effectively align the feature volume with the input image. We then perform a
bilinear interpolation within the feature maps based on the point coordinate to
calculate the local code vector (see the middle path in Fig. 2). As a result, we
have S local codes per image, one for every point. In addition to using either a
global or a local code, we also consider the combination of both to jointly exploit
their individual advantages. We do this by concatenating both codes.

3.3 Conditioning the Neural Field Decoder

Conditioning a neural field enables it to effectively adapt the knowledge which
is shared across all signals to the signal at hand.

Conditioning by Concatenation. In the simplest conditioning method, the
conditional code is concatenated to the point coordinates and is jointly used
as input to the neural field. We re-concatenate the conditional code to other
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hidden layers using skip connections. This approach is used by HyperNeRF [16].
It has the advantage of being conceptually simple, however, it is computationally
inefficient [18], because it requires O(k(c+k)) parameters for the fully connected
layers in the neural field, where k is the hidden layer width and c is the size of
the conditioning vector.

Feature-Wise Linear Modulation. Another way to condition a neural field
is to use the latent code together with an MLP to regress the parameters of the
neural field. When all parameters of the neural field are calculated in this way, the
approach is known as hyper-networks [7]. Feature-wise Linear Modulation (FiLM)
[17] is a more constraint subtype of hyper-networks where, instead of predicting all
weights, feature-wise modulations of activations in the neural field are predicted.
This approach is used in Occupancy Networks [12] and piGAN [2].

Cross-Attention. Conditioning by Cross-Attention has been introduced by
Jiang et al. [10] and was extended in the Scene Representation Transformer [21].
The core idea is to selectively attend to features at different spatial positions,
based on the point coordinates. A transformer architecture with Cross-Attention
layers is used where the queries are derived from the point coordinates and the
feature volume serves as a set of tokens. This approach does have an interesting
connection with using local codes, as both approaches calculate a feature vector
by weighting entries in the feature maps based on the current point coordinate.
However, in difference to the spatial “look up” of local codes, which can be
performed for free, the Cross-Attention operation can flexibly query both local
and global information as needed at the cost of more computation [18].

4 Experiments

We evaluate seven conditioning strategies on a public dataset for semantic seg-
mentation. Concat conditioning and FiLM conditioning are used in conjunction
with global, local and combined conditional codes each. The Cross-Attention
Transformer uses the reshaped feature volume as input (see Fig. 2).

4.1 Dataset

For our experiments, we used the Potsdam dataset1 which is part of the ISPRS
semantic labeling contest [20]. It consists of satellite images of the German city
Potsdam together with dense label masks for six classes: Impervious surfaces,
Building, Low vegetation, Tree, Car and Clutter/background. The ortho-
graphic images have a sampling distance of 0.05m/px. The total dataset consists
of 38 tiles with a size of 6000× 6000 px from which we use the same 24 tiles for
training as in the original contest. From the remaining tiles, we use 7 for valida-
tion and 7 for testing. From the tiles, we randomly crop patches of 256× 256 or
512 × 512 pixels.
1 https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsda

m.aspx.

https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
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Fig. 3. Our neural network architectures used for the Concat and FiLM conditioning
(left) and for the Cross-Attention Transformer (right). The yellow block can be repeated
N times. For the Concat approach, the orange block denoted with an asterisk represents
a concatination followed by a batchnorm layer. For FiLM, the same block denotes a
conditional batchnorm layer. Other batchnorm and layernorm layers have been omitted
for clarity. (Color figure online)

4.2 Encoder and Decoder Implementations

For the Concat and the FiLM decoder, we use a similar neural network architec-
ture, which is based on Occupancy networks [12] (see Fig. 3a). We use either
concatenation plus conventional batchnorm or conditional batchnorm at the
designated places in the neural network architecture. For the Cross-Attention
conditioning, we use a transformer architecture based on the Scene Represen-
tation Transformer [21] (see Fig. 3b). It uses one multi-head attention module
per block. Keys and values are calculated from the feature tokens while the
queries are calculated from the point coordinates. We can scale both neural
network architectures by repeating the yellow blocks N times or increasing the
width of the MLP layers. For all experiments we use a ResNet34 [8] backbone
as the encoder, pre-trained on ImageNet. Its output feature volume has a size
of 512 × 8 × 8 for input images with size 256 × 256 pixels and 512 × 16 × 16 for
input images with size 512 × 512 pixels respectively.

4.3 Points Embedding

It has been shown that when coordinates are directly used as inputs, neural fields
have a bias towards learning low-frequency signals. To counter this, we embed
both image coordinates independently into a higher dimensional space by using
Fourier features as it is commonly done with neural fields [26]:

γ(x) = (sin(20πx), sin(21πx), ..., sin(2lπx), cos(20πx), cos(21πx), ..., cos(2lπx)),
(1)

where x is an image coordinate and l controls the embedding size.
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Table 1. Results for all examined decoder architectures.

Decoder conditioning Conditional Code Source Image Size Params
256 512
IoU F-score IoU F-score

Concatenation global 0.689 0.816 0.659 0.794 2.1M
local 0.725 0.840 0.666 0.799 2.1M
global + local 0.728 0.842 0.712 0.832 4.0M

FiLM global 0.695 0.820 0.660 0.795 2.1M
local 0.729 0.843 0.650 0.788 2.1M
global + local 0.729 0.843 0.707 0.829 3.7M

Cross-Attention feature tokens 0.758 0.862 0.754 0.860 2.6M
DeepLabV3+ [3] – 0.760 0.863 0.763 0.866 5.4M

4.4 Training Parameters

The influence of the parameters used in our experiments was evaluated in prelim-
inary runs, based on the validation performance. For all experiments, we choose
a fixed learning rate of 1 × 10−4 for the Adam Optimizer and a batch size of
64. We use horizontal and vertical flipping as data augmentation and perform
early stopping based on the IoU metric on the validation set. For all neural field
architectures, 512 points are sampled per image and we choose l = 4 as the size
of the points embedding. Empirically, we have found that the results are not
sensitive to both these parameters. We have explored scaling the neural field
architectures by increasing the number of blocks and the MLP layers’ width.
With that approach, we use a hidden size of 512 for all MLP layers. One block
is used within the Concat and FiLM conditioning network and two blocks are
used within the Cross-Attention Transformer. For all architectures, we try to
have approximately the same amount of parameters to make a fair comparison.

5 Results

In Table 1, we show the Intersection over Union (IoU), F-Score and the number
of parameters for all seven conditioning strategies and two different image sizes
on the test set. We also compare our neural field decoder with the DeepLabV3+
[3] FCN for semantic segmentation which also uses a ResNet34 backbone. In
Fig. 4 we show the predictions of all decoder architectures for three example
images. From the results, we can make multiple key observations.

First, the Concat and FiLM decoders perform very similarly in all aspects,
regardless of the conditional code source and the image size.

Second, conditioning via Cross-Attention works best amongst all neural
field approaches. Furthermore, it performs similarly to the DeepLabV3+ FCN.
Notably, the Cross-Attention decoder has half as much parameters and no access
to the intermediate feature maps of the encoder.
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Input Image Ground Truth Concat + g Concat + l Concat + g/l

FiLM + g FiLM + l FiLM + g/l Cross-Attn DeepLabV3+

Fig. 4. The predictions of all examined decoder architectures on three example images
(512×512 px) from the test set. For Concat and FiLM conditioning, g denotes a global
code source, l denotes a local code source and g/l denotes a concatenation of global and
local code. The class color code is: white = Impervious surfaces, blue = Building,
cyan= Low vegetation, green = Tree, yellow = Car, red = Clutter/background. By
comparing the predictions with the ground truth segmentation masks, it can be
observed that the ability to represent details, e.g. distinct objects or angular corners,
varies greatly between the approaches. Only the Cross-Attention and the DeepLabV3+
decoders are able to faithfully represent the segmentation masks, while the Concat and
FiLm approaches tend to produce overly smooth geometries. (Color figure online)
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Third, the performance of the Concat and FiLM approaches can be improved
by using a combination of global and local features, particularly for larger images.
In that case, the performance of both approaches is not much lower compared
with the Cross-Attention decoder.

Fourth, the performance of the Concat and FiLM conditioning decreases with
larger input images when using global codes. This can be expected, as it is harder
to model more geometries in larger images with the same code length.

Fifth, when using local codes, the performance is also degraded when dealing
with larger images. This is unexpected, as the sampling distance (meters per
pixel) remains the same and therefore the size of the features should also remain
the same. This could be an indication that the individual vectors in the feature
volume produced by the CNN encoder do not model purely local features, as
stated by methods using this approach [4,29]. This is further supported by the
fact that modern CNN architectures have very large receptive fields so that one
feature vector in the output feature volume receives input from the complete
input image. In our case, the ResNet34 encoder has a receptive field of 899
pixels which fully covers both our image sizes.

6 Conclusion

In this work, we performed a comparative study of neural field conditioning
strategies and explored the idea of a neural field-based decoder for 2D semantic
segmentation. Our results show that neural fields can have a competitive perfor-
mance when compared with a classic CNN decoder while requiring even fewer
parameters. In the future, we can imagine a further increase in performance of the
presented approach by making the neural field decoder utilize information from
the intermediate layers of the encoder via skip connections. We also showed that
the performance of the neural field is considerably affected by the conditioning
strategy. The best conditioning strategy likely depends on the task. For the task
of 2D semantic segmentation, a Cross-Attention-based Transformer is superior
to Concat and FiLM conditioning. However, also the combination of local and
global conditional codes is a promising approach, as the performance is not much
lower. Lastly, for local features, we showed an unexpected degradation in per-
formance when increasing the image size. Further research is required to explain
this observation and deduce consequences for local conditioning methods.
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