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Integrating Uncertainty Into Neural Network-Based
Speech Enhancement
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Abstract—Supervised masking approaches in the time-
frequency domain aim to employ deep neural networks to
estimate a multiplicative mask to extract clean speech. This
leads to a single estimate for each input without any guarantees
or measures of reliability. In this paper, we study the benefits
of modeling uncertainty in clean speech estimation. Prediction
uncertainty is typically categorized into aleatoric uncertainty
and epistemic uncertainty. The former refers to inherent
randomness in data, while the latter describes uncertainty in
the model parameters. In this work, we propose a framework
to jointly model aleatoric and epistemic uncertainties in neural
network-based speech enhancement. The proposed approach
captures aleatoric uncertainty by estimating the statistical
moments of the speech posterior distribution and explicitly
incorporates the uncertainty estimate to further improve clean
speech estimation. For epistemic uncertainty, we investigate two
Bayesian deep learning approaches: Monte Carlo dropout and
Deep ensembles to quantify the uncertainty of the neural network
parameters. Our analyses show that the proposed framework
promotes capturing practical and reliable uncertainty, while
combining different sources of uncertainties yields more reliable
predictive uncertainty estimates. Furthermore, we demonstrate
the benefits of modeling uncertainty on speech enhancement
performance by evaluating the framework on different datasets,
exhibiting notable improvement over comparable models that fail
to account for uncertainty.

Index Terms—Speech enhancement, Bayesian estimator,
uncertainty estimation, deep neural networks.

I. INTRODUCTION

S PEECH recorded in noisy environments is often corrupted
by background noise, which renders it difficult to un-

derstand by either humans or machines via automatic speech
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recognition systems. These problems call for robust speech
enhancement algorithms, which extract desired clean speech
from noisy mixtures to improve speech quality and intelligibility
of recordings. In this paper, we consider single-channel speech
enhancement.

Speech enhancement algorithms typically utilize the short-
time Fourier transform (STFT) to transfer the recorded signal
into the time-frequency domain, where multiplicative filters
can be applied to obtain an estimate of clean speech [1], [2].
Various Bayesian estimators, e.g., maximum a posteriori (MAP)
and minimum mean squared error (MMSE) estimators, have
been developed based on different statistical distributions about
speech and noise, aiming to restore either the spectral coeffi-
cients of the STFT or the spectral magnitudes [3], [4], [5], [6].
Given the assumption that speech is degraded by uncorrelated
additive noise and that both follow complex Gaussian distri-
butions with zero mean, the well-known Wiener filter can be
derived. Traditionally, the speech and noise variances estimated
by statistical model-based methods [1], [7] can be used to
construct the MMSE-optimal Wiener filter.

Recently, neural networks have been widely used in speech
enhancement methods due to their flexibility and effectiveness
in nonlinear modeling. Depending on their application, varying
degrees of success are reported [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19]. Specifically, deep neural net-
works have been utilized to replace some of the building blocks
of conventional speech enhancement methods. For instance,
a neural network-based speech presence probability estimator
has been proposed in [8] and combined with a single-channel
multi-frame approach [9]. In [10], [11], neural networks are
employed to estimate speech and noise power spectrum densities
that are required in various Bayesian estimators. Additionally,
recent work has leveraged the probabilistic modeling of gener-
ative networks for speech enhancement. For example, the vari-
ational autoencoder (VAE) has been used to estimate the clean
speech distribution, which is then combined with a separate
noise model to construct a noise reduction Wiener filter [12],
[14]. The robustness of this filter can be further improved by
injecting noise information [16], temporal dependencies [20],
[21], [22], and information from other modalities, such as vi-
sion [17], [23]. Besides, speech enhancement approaches based
on perceptual metric-guided adversarial training [24], [25] and
diffusion-based generative models [26], [27] have also been
presented. In contrast, supervised masking approaches [18] aim
to learn a mapping from the noisy input to a masking filter. It

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4058-0391
https://orcid.org/0000-0002-1437-6127
https://orcid.org/0000-0003-1343-4775
https://orcid.org/0000-0002-8678-4699
mailto:huajian.fang@uni-hamburg.de
mailto:timo.penalty -@M gerkmann@uni-hamburg.de
mailto:timo.penalty -@M gerkmann@uni-hamburg.de
mailto:dennis.becker-1@uni-hamburg.de
mailto:stefan.penalty -@M wermter@uni-hamburg.de
mailto:stefan.penalty -@M wermter@uni-hamburg.de


1588 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

allows neural networks to directly estimate a time-frequency
filter by training on a large amount of noisy-clean speech pairs
using an appropriate cost function [19]. In this work, we focus
on supervised masking approaches.

While the time-frequency noise-removing filter aims to re-
move noise with minimum speech distortions, the algorithm’s
robustness and reliability are not guaranteed, especially when
speech is corrupted by previously unobserved noise. To alleviate
this shortcoming, research has been conducted to investigate
how to generalize to unseen situations by, e.g., developing
more sophisticated network architectures, improved features,
or including more training data that covers a wide variety of
acoustic scenarios [28], [29], [30]. The first is often accompanied
by a tremendous increase in model parameters, while the latter
is rather time-demanding. Still, improving the generalization
ability of neural networks in unseen scenarios is an unsolved
problem considering the black-box nature of neural networks. It
is thus necessary and beneficial to obtain the associated uncer-
tainty as an indicator of reliability besides the point estimate,
especially when the model is processing out-of-distribution
samples that are insufficiently represented by training data.

In machine learning, predictive uncertainty is typically de-
composed into two categories [31], [32], [33]: aleatoric un-
certainty and epistemic uncertainty. The term aleatoric uncer-
tainty is used to describe the uncertainty of an estimate due
to the intrinsic randomness of noisy observations. For speech
enhancement, it originates from the stochastic nature of both
speech and noise and is reflected in the variance of the clean
speech posterior predictive distribution. Epistemic uncertainty
is of different nature: If the parameters of a neural network are
trained, e.g., using different training data, different initialization,
or a different number of epochs, different parameters result.
Therefore, also the parameters of a neural network used to
estimate clean speech are uncertain. This uncertainty of the
parameters is called epistemic uncertainty (also known as model
uncertainty). For a general introduction to uncertainty modeling,
readers are suggested to refer to a review article by Hüllermeier
et al. [31]. Various uncertainty measures have been employed
in the deep regression setting, such as confidence intervals,
differential entropy, and variance. Depeweg et al. [34] propose
to measure uncertainty based on the entropy of the predictive
distribution, which represents the information level of random
variables. Pearce et al. [35] use confidence intervals (which
state how certain the estimate is within a certain range) in a
distribution-free setting. In this paper, we address uncertainty
modeling in a probabilistic way following [33], [36], [37] and
measure the uncertainty in terms of the variance.

Aleatoric uncertainty: Due to the stochastic nature of speech
and noise, a mapping from noisy speech to clean speech is
uncertain as reflected by the posterior predictive distribution
of clean speech. We can model this posterior using a specific
conditional distribution, such as a Gaussian or a Laplacian [33],
[36], [38], and employ a neural network to directly estimate
the statistical moments of this distribution. While the predicted
mean is the MMSE estimate of the target [2], the associated
variance can be used to quantify the data inherent uncertainty,
i.e., aleatoric uncertainty [33].

Few studies in neural network-based speech enhancement
have incorporated the uncertainty of aleatoric nature. Chai
et al. propose to use a generalized Gaussian distribution to model
the prediction error on a logarithmic scale [39]. In [40], a neural
network is used to estimate the parameters of a Gaussian mixture
model, which then serves as the basis of an extra statistical
model-based speech enhancement approach. This results in
only a slight improvement over the baseline optimized with the
MMSE criterion. Siniscalchi [41] leverages neural networks to
learn a histogram distribution to approximate the conditional
target speech distribution, which is assumed to be a truncated
Gaussian distribution with a fixed variance in each frequency
band. However, the fixed variance does not help to capture
data-dependent uncertainty.

Epistemic uncertainty: Estimating the statistical moments of
the speech posterior predictive distribution allows capturing
aleatoric uncertainty, but fails to account for epistemic uncer-
tainty, which corresponds to the uncertainty in neural network
parameters [31], [32], [33]. Epistemic uncertainty can be cap-
tured using Bayesian inference approaches, which instead of
modeling the parameters of a neural network as deterministic
values, place a distribution over the network parameters and
estimates the posterior distribution of the stochastic network
parameters [33]. By sampling from the posterior network pa-
rameter distribution, multiple sets of neural network parameter
realizations can be obtained, thus producing multiple output
predictions for each input sample. Uncertainty in predictions
due to epistemic uncertainty can be empirically quantified by
the variance in these output predictions [31], [33]. While the
true posterior network distribution is intractable [42], it can be
approximated using 1) Markov Chain Monte Carlo (MCMC)
methods [43], [44], which are sampling-based approaches that
construct a Markov Chain with the posterior network parameter
distribution as its stationary distribution, 2) variational infer-
ence [42], [45], [46], which approximates the true posterior
network parameter distribution with a tractable variational distri-
bution, and 3) ensemble approaches [36], [47], [48], which were
proposed from the frequentist perspective but are considered
as an approximate Bayesian approach [37], [49]. For instance,
Gal et al. [42] perform variational inference and interpret the
dropout regularization technique [50] as imposing Bernoulli
distributions on the neural network’s weights. This method,
referred to as Monte Carlo dropout (MC dropout), provides a set
of target estimates from multiple forward passes by activating
dropout at inference. This set of predictions can empirically
approximate the outcome distribution for each input sample and
allows inference of the variance (i.e., epistemic uncertainty).
In contrast, Deep ensembles proposed in [36] can quantify
epistemic uncertainty by training multiple neural networks with
random weight initialization [37], [38].

Recent studies attempt to consider the uncertainty of epis-
temic nature in, e.g., speech emotion recognition [51], [52] and
speech recognition [53], [54], [55]. In [51], epistemic uncer-
tainty is captured in a speech emotion recognition model for
selective prediction, where samples with low confidence (high
uncertainty) are rejected. Braun et al. [53] apply a Gaussian
distribution to the weights of an end-to-end speech recognition
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model to capture uncertainty of neural network parameters,
which is then used for parameter pruning. In a recent publi-
cation [54], epistemic uncertainty is employed to improve the
robustness of domain adaptation for speech recognition. How-
ever, quantifying epistemic uncertainty in neural network-based
speech enhancement remains unexplored.

Contributions: Capturing overall predictive uncertainty,
which reflects both aleatoric and epistemic uncertainties, is
challenging, especially for deep neural networks, but crucial
for an understanding of the model’s prediction behaviour. In
this work, we propose a method that allows capturing aleatoric
uncertainty and combining it with epistemic uncertainty approx-
imations to quantify overall predictive uncertainty. In the context
of neural network-based speech enhancement, to the best of our
knowledge, this is the first work to study different sources of
uncertainty in a joint framework and provides for systematic
analyses.

We follow the complex Gaussian speech-plus-noise assump-
tion and propose to train a neural network to estimate the Wiener
filter and its variance, which quantifies aleatoic uncertainty,
based on the MAP inference of complex spectral coefficients.
To regularize the variance estimation, we build an approxi-
mate MAP (AMAP) estimator of spectral magnitudes using
the estimated Wiener filter (mean of the complex clean speech
posterior predictive distribution) and uncertainty (variance of
the complex clean speech posterior distribution) explicitly. The
resulting AMAP estimator is in turn used in conjunction with
the MAP inference of complex spectral coefficients to form a
novel hybrid loss function. Rather than discarding uncertainty
information at inference, the proposed scheme allows us to
explicitly incorporate aleatoric uncertainty approximations into
clean speech estimation in a principled way to further correct
erroneous speech estimates.

Previous studies on modeling epistemic uncertainty have fo-
cused on other tasks than speech enhancement, e.g., [38], [51],
[52], [53], [54], [55], [56]. Yet, questions such as how reliable
and accurate the estimates of epistemic uncertainty are in speech
enhancement, and how modeling epistemic uncertainty affects
enhancement performance, have not been addressed. To this
end, we investigate two Bayesian deep learning techniques: MC
dropout [42] and Deep ensembles [36] to capture epistemic un-
certainty in clean speech estimation due to their efficiency in ap-
proximating Bayesian inference. Although previous works have
explored ensemble-based speech enhancement methods [57],
[58], they did not investigate the effectiveness of ensemble-based
methods for uncertainty estimation.

Moreover, we propose to estimate overall predictive uncer-
tainty reflecting both aleatoric and epistemic uncertainties by
combining the proposed hybrid loss function with the ensemble-
based method. Finally, we present a comprehensive analysis of
uncertainty from different sources and show their impacts on
speech enhancement performance over different datasets, which
we hope lays the foundation for further use of uncertainties.

This paper extends our previous conference publica-
tion [59], which studied aleatoric uncertainty. Here, we pro-
pose to additionally capture epistemic uncertainty and com-
bine them to quantify overall predictive uncertainty in clean

speech estimation. Furthermore, we provide a more de-
tailed analysis with respect to uncertainty estimates from
different sources in a joint framework. Section II de-
scribes the signal model. In Section III, we propose to
estimate the uncertainty of aleatoric nature following the
complex Gaussian-distributed speech posterior and present
how this uncertainty can be incorporated into clean speech
estimation. In Section IV, we show how to capture epistemic
uncertainty and quantify overall predictive uncertainty that
combines different sources of uncertainty. We introduce the
experimental setting in Section V, analyze uncertainty estimates
in Section VI, and present enhancement performance in Sec-
tion VII. Section VIII summarizes the findings.

II. SIGNAL MODEL

In the single-channel speech enhancement problem, the noisy
mixture consists of clean speech and additive noise. We apply
the STFT to obtain the representation in the time-frequency
domain as:

Xft = Sft +Nft, (1)

where Xft, Sft, and Nft represent the complex spectral co-
efficients of mixture, speech, and noise, at the time frame
t ∈ {1, 2, . . . , T} and the frequency bin f ∈ {1, 2, . . . , F}. T
and F denote the number of time frames and frequency bins
respectively. The objective is to recover clean speech in the
time-frequency domain by applying a multiplicative filter. To
derive such a filter, various assumptions are made according
to different signal characteristics. By assuming that the speech
and noise coefficients are uncorrelated and follow a circularly
symmetric complex Gaussian distribution,

Sft ∼ NC(0, σ
2
s,ft), Nft ∼ NC(0, σ

2
n,ft) , (2)

where σ2
s,ft and σ2

n,ft represent the variances of speech and
noise respectively, the likelihood p(Xft|Sft) follows a complex
Gaussian distribution with mean Sft and variance σ2

n,ft, given
by

p(Xft|Sft) =
1

πσ2
n,ft

exp

(
−|Xft − Sft|2

σ2
n,ft

)
. (3)

With the likelihood in (3) and the prior in (2), we can apply
Bayes’ theorem to obtain the posterior distribution of clean
speech as a complex Gaussian of the form [2]:

p(Sft|Xft) =
1

πλft
exp

(
−|Sft −WWF

ft Xft|2
λft

)
, (4)

WWF
ft =

σ2
s,ft

σ2
s,ft + σ2

n,ft

, λft =
σ2
s,ftσ

2
n,ft

σ2
s,ft + σ2

n,ft

. (5)

WWF
ft is recognized as the Wiener filter and λft is the variance

of the posterior distribution. Under this assumption, the MMSE
estimator, which corresponds to the expectation of the posterior
distribution, leads to the Wiener filter applied as:

S̃ft = WWF
ft ·Xft. (6)
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Due to the symmetry of the complex Gaussian distribution, the
MAP estimator of complex speech coefficients is identical to the
MMSE estimator.

III. ALEATORIC UNCERTAINTY ESTIMATION

Although speech enhancement is typically formulated as a
problem with a single output, the dependency between input and
output can be modeled stochastically by means of a speech pos-
terior predictive distribution p(Sft|Xft), i.e., a variance λft is
associated with the clean speech estimate and can be interpreted
as a measure of uncertainty of the Wiener estimate [2]. This
uncertainty accounts for random effects in data and is referred
to as aleatoric uncertainty [33], [36]. When properly captured,
aleatoric uncertainty can reflect the expected estimation error in
the absence of ground truth.

A. Deep Aleatoric Uncertainty Estimation

In contrast to traditional signal processing techniques [1],
[2], [60], where the Wiener filter is constructed by separately
estimating the variances of speech and noise from the noisy
mixture Xft, neural network-based supervised masking meth-
ods allow direct estimation of multiplicative filters. Besides the
Wiener filter WWF

ft , one can further estimate the data-dependent
aleatoric uncertainty λft if the neural network is optimized
using the speech posterior predictive distribution (4), i.e., by
minimizing the negative logarithm of the posterior distribution
of clean speech p(Sft|Xft) (the logarithm does not affect the
optimization problem due to monotonicity) and averaging over
time-frequency bins:

W̃WF
ft , λ̃ft

= arg min
WWF

ft ,λft

1

FT

∑
f,t

log(λft) +
|Sft −WWF

ft Xft|2
λft︸ ︷︷ ︸

Lp(S|X)

, (7)

where W̃WF
ft , λ̃ft denote estimates of the Wiener filter and

associated aleatoric uncertainty [33], [36].
In contrast, if we assume a constant uncertainty for all time-

frequency bins, i.e., λft = λ∗, and refrain from explicitly opti-
mizing for λ∗, Lp(S|X) degenerates into the well-known mean
squared error (MSE) loss

LMSE =
1

FT

∑
f,t

|Sft −WWF
ft Xft|2 , (8)

which is widely used in neural network-based regression tasks
including speech enhancement [19]. However, neural networks
trained to perform point estimation do not necessarily output
reliable estimates for clean speech when processing out-of-
distribution samples that are underrepresented by the training
data [28]. In this work, we discard the assumption of constant
uncertainty; instead, we propose to treat uncertainty estima-
tion as an additional task by training a neural network with
the negative log speech posterior Lp(S|X). Consequently, this
method not only allows us to obtain a noise-removing mask, but

also empowers the model to capture the uncertainty of aleatoric
nature associated with predictions.

Modeling aleatoric uncertainty by minimizing the logarithm
of the posterior predictive distribution results in an improvement
over baselines that fail to account for uncertainty in computer
vision tasks [33]. However, directly using Lp(S|X) as the loss
function is prone to overfitting [59] and may result in reduced
estimation performance of the Wiener filter. A recent publica-
tion [61] also reveals that directly minimizing the logarithm of
the conditional probability hinders the training of mean esti-
mation, which leads to premature convergence. To tackle this
problem, we propose an additional regularization of the loss
function by incorporating the estimated uncertainty into clean
speech estimation as described next.

B. Joint Enhancement and Uncertainty Estimation

Estimating uncertainty λft associated with the Wiener filter
is challenging since ground truth of uncertainty is not readily
available. Instead, uncertainty estimation is an unsupervised task
with an unspecified search space, which can potentially lead to
unstable training [62], [63]. In this work, we propose to incorpo-
rate a subsequent speech enhancement task that explicitly uses
both the Wiener filter and its uncertainty λft during the training
procedure. The speech enhancement task provides additional
coupling between the outputs (Wiener filter and uncertainty).
In this manner, the neural network is guided to estimate the
uncertainty values that are relevant to the speech enhancement
task, as well as to enhance the estimation of the Wiener filter.

Considering complex coefficients with a symmetric poste-
rior (4), the MAP and MMSE estimators both lead directly
to the Wiener filter WWF

ft and do not require an uncertainty
estimate. However, this situation changes if we consider spectral
magnitude estimation. The magnitude posterior p(|Sft| |Xft),
derived by integrating the phase out of (4), follows a Rician
distribution [4]

p(|Sft| |Xft)

=
2|Sft|
λft

exp

(
−|Sft|2 + (WWF

ft )2|Xft|2
λft

)

× I0

(
2|Xft| |Sft|WWF

ft

λft

)
, (9)

where I0 (·) is the modified zeroth-order Bessel function of the
first kind.

In order to compute the MAP estimate for the spectral mag-
nitude, the mode of the Rician distribution has to be estimated,
which is difficult to do analytically. However, it can be approx-
imated by substituting a Bessel function approximation follow-
ing [64] into (9) and maximizing with respect to the spectral
magnitude, yielding a simple closed-form expression [2], [4]:

|Ŝft| ≈ WAMAP
ft |Xft|

=

⎛⎝1

2
WWF

ft +

√(
1

2
WWF

ft

)2

+
λft

4|Xft|2

⎞⎠ |Xft| , (10)
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Fig. 1. Block diagram of the proposed neural network-based aleatoric uncertainty estimation.

Fig. 2. Input-output characteristics of the AMAP estimator WAMAP
ft and

Wiener filter WWF
ft (setting σ2

s,ft = σ2
n,ft = 1 in this example).

where |Ŝft| is an estimate of the clean spectral magnitude |Sft|
using the AMAP estimator of spectral magnitudes WAMAP

ft . It
can be noticed that the estimatorWAMAP

ft utilizes both the Wiener
filter WWF

ft and the associated uncertainty λft. Fig. 2 illus-
trates the input-output estimation characteristics of the AMAP
estimator and Wiener filter [2]. We can see that WAMAP

ft is
nonlinear with respect to the noisy input and tends to cause
less target attenuation than the Wiener filter especially for low
inputs. This indicates that incorporating the associated uncer-
tainty λft may increase the robustness of the estimator by
potentially preserving more speech at the slight cost of noise
removal.

After combining the estimated magnitude |Ŝft|with the noisy
phase, we can apply the inverse STFT to obtain an estimate of
the time-domain speech signal, denoted as ŝ. Afterwards, the
estimated time-domain signal is used to compute the negative
scale-invariant signal-to-distortion ratio (SI-SDR) metric [65]:

LSI-SDR = −10 log10

( ||αs||2
||αs− ŝ||2

)
, α =

ŝT s

||s||2 , (11)

which is leveraged as an additional term in the loss function that
forces the speech estimate (computed withWAMAP

ft ) to be similar
to the time-domain clean speech target s. While a spectrum loss
like (8) is a straightforward solution to regularize the uncertainty
estimation, the time-domain loss is expected to be more effective

since it is directly related to the raw waveform, implicitly tak-
ing phase information into account and thus promoting speech
reconstruction for better perceptual performance [66].

Eventually, we propose to combine the SI-SDR loss LSI-SDR

with the negative log-posterior Lp(S|X) given in (7), and train
the neural network using a hybrid loss function

L = βLp(S|X) + (1− β)LSI-SDR , (12)

with the weighting factor β ∈ [0, 1]. By explicitly using the es-
timated uncertainty for the speech enhancement task, the hybrid
loss guides both mean and variance estimation to improve speech
enhancement performance. Fig. 1 depicts a block diagram of this
approach.

IV. BAYESIAN UNCERTAINTY ESTIMATION

While neural networks performing point estimation have
demonstrated effectiveness in speech enhancement, it is not
guaranteed that neural networks can generalize well to unfa-
miliar acoustic situations. Therefore, to quantify the overall
predictive confidence regarding the estimated clean speech, it
is necessary to also assess the uncertainty of the neural network
parameters (i.e., epistemic uncertainty). Note that a single neural
network optimized using the proposed hybrid loss (12) allows
capturing aleatoric uncertainty but is unaware of epistemic un-
certainty. To solve this, we can utilize Bayesian deep learning
approaches, assuming that the weights of a neural network
follow some probability distribution rather than deterministic
values. Furthermore, when combined with the loss (12), an
ensemble of networks can provide both aleatoric uncertainty
and epistemic uncertainty estimates.

A. Epistemic Uncertainty Estimation

Bayesian deep learning provides a set of principled methods
to capture epistemic uncertainty [36], [42], [43], [44], [46],
[48]. Early work on MCMC methods [43], [44] constructs a
Markov chain with the posterior network parameter distribu-
tion as its stationary distribution and generates multiple net-
work parameter realizations by sampling from this distribution.
However, MCMC methods are computationally inefficient and
do not scale well to neural networks with a large number of
parameters [37], [38]. Recent work based on variational infer-
ence allows approximating the true posterior network parameter
distribution with a tractable distribution [45], [46], while at the
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same time ensemble-based methods are proposed as simple and
scalable frequentist alternatives to model uncertainty [36], [47],
[48]. Among the existing Bayesian deep learning methods, MC
dropout and Deep ensembles have shown their scalability in
large neural network-based problems, such as semantic segmen-
tation [33] and depth estimation [37]. Here, we investigate their
effectiveness for uncertainty estimation in speech enhancement.

We define a neural network as a function parameterized by
θ and a training dataset that contains noisy-clean speech pairs
D = {(S11, X11), . . . , (SFT , XFT )}. Hereafter we omit the in-
dices ft, since all time-frequency bins are treated independently
in (4). Since the posterior network parameter distribution p(θ|D)
is computationally intractable in a high dimensional space,
variational inference approximates the true posterior network
parameter distribution by a pre-specified variational distribution
q(θ) and the speech posterior predictive distribution at inference
time is obtained by marginalizing out q(θ) as:

p(S|X,D) =

∫
p(S|X, θ)p(θ|D)dθ

≈ 1

M

M∑
m=1

p(S|X, θm), θm ∼ q(θ), (13)

where θm representsm-th sampling from q(θ) [67]. MC dropout
approximates the posterior network parameter distribution using
the Bernoulli distribution and samples neural network weights
by activating dropout at inference time. Gal et al. provide further
details on the derivations in [42]. This allows obtainingM target
speech estimates from multiple stochastic forward passes for
each input. In contrast, Deep ensembles repeatedly train the
same model M times with random initialization and random
data shuffling [36], generating M neural networks with deter-
ministic network parameter estimates {θm}m=M

m=1 . Since θm can
be viewed as independent samples from a certain approximate
distribution q(θ), Deep ensembles can be considered equivalent
to approximate Bayesian inference [37]. Therefore, the pre-
dictive distribution is obtained similarly to (13). Furthermore,
neural networks usually contain a large number of parameters,
which makes them multi-modal in the parameter space. Different
initialization starting points in Deep ensembles allow the neural
network to converge to different local optima, thus potentially
capturing multiple modes of p(θ|D) [37], [48].

Epistemic uncertainty can be approximated by building an
ensemble of neural networks using either MC dropout or Deep
ensembles, where each network is trained to estimate the Wiener
filter only with the loss function LMSE (8). With the results of
M forward passes, we can approximate the mean and variance
of the distribution p(S|X) by the empirical mean and variance
of the prediction set [38], [42]:

S̃ =
1

M

M∑
m=1

S̃θm , Σ̃ =
1

M

M∑
m=1

|S̃θm − S̃|2, (14)

where S̃θm denotes clean speech estimated using the neural
network with parameters θm. S̃ represents the average clean
speech estimate and Σ̃ quantifies the epistemic uncertainty.

B. Overall Predictive Uncertainty

In the case of optimizing the network using (12), besides
the Wiener estimate S̃θm , each neural network with weights
θm can produce the associated variance λ̃θm . The overall pre-
dictive uncertainty, which reflects both aleatoric and epistemic
uncertainties, can be computed using the law of total variance
[33], [38]:

S̃ =
1

M

M∑
m=1

S̃θm , Σ̂ =
1

M

M∑
m=1

(
|S̃θm − S̃|2 + λ̃θm

)
,

(15)
where S̃ denotes the average Wiener estimate, and Σ̂ quantifies
the overall predictive uncertainty.

For each neural network with weights θm, we can further
generate the AMAP clean speech estimate Ŝθm by explicitly
incorporating the associated uncertainty λ̃θm as in (10). There-
fore, given an ensemble of networks, besides the average Wiener
estimate S̃, the average AMAP estimate can be obtained by:

Ŝ =
1

M

M∑
m=1

Ŝθm . (16)

V. EXPERIMENTAL SETTING

A. Datasets

For training and validation, we use a subset of the Deep Noise
Suppression (DNS) Challenge’s training set [68], which contains
synthetic audio samples of 100 hours with signal-to-noise ratios
(SNRs) uniformly distributed between −5 dB and 20 dB. The
dataset is randomly split into 80 and 20 hours for training and
validation respectively. The model is evaluated on two different
unseen datasets. The first is the reverb-free synthetic test set
released by DNS Challenge. This evaluation dataset is disjoint
from the training and validation datasets and is created by adding
noise signals sampled from 12 categories [68] to speech signals
from [69] at SNRs distributed between 0 dB and 25 dB [68]. The
second unseen evaluation dataset is created using clean speech
from the evaluation subset of WSJ0 (si_et_05) [70] and four
types of noise from CHiME3 (cafe, street, pedestrian,
and bus) [71]. The SNRs are randomly selected from {−10 dB,
−5 dB, 0 dB, 5 dB, 10 dB}.

B. Architecture and Hyperparameters

To ensure a fair comparison, all experiments are performed
based on the same U-Net neural network architecture [72], [73].
The U-Net structure with skip connections between the encoder
and the decoder is comprised of several blocks, each of which
consists of: 2D convolution layer + instance normalization [74]
+ Leaky ReLU with slope 0.2. The encoder contains 6 blocks
that increase the feature channel from 1 to 512 progressively
(1− 16− 32− 64− 128− 256− 512), while the decoder re-
duces it back to 16 (512− 256− 128− 64− 32− 16− 16),
followed by a 1× 1 convolution layer that outputs a mask of
the same shape as the input. For all blocks, the kernel size is
set to (5, 5) with stride (1, 2) and padding (2, 2), processing a
2-D input with a dimension of (T, F ). For the model estimating
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aleatoric uncertainty, the output layer is split into two heads
that predict both the Wiener filter and associated uncertainty.1

We applied the sigmoid activation function to the estimated
Wiener filter, while using the log-exp technique to constrain
the uncertainty output to be greater than 0, i.e., the network
outputs the logarithm of the variance, which is then recovered
by the exponential term in the loss function. The batch size is
64; the learning rate is 0.001; the weight decay parameter is
set to 0.0005. All neural networks are trained with the Adam
optimizer [75]. The training process is stopped if the validation
loss fails to decrease for 10 consecutive epochs and the learning
rate is halved when the validation loss does not decrease for 3
epochs.

The noisy-clean speech pairs have a sampling rate of 16 kHz,
and the STFT is computed using a 32 ms Hann window with
50% overlap.

C. Methods

The algorithms considered in this work include:
1) Baseline WF: The U-Net architecture was trained on

noisy-clean speech pairs using loss function (8). This
serves as a baseline, assuming a constant variance for all
time-frequency bins and estimating the Wiener filter for
each input only.

2) Baseline SI-SDR: Following the same constant variance
assumption as Baseline WF, the U-Net network was
trained to output a multiplicative filter and optimized using
the time-domain loss function (11). This serves as another
baseline that fails to account for uncertainty.

3) Aleatoric-WF & Aleatoric-AMAP: The hybrid loss func-
tion (12) allows us to generate two possible clean estimates
for each input, i.e., by using the estimated Wiener filter (6)
or by applying the AMAP estimator (10) that incorporates
both the Wiener filter and its associated uncertainty. They
are denoted as Aleatoric-WF and Aleatoric-AMAP respec-
tively. We observe experimentally that the performance of
Aleatoric-AMAP only fluctuates slightly with different β
values, while the performance of Aleatoric-WF decreases
when the value of β is large. The weighting factor β
was empirically chosen to be 0.001 to achieve a good
trade-off between the performance of Aletoric-WF and
Aleaotirc-AMAP.

4) MC dropout: Inserting dropout after each convolution
layer regularizes too strongly and impacts the model per-
formance [56], which was confirmed in our preliminary
experiments. We thus studied several variants of the U-Net
by inserting the dropout layer at different positions of the
architecture, and selected the variant with three dropout
layers (drop probability of 0.5 [37], [50], [56]) inserted
after the three deepest blocks of the encoder. The same
cost function as Baseline WF is used. This method captures
epistemic uncertainty by activating the dropout layers at
inference.

1The model is available at: https://github.com/sp-uhh/uncertainty-SE.

5) Deep ensembles: The same setup as Baseline WF was
trained M times with random initialization. This allows
the model to capture epistemic uncertainty.

6) DE-Aleatoric-WF & DE-Aleatoric-AMAP: The same
setup as Aleatoric-WF/AMAP was trained M times with
random intialiation. This allows capturing aleatoric and
epistemic uncertainties simultaneously. We average over
the estimates according to (15) and (16) to obtain two clean
speech estimates: DE-Aleatoric-WF and DE-Aleatoric-
AMAP respectively.

VI. ANALYSIS OF UNCERTAINTY ESTIMATION

In this section, we introduce the evaluation metrics for un-
certainty and then analyze the captured aleatoric and epistemic
uncertainties. Finally, we show that combining two types of
uncertainty yields more reliable predictive uncertainty.

A. Uncertainty Evaluation Metrics

To evaluate the captured uncertainty, the sparsification plot
and the sparsification error are used as evaluation metrics [37],
[38], [76]. The sparsification plot illustrates the correlation be-
tween the uncertainty measure and the true error. The error of a
time-frequency bin is defined as the absolute square between the
estimated spectral coefficient and the ground-truth. For this plot,
the errors in the time-frequency domain are first sorted according
to their corresponding uncertainty measures. The residual error
should gradually decrease when the time-frequency bins with
large uncertainties are removed. This leads to a plot of the root
mean squared error (RMSE) versus the fraction of removed
time-frequency bins. Normalization is applied to ensure that
the plot is initialized at 1. The best ordering of uncertainty
measures is determined by ranking the true errors [38], [76].
This provides a lower bound of each sparsification plot, denoted
as the oracle curve, i.e., when the uncertainty estimates and
errors are perfectly correlated, the sparsification plot and the
oracle curve coincide. The sparsficiation error is computed as the
difference between the sparsification plot and the corresponding
oracle curve, and the area under the sparsification error (AUSE)
curve provides a single value that enables comparison of differ-
ent uncertainty modeling techniques. A lower AUSE value (i.e.,
the closer the sparsification plot is to its oracle curve) indicates
a more accurate estimate of uncertainty.

B. Analysis of Aleatoric Uncertainty Estimation

In this part, we analyze the captured data-dependent aleatoric
uncertainty associated with the Wiener estimate. For this, an
audio example from the DNS challenge test set is selected to
illustrate the effectiveness of the proposed optimization metric
in modeling uncertainty. Aleatoric-WF in Fig. 3(c) shows the
spectrogram of the clean speech obtained by applying the esti-
mated Wiener filter. By computing the absolute square between
the clean reference and estimated spectral coefficients, we can
obtain the estimation error as depicted in Fig. 3(d). It can be
observed that large errors occur when the speech is heavily
disturbed by noise, as in the region marked by the green box,

https://github.com/sp-uhh/uncertainty-SE
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Fig. 3. Aleatoric uncertainty (shown in (e)) captured by the proposed loss
function (12) for an excerpt from the DNS test dataset. The uncertainty is
visualized as a heatmap. The black color indicates low uncertainty, whereas the
brighter color indicates higher uncertainty. (a) Noisy (b) Clean (c) Aleatoric-WF
(d) Error (e) Aleatoric uncertainty (f) Aleatoric-AMAP.

while for inputs with less distortion, such as the first three
seconds, the model produces smaller errors. Meanwhile, the
proposed loss function enables the estimation of uncertainty
associated with the Wiener filter, as shown in Fig. 3(e), de-
noted as aleatoric uncertainty. It shows that aleatoric uncertainty
prevails in speech presence regions. By relating Fig. 3(d) to
(e), the model outputs relatively large uncertainty (e.g., the
green box-marked part) when large errors are produced. This
suggests that the neural network is able to produce reasonable
uncertainty estimates when dealing with complex unseen inputs.
Furthermore, we can incorporate the estimated uncertainty into
clean speech inference, as in (10), which leads to a clean speech
estimate shown in Fig. 3(f), denoted as Aleatoric-AMAP. It is
observed that more speech is preserved than Aleatoric-WF in the
highly-uncertain green box-marked region at some cost of noise
reduction, i.e., Aleatoric-AMAP leads to less speech distortion
with a slight tendency of retaining more noise. The reason for this
is that with reliable uncertainty estimates, Aleatoric-AMAP can
increase the estimator’s value in (10) under high uncertainty (as
the AMAP estimator’s value is positively correlated with the
uncertainty estimate when other terms are fixed), thus causing
less target attenuation.

Besides the qualitative analysis, we can associate the captured
uncertainty with the corresponding prediction errors on the
time-frequency bin scale and use sparsification plots to analyze

Fig. 4. Sparsification plot of aleatoric uncertainty λ̃ evaluated on the DNS test
dataset. The dashed line denotes the lower bound of the sparsification plot of
aleatoric uncertainty. A smaller distance of the sparsification plot to the oracle
curve indicates a more accurate uncertainty estimation.

the reliability of the uncertainty estimates. The sparsification
plot shown in Fig. 4 is computed based on all audio samples in
the DNS reverb-free test dataset. We observe a rapid decrease
at the beginning in Fig. 4, implying that large errors come with
large uncertainty estimates. By removing 20 percent of time-
frequency bins with high uncertainty (i.e., 0.2 in the horizontal
axis), the RMSE value drops by around two-thirds. Thus, the
monotonically decreasing sparsification plot in Fig. 4 again
suggests that the predicted aleatoric uncertainty measurement
is closely related to the estimation error.

C. Analysis of Epistemic Uncertainty Estimation

Next, we ignore aleatoric uncertainty and analyze separately
epistemic uncertainty in the model parameters. For this, the
neural networks are trained to perform only point estimation,
i.e., trained with the loss function (8). An ensemble of models
is collected by applying Deep ensembles or MC dropout to
approximate the predictive mean and variance.

In Fig. 5, we present the same audio example as in Fig. 3
to illustrate the uncertainty measures based on MC dropout
and Deep ensembles. MC dropout and Deep ensembles provide
the clean speech estimates as shown in the first row of Fig. 5.
The estimation error for each method is obtained similarly by
calculating the absolute square between the estimated and clean
spectral coefficients, shown in the second row. As can be ob-
served, both methods produce large errors as well as associated
large uncertainties when the signal is heavily corrupted by noise,
i.e., the green box-marked region. While the noise corruption is
less severe, i.e., the region marked with a red box, the model
generates low prediction errors and also a relatively low level of
uncertainty. From the visual analysis, the uncertainty generated
by Deep ensembles is more correlated with the error, while MC
dropout appears to underestimate the uncertainty of incorrect
predictions. To objectively assess the reliability of uncertainty
measures, we also utilize the sparsification plots and the sparsi-
fication errors, as illustrated in Figs. 6 and 7 respectively.

In Fig. 6, we show the sparsification plots of Deep ensembles
and MC dropout for a different number of forward passes M ∈
{2, 4, 8, 16, 32}. It can be observed that both MC dropout and
Deep ensembles yield decreasing sparsification plots, suggesting
that they produce accurate uncertainties that correlate well with
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Fig. 5. The same excerpt as in Fig. 3 illustrates the captured epistemic
uncertainty obtained by applying Bayesian deep learning methods (M =
16). Estimate (MC dropout) and Estimate (DE) represent clean speech esti-
mated using MC dropout and Deep ensembles. (a) Estimate (MC dropout)
(b) Estimate (DE) (c) Error (MC dropout) (d) Error (DE) (e) Epistemic un-
certainty (MC dropout) (f) Epistemic uncertainty (DE).

the estimation errors. It also shows that a large M leads to a
sparsification plot closer to its corresponding oracle curve, i.e.,
improves the performance of the uncertainty estimation, and this
improvement becomes saturated when M is sufficiently large,
e.g., from M = 16 to M = 32.

To comprehensively compare MC dropout and Deep ensem-
bles in terms of uncertainty modeling, AUSE is plotted as a func-
tion of different numbers of forward passes M . Multiple models
for each M are used to provide mean and standard deviation to
account for variations resulting from random factors in training.
16 MC dropout models are trained and used to compute the
mean of AUSE and its standard deviation for each possible M .
For Deep ensembles, 16 disjoint sets of M models are randomly
selected from the 33 trained models to compute the mean and
standard deviation of AUSE. The AUSE plot in Fig. 7 provides
an alternative and more informative evaluation than a single
sparsification plot. It indicates that Deep ensembles generally
produce more accurate uncertainty than MC dropout, which
may fail to produce reliable uncertainties for some erroneous
predictions. This coincides with our visual observation in the
green box-marked region in Fig. 5.

Fig. 6. Sparsification plots of epistemic uncertainty Σ̃ for the DNS test dataset.
The dashed line denotes the lower bound of the corresponding sparsification
plot, denoted as Oracle M . A smaller distance of the sparsification plot to the
oracle curve indicates a more accurate uncertainty estimation. Note that all oracle
curves are visually overlapping.

Fig. 7. AUSE for the DNS test dataset. AUSE is plotted relative to a different
number of forward passes M . The markers denote the mean and the vertical
bars indicate the standard deviation. Lower values indicate a smaller deviation
from the oracle curve, and thus more reliable uncertainty estimation.

D. Prediction Uncertainty Combining Aleatoric and
Epistemic Uncertainties

In this part, we investigate the overall prediction uncertainty
obtained by combining aleatoric uncertainty and epistemic un-
certainty as in (15). To obtain the overall prediction uncertainty,
we use an ensemble of models trained with the optimization
metric (12) such that both aleatoric and epistemic uncertainty are
captured. It has been shown in Section VI-C that Deep ensembles
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Fig. 8. Sparsification plots of aleatoric λ̃, epistemic Σ̃, and overall predictive
uncertainty Σ̂ (i.e., aleatoric & epistemic) on the DNS test dataset. Note that
Oracle aleatoric and Oracle aleatoric & epistemic overlap.

TABLE I
AUSE VALUES OF ALEATORIC, EPISTEMIC, AND ALEATORIC & EPISTEMIC

IN FIG. 8

yield more accurate epistemic uncertainty than MC dropout
and, therefore, are selected for the estimation of the overall
predictive uncertainty. Although a larger number of models M
could potentially improve the mean and variance estimation, we
restrict M to 16 as further improvements become subtle while
the computation time increases considerably.

In Fig. 8, we use sparsification plots to analyze the quality
of prediction uncertainty estimates combining aleatoric and
epistemic uncertainties. The corresponding AUSE values are
provided in Table I. The plot illustrates that the overall predictive
uncertainty estimates correlate stronger with the estimation error
than either of the two uncertainties alone. This suggests that
two sources of uncertainty may complement each other and
combining both leads to more reliable uncertainty estimates.
For example, Deep ensembles do not seem to capture sufficient
uncertainty for less distorted input (e.g., first three seconds) as
shown in Fig. 5, while aleatoric uncertainty shown in Fig. 3
could be able to compensate for this shortcoming.

VII. INFLUENCE OF MODELING UNCERTAINTY FOR SPEECH

ENHANCEMENT PERFORMANCE

In this section, we show how modeling different sources of
uncertainty affects the performance of speech enhancement.
To evaluate the speech enhancement performance, we employ
perceptual evaluation of speech quality (PESQ) [77] to mea-
sure speech quality, extended short-time objective intelligibility
(ESTOI) [78] to measure speech intelligibility, and SI-SDR to
account for both noise reduction and speech distortion.

To show the impact of modeling aleatoric uncertainty on
speech enhancement performance, we compare the performance
of the model trained with the proposed loss function (12) with
that of Baseline WF and Baseline SI-SDR. The proposed method
enables speech estimation via either the Wiener filter, which

TABLE II
EVALUATION RESULTS ON THE DNS TEST DATASET. ALL RESULTS ARE STATED

AS MEAN ± 95%-CONFIDENCE INTERVAL. UNC. STANDS FOR UNCERTAINTY

implicitly takes uncertainty into account during the training
process, or the approximated MAP filter, which explicitly in-
cludes uncertainty to estimate speech, denoted as Aleatoric-WF
and Aleatoric-AMAP respectively. Table II shows the average
evaluation results on the DNS synthetic non-reverb test set.
Aleatoric-WF shows improvements in PESQ, ESTOI, and SI-
SDR compared to the Baseline WF, indicating the benefit of
weighting Wiener estimates with uncertainty during training.
Further PESQ improvements over both Baseline WF and Base-
line SI-SDR can be observed when explicitly incorporating un-
certainty into clean speech estimation, that is, Aleatoric-AMAP.
This demonstrates the advantage of modeling uncertainty asso-
ciated with the Wiener estimate rather than directly estimating
optimal points. When evaluated on another dataset with speech
from WSJ and noise from CHiME3, the performance gap be-
tween Aleatoric-AMAP and the baselines in terms of PESQ is
further increased, as shown in Fig. 9, indicating that the model
that takes uncertainty into account has improved generalization
capacities for speech enhancement. This can be attributed to
the nonlinear estimation characteristics of the uncertainty-based
AMAP estimator with respect to noisy inputs and the resulting
better speech preservation properties. We observe larger im-
provements over the baselines at high SNRs, which might be
explained by the fact that, at high SNRs, speech quality (and
thus PESQ) is mainly affected by speech distortions, while at low
SNRs the main factor is residual noise. Overall, these evaluation
results demonstrate the notable benefits of modeling aleatoric
uncertainty in the algorithm.

To show the impact of modeling epistemic uncertainty on
speech enhancement performance, we compare the performance
of Deep ensembles and MC dropout with Baseline WF. We
again restrict M to 16 as in Section VI-D. MC dropout performs
comparably to Baseline WF on the DNS test set, while a larger
improvement can be observed when using Deep ensembles.
This improvement is even more pronounced in PESQ. Similarly,
the results on the second test set are shown in Fig. 9, where
Deep ensembles and MC dropout improve over Baseline WF
in terms of PESQ for all considered SNRs and provide higher
ESTOI scores, especially at low SNRs. We observe that Deep
ensembles not only provide more accurate uncertainty estimates
than MC dropout but also lead to a better speech enhancement
performance. A possible explanation is that while MC dropout
only captures local uncertainty around a single mode, Deep
ensembles trained with different initialization points are capable
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Fig. 9. Performance improvement on the dataset with speech from WSJ0 and
noise from CHiME3. PESQi denotes PESQ improvement with respect to noisy
mixtures. ESTOIi and SI-SDRi are defined similarly. Markers and vertical bars
indicate the mean and 95% confidence interval.

of exploring multiple modes in the function space to account for
training data, see, e.g., [48], [49]. This may allow the neural
network to generalize better to complex acoustic scenarios.

To show the impact of modeling predictive uncertainty that
combines both aleatoric and epistemic uncertainties on speech
enhancement performance, we use the same set of models as
described in Section VI-D. We take the average of estimates

as in (15) and (16) and obtain two speech estimates, called
DE-Aleatoric-WF and DE-Aleatoric-AMAP respectively. They
both provide better ESTOI and SI-SDR scores than the base-
lines, the epistemic uncertainty-only model, and the aleatoric
uncertainty-only model, especially at low SNRs. Moreover,
DE-Aleatoric-AMAP yields higher scores in PESQ likely due
to the uncertainty-dependent regularization and exploration of
multiple modes in the function space. This indicates that com-
bining the model that accounts for aleatoric uncertainty with the
ensemble-based method can take advantage of the benefits of
both approaches and further improve the performance. Overall,
the evaluation results across different datasets show that quanti-
fying uncertainty in neural network-based speech enhancement
leads to a considerable improvement in enhancement perfor-
mance over the baseline models.

VIII. CONCLUSION

In this paper, besides estimating clean speech, we quantified
predictive uncertainty in neural network-based speech enhance-
ment. For this, aleatoric uncertainty, which describes inherent
uncertainty in data, and epistemic uncertainty, which accounts
for uncertainty of the model, were captured and analyzed in a
joint framework. We investigated the reliability of uncertainty
estimates from different sources, and how it affects the enhance-
ment performance. Our proposed hybrid loss function based on
MAP inference of complex spectral coefficients and an AMAP
estimator of spectral magnitudes has demonstrated the effective-
ness in modeling aleatoric uncertainty. In addition, the proposed
scheme provided a principled way to create a noise-removing
mask that explicitly incorporates uncertainty to further improve
speech enhancement performance. The evaluation results on dif-
ferent datasets have shown increased generalization capacities
when modeling aleatoric uncertainty.

To empirically approximate the predictive distribution and
capture epistemic uncertainty, we employed two Bayesian deep
learning methods, MC dropout and Deep ensembles. We showed
that Deep ensembles not only provide more accurate estimates
of epistemic uncertainty than MC dropout, but also lead to more
prominent improvements in speech enhancement. A reason may
be that Deep ensembles can potentially converge to different
local minima in the loss landscape due to random initializa-
tion. Furthermore, we combined the proposed hybrid function
with Deep ensembles to quantify overall prediction uncertainty,
which reflects both data uncertainty and model uncertainty.
An analysis using sparsification plots showed that combining
different types of uncertainties further improves the reliability of
predictive uncertainty estimation, indicating the complementary
nature of the two sources of uncertainty. Finally, our experiments
indicated that the performance of clean speech estimation can
be considerably improved over the baselines while additionally
obtaining predictive uncertainty estimates.

In summary, this work investigated capturing predictive un-
certainty in neural network-based speech enhancement and
showed the noticeable benefits of modeling uncertainty for clean
speech estimation. Uncertainty can indicate the algorithm’s
confidence in the output in the absence of ground truth, which
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is essential for assessing the reliability of speech estimates.
With this work, we hope to enlighten discussions on modeling
uncertainty in the speech enhancement task, while facilitating
future research on how to take advantage of uncertainty.
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