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The Robot in the Room: Influence of Robot Facial Expressions and
Gaze on Human-Human-Robot Collaboration

Di Fu*, Fares Abawi, and Stefan Wermter

Abstract— Robot facial expressions and gaze are important
factors for enhancing human-robot interaction (HRI), but their
effects on human collaboration and perception are not well
understood, for instance, in collaborative game scenarios. In
this study, we designed a collaborative triadic HRI game
scenario where two participants worked together to insert
objects into a shape sorter. One participant assumed the role
of a guide. The guide instructed the other participant, who
played the role of an actor, to place occluded objects into
the sorter. A humanoid robot issued instructions, observed the
interaction, and displayed social cues to elicit changes in the
two participants’ behavior. We measured human collaboration
as a function of task completion time and the participants’
perceptions of the robot by rating its behavior as intelligent or
random. Participants also evaluated the robot by filling out the
Godspeed questionnaire. We found that human collaboration
was higher when the robot displayed a happy facial expression
at the beginning of the game compared to a neutral facial
expression. We also found that participants perceived the robot
as more intelligent when it displayed a positive facial expression
at the end of the game. The robot’s behavior was also perceived
as intelligent when directing its gaze toward the guide at the
beginning of the interaction, not the actor. These findings
provide insights into how robot facial expressions and gaze
influence human behavior and perception in collaboration.

I. INTRODUCTION

Collaboration is a fundamental aspect of human social
behavior, which plays a crucial role in achieving common
goals and solving problems [1]. However, collaboration
can be challenging, and conflicts may arise. One potential
mitigation to this issue is the integration of humanoid robots
into human collaboration settings. Humanoid robots can
potentially assist humans in enhancing their collaboration
skills [2]. For example, robots can be useful in engaging
children with autism spectrum disorders or in reducing
conflicts during collaboration [3]. However, it is essential
to acknowledge that while robots can be helpful in such
interactions, they may only have limited influence due to
the complexity of social dynamics. Therefore, understanding
human collaboration behavior and how robots could impact
it is critical to successfully integrating humanoid robots into
social settings.

Social cues influence human behaviors and responses in
interactional situations, including human-human collabora-
tion. Non-verbal communication through facial expressions,
body language, and prosody assist humans in interpreting
the emotions and intentions of others [4]. These social
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Fig. 1. Experimental setup. Two participants adopt the roles of a guide (left)
and an actor (center) while the iCub robot (right) observes their gameplay.
The actor inserts an object into the sorter following the guide’s instructions.

cues provide vital information that allows us to understand
social norms, establish trust, and form positive relationships.
Humans are more likely to collaborate and work together
towards common goals when they receive positive social
cues. Negative social cues, on the other hand, can lead to
mistrust, conflict, and a breakdown in collaboration [5]. As
a result, social cues are considered crucial in shaping human
behavior and collaboration [6].

Eye gaze and facial expressions are particularly important
social cues in HRI and collaboration. Humanoid robots are
designed to simulate human behaviors and express emotions
through movement and facial expressions. When robots dis-
play positive social cues like maintaining eye contact, nod-
ding, and smiling, they can establish a connection with hu-
mans and gain their trust [7]. This can lead to more effective
human-robot collaboration in a variety of tasks, including
manufacturing, healthcare, and education [8]. Furthermore,
social robots can facilitate human-human or human-robot
collaboration by signaling them and acting as mediators [9].
Overall, social cues in HRI can enhance communication,
making their integration into robots a positive design choice.

The human world is not just filled with simple social
scenes of one-on-one social interactions. Although previous
studies have shown robot gaze and facial expressions to
have an impact on HRI, limited research has explored the
impact of humanoid robots in triadic — human-human-robot
— collaboration scenarios. Moreover, only a few studies
investigated the interaction effect between gaze and facial
expressions from robots on human collaboration behaviors.



Thus, in this study, we created a collaborative game between
two human participants intending to insert objects into a
shape sorter [10]. One participant served as a guide, giving
instructions to the other participant, who acted as an actor
by placing occluded objects in the sorter. A humanoid robot
was incorporated into the setup, displaying facial expressions
while directing its gaze toward either the actor or the guide.

In this work, we do not aim to study whether a robot’s
presence can influence human-human interaction. Instead,
we assume it to be present and investigate how much a
humanoid robot’s non-verbal social cues, especially facial
expressions and gaze communication, influence human-robot
triadic collaboration and human perception. The study is
conducted explicitly through measures like button-pushing
and questionnaires and implicitly by measuring humans’
game completion time. We propose two main research ques-
tions (RQ):
RQ1: How can a robot’s facial expressions and gaze

communication impact triadic collaboration?
RQ2: How do humans perceive the intelligence of a robot

during triadic collaboration? Is it consistent with hu-
mans’ general impressions of the robot?

from which we derive the following hypotheses:
H1: The robot’s positive facial expressions will im-

prove human-human collaboration performance com-
pared with neutral facial expressions. A mutual gaze
between the guide and the actor could impact the
performance of the task differently. There may have an
interaction effect on human collaboration between facial
expressions and gaze.

H2: The robot’s positive facial expressions will make indi-
viduals perceive the robot as more intelligent than the
neutral and negative facial expressions. A mutual gaze
between the guide and the actor could elicit participants
to have different impressions of the robot. There could
be an interaction effect on human perception of the
robot between facial expressions and gaze.

This research explores humanoid robots’ potential as
collaborators in human-human teams and their ability to
communicate effectively through non-verbal social cues.

II. RELATED WORK

In collaborative settings, a humanoid robot displaying
social cues can influence human interaction by reducing per-
sonal biases, managing conflicts, and improving efficiency,
encouraging constructive discussion and collaboration [11].
Robot gaze significantly influences human decision and
perception. Kompatsiari et al. [12] studied the effects of
mutual and non-mutual robot gaze. Their findings revealed
that participants attribute greater engagement and human-like
traits to a robot in establishing eye contact. Another study has
shown mutual gaze between robots and humans to influence
the latter’s decision-making time [13]: Participants were
slower at making decisions when the iCub robot established
eye contact with them. Neural activity in the brain evoked by
the robot’s gaze draws similarity to gaze influences observed

during social interactions with other humans, indicating that
robot gaze has a similar effect as human gaze [13]. Moreover,
eye contact with robots elicits physiological changes associ-
ated with positive affect and higher attention allocation [14].
Gillet et al. [15] investigated how a social robot could use
adaptive gaze behavior to balance the participation of a
native speaker and a second language learner in a game.
These results show that the robot’s gaze could influence
interaction among players leading to an even contribution
in participation between them.

Robot emotional cues, whether through speech, gestures,
facial expressions, or other indications of affect, alter hu-
mans’ perception of the robotic agent [16]. Their mental
states are also influenced through emotion contagion [17].
Reyes et al. [18] studied how a human-like robot’s sad facial
expressions on failing to complete the task affected human-
robot collaboration. The task was to place ten objects in a
container by collaborating with a robot. The authors [18]
found that the robot’s sadness signaled a need for human help
and improved task performance. In a follow-up work [19],
the authors suggested that negative facial expressions sig-
naling failure attract humans’ attention and lead them to
collaborate better.

Unlike previous studies that focused on direct HRI, our
main objective is to evaluate the influence of non-verbal
cues, namely, robot facial expressions and gaze behavior, on
triadic HRI. We hypothesize that this question is important to
understand how a robot can facilitate social dynamics among
humans without interfering with their verbal communication.
A robot, as an observer, can also elicit different responses
from humans depending on how they perceive the robot’s
human likeness, intelligence, and intentionality. Therefore,
studying how a robot can use non-verbal cues to modulate
human-human interaction helps us to design social robots
that can improve their collaboration.

III. METHODOLOGY

To investigate our research questions and examine our
hypotheses, we made two participants play a collaboration
game while the iCub robot joined them as an observer in
the experiment. We measured participants’ completion time
of the game and recorded their perceptions of the robot’s
intelligence during the game. Participants were also asked to
fill in the Godspeed questionnaire after the game to report
on their impression of the iCub robot.

A. Participants

50 participants (female = 13, male = 37, non-binary =
0, prefer not to say = 0) took part in this experiment.
Participants were between 21 to 55 years of age, with a
mean age of 29.02 ± 5.60 years. All participants reported no
history of neurological conditions (seizures, epilepsy, stroke,
etc.) and had either normal or corrected-to-normal vision and
hearing. This study was conducted following the principles
expressed in the Declaration of Helsinki. Each participant
signed a consent form approved by the Ethics Committee of
the Department of Informatics, University of Hamburg.



B. Task and Procedures

In our study, we randomly matched participants in pairs.
Each pair played multiple rounds of a triadic collaboration
game while the iCub robot observed their interaction. Addi-
tionally, the iCub robot adopted the role of an instructor,
requesting participants to place a particular object in its
corresponding hole on a shape sorter. One of the two
participants played the role of an actor and was capable of
manipulating the objects and the shape sorter, which were
obscured from their view. The other participant, having an
unobstructed view of the objects and shape sorter, guided
the actor in placing the right object into its designated hole.
Guidance was restricted to non-physical contact, conveyed
mainly through verbal instructions and physical gestures.

The participants played a total of 10 rounds. Before each
round started, the iCub robot displayed an initial facial ex-
pression, which could be neutral or happy. During the game,
they were tasked with the successful insertion of an object
into the shape sorter. After 5 rounds of gameplay, participants
changed seats, consequently switching their roles as actors
and guides. During each round, the iCub robot displayed its
final facial expressions. The participants were asked to guess
the intention behind the robot’s facial expressions. In doing
so, the participants would distribute their attention between
the task at hand and the iCub robot, not only focusing on
finishing the task quickly and ignoring the robot. Each round
completion time was recorded as the collaboration time for
each pair. On round completion, participants were requested
to rate the iCub robot as either intelligent or random accord-
ing to its gaze behavior and facial cues during the round.
The robot rating was performed by the participant assuming
the role of a guide. Using two separate buttons to categorize
the iCub robot as either intelligent or random, we acquired
their responses following each round, along with their round
completion time. If the participants finished one round within
30 seconds, the robot maintained its initial facial expression
and gaze direction. If the participants failed to complete
the task within 30 seconds, the iCub robot displayed a sad
final facial expression and shifted its gaze either toward
the actor or the guide. After completing all 10 rounds,
the participants filled in the Godspeed questionnaire [20]
to report their impression of the iCub robot based on its
appearance and behavior. The overall flow of the game is
illustrated in Figure 3.

C. Experimental Setup

The experimental setup consisted of a round table where
the iCub head was placed, and two human participants
were seated. The distance between the iCub’s head and
each participant was approximately 140 cm. A shape sorter
with 12 holes, each with a color — 6 colors in total —
corresponding to an animal and a basic-shaped object, was
placed on the table. The sorter and objects were occluded
from the actors’ view by opaque surfaces covering the sides
of a plastic wireframe. The guide had a clear view of the
shape sorter in order to guide the actor in inserting an object
specified by the iCub robot.

Expression

     
    Happy  Neutral    Sad

Gaze

        Left              Right

Speech

Buttons

       Random    Intelligent 

ZeroMQ

ZeroMQ

YARP

YARP

Experiment 
Manager

Interface
Controller

Robot
Controller

ZeroMQ ZeroMQ

ZeroMQ

X S

"Put the orange lion
in the shape sorter"

Fig. 2. Experiment manager defines the game flow and communicates
with controllers (represented by dotted arrows). Controllers connect unidi-
rectionally to devices except for buttons since they register the user input
and transmit it to the controller, requiring bidirectional communication.

After each trial, the guide rated the iCub robot’s intel-
ligence by pressing one of two labeled red buttons with
lights. The ‘X’ labeled button indicated the iCub robot’s
observed behavior followed an unspecified pattern that did
not correlate with the participants’ actions. The ‘S’ labeled
button signified an intelligent pattern of the iCub robot’s
behavior, which is associated with the participants’ game-
play. The button lights signaled the ongoing running of
the experiment round. Pressing either button momentarily
switched it off until instructions for the next round were
verbally delivered through a loudspeaker, situated behind the
iCub robot. Instructions were simply structured phrases to
convey the target for each round, e.g., ‘Put the orange lion
in the shape sorter’. These instructions were uttered using
Amazon Polly speech synthesis, spoken with a child voice
labeled as ‘Justin’ to match the iCub robot’s appearance.

We define the game flow as the full experimental pipeline,
beginning with the iCub robot introducing the game to
participants, followed by providing instructions on which
objects to insert, and eventually thanking the participants for
taking part in the experiment. Further processes involved in
the game flow include providing instructions on switching
seats and filling in the questionnaire, keeping track of the
participants’ game completion time, performing gaze move-
ments, and displaying facial expressions. The game flow
involves three computers with different roles as depicted
in Figure 2:

1) The Experiment Manager (EM) runs the main script,
which coordinates the tasks of controllers that interact
with external devices and sensors. The EM receives
feedback from the controllers and delegates actions
to them, such as moving the iCub’s head in either
direction, changing the iCub robot’s facial expression,
or uttering instructions. It communicates over the Ze-
roMQ [21] middleware using Wrapyfi [22], a Python
wrapper with multi-middleware support for exchanging
native Python objects, tensors, and arrays.

2) The Interface Controller (IC) awaits button presses
by the participants who had to rate the iCub robot’s
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Fig. 3. Game flow under different conditions after pressing either rating button. Speech is uttered initially on fulfilling a condition. Once the utterance is
completed, follow-up actions are executed (e.g., switching on the button lights). Action blocks with dashed borders are executed in parallel after follow-up
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behavior as intelligent or random. It also controls the
embedded button lights and sends audio signals to the
speech interface via ZeroMQ. The buttons are connected
to an Arduino AT-Mega 2560 microcontroller that com-
municates with the IC over USB serial. The IC also uses
Wrapyfi for communicating over ZeroMQ.

3) The Robot Controller (RC) sends control signals to the
iCub robot to make it gaze toward the guide or the actor
based on predefined estimated positions. It also sends
emotion templates to the robot through the emotion in-
terface. Since the iCub robot runs YARP [23], we utilize
both YARP and ZeroMQ on the RC to communicate
with the iCub robot and the EM, respectively.

D. Data Analyses

Completion time (CT) and rating of the robot are measure-
ments of participants’ game performance and perception of
the robot, respectively. We conducted a two-factor repeated
measures ANOVA with facial expressions (neutral vs. happy)
and gaze direction (actor vs. guide) on the game completion
time to examine the impact of the robot’s initial facial
expressions and gaze on triadic collaboration. The final facial
expressions and the gaze from the iCub robot were displayed
while the participant played each round of the game.

To investigate how the robot’s initial facial expression
and gaze direction influence participants’ perception of the
robot’s intelligence, a two-factor repeated measures ANOVA
with facial expressions (neutral vs. happy) and gaze direction
(actor vs. guide) was performed on participants’ ratings. We
encoded participants’ ‘intelligent’ rating of the robot with a
value of ‘1’, and ‘random’ with a value of ‘0’. Thus, the
higher ratings the robot got, the more intelligent participants

perceived it.
To measure the impact of the robot’s final expression

and gaze on participants’ ratings of the robot, one paired
t-test was performed between sad and happy expressions
— neutral expressions were excluded considering their rare
occurrence as final facial expressions. Another paired t-test
was performed between the ratings of the actors and the
guides. We did not analyze the interaction effect between
the final expressions and gaze. This is due to participants
observing more sad expressions than happy and neutral
expressions since their completion time was usually longer
than 30 seconds. Under the sad expression condition, gaze
direction was balanced. However, under the happy and neu-
tral expression conditions, gaze direction was not balanced,
resulting in a majority of participants experiencing only a
subset of the condition combinations.

Additionally, we also investigated whether there would
be any differences between the first and last 5 rounds of
participants’ game performances and robot ratings by using
paired-samples t-tests, given that participants switched roles
after 5 rounds. Eventually, we analyzed the correlation be-
tween completion time, robot rating, and five sub-dimensions
of the Godspeed Questionnaire to study the relationship
between participants’ general impression of the robot and
their perception of it during the game. All post hoc tests in
the current study used Bonferroni correction.

IV. RESULTS

In this section, we report our results on participants’
completion time and their perceptions of the robot during
and after the game.
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∗ denotes .01 < p < .05, ∗∗ .001 < p < .01, and n.s. denotes no significance.

Fig. 4. Participants’ completion time of the game (a) and their rating of the robot’s intelligence (b) under its different initial facial expression and gaze
direction conditions; Their rating of the robot’s intelligence given its different final gaze directions (c) and facial expressions (d).

A. Initial Facial Expressions and Gaze on Collaborative
Game Performances

To evaluate the impact of the initial facial expressions and
gaze on the collaborative game performances, a repeated
measures ANOVA with a Greenhouse-Geisser correction
was applied. Results displayed in Figure 4a showed that
the main effect of facial expressions was significant. The
participants’ RT differs significantly between different facial
expression conditions, F (1, 23) = 15.73, p < .01, η2p = .40.
Post hoc tests show that the participants finished the game
significantly faster under the happy condition (mean ± SE =
38.66± 2.04ms) than the neutral condition (mean ± SE =
54.22 ± 4.15ms). However, the main effect of the initial
gaze direction was not significant. There was no significant
difference in participants’ game performances, whether or
not the robot’s initial gaze was toward the actor or the guide,
F (1, 23) = .93, p = .35, η2p = .04. There was no significant
interaction effect between the initial facial expressions and
the initial gaze, F (1, 23) = .01, p = .94, η2p = .00.

B. Initial Facial Expressions and Gaze on Rating the Robot

To evaluate the impact of the initial facial expressions
and gaze on rating the iCub robot, a repeated measures
ANOVA with a Greenhouse-Geisser correction was applied.
Results presented in Figure 4b showed that the main effect
of facial expressions was not significant. There was no
significant difference in participants’ ratings of the robot
between neutral (mean ± SE = .61 ± .06ms) and happy
conditions (mean ± SE = .68±.06ms), F (1, 23) = .79, p =
.38, η2p = .03. However, the main effect of the initial gaze
direction was significant, F (1, 23) = 4.94, p < .05, η2p =
.17. Post hoc tests show that the participants perceived the
robot significantly more intelligent when the robot initially
looked at the guide (mean ± SE = .70 ± .05) than when
looking at the actor (mean ± SE = .59 ± .06). There was
no significant interaction effect between the initial facial
expression and the initial gaze on participants’ ratings of
the robot, F (1, 23) = 1.18, p = .29, η2p = .05.

C. Final Facial Expressions and Gaze on Rating the Robot

Paired-samples t-tests were conducted to study the in-
fluence of the final emotion on rating the robot. Results
in Figure 4d showed that participants rated the iCub robot
significantly more intelligent when the robot displayed hap-
piness (mean ± SE = .81± .07) than sadness (mean ± SE =
.61± .05), t (24) = −2.46, p < .05.

Paired-samples t-tests were performed to investigate how
the final gaze direction impacted the robot’s rating. No
significant difference was found between the two conditions
(actor: mean± SE = .68±.05, guide: mean± SE = .65±.05,
t (24) = .52, p = .61, see Figure 4c).

D. Learning Effects in the Collaborative Game

1 2 3 4 5 6 7 8 9 10
Before Switching Roles After Switching Roles

20

30

40

50

60

70

80

Round

C
om

pl
et

io
n 

Ti
m

e 
(s

)

Fig. 5. The mean completion time and the standard error per game round
decline as participants gain collaboration and gameplay experience.

Figure 5 shows that there was a reduction in completion
time for the first 5 rounds of the game. After switching
roles, participants’ completion time in the last 5 rounds also
decreased, indicating that learning effects persisted through-
out the game. Furthermore, we conducted a paired-samples
t-test showing that participants took significantly less time
completing the last 5 rounds (mean ± SE = 38.38 ± 2.12
s) than the first 5 rounds (mean ± SE = 51.62 ± 3.32 s),
t (24) = 3.94, p < .01. These findings imply that repeated
exposure to the collaborative game and increased familiarity
with the partner’s role improved performance, emphasizing



TABLE I
MEANS, STANDARD DEVIATIONS, AND CORRELATION MATRIX OF THE MEASUREMENTS

Mean ± SD CT (s) Robot Rating Anthropomorphism Animacy Likeability Intelligence Safety
CT (s) 45.10 ± 15.33 1
Robot Rating .66 ± .29 .04 1
Anthropomorphism 2.48 ± .86 -.01 .24 1
Animacy 2.74 ± .83 .06 .22 .82*** 1
Likeability 3.51 ± .86 .03 .27 .61*** .66*** 1
Intelligence 3.10 ± .84 -.10 .41** .74*** .68*** .71*** 1
Safety 3.66 ± .72 -.10 -.08 .36** .48*** .56*** .27 1

CT: Round completion time; Robot Rating: participants’ evaluation of the robot after each game round.
∗ denotes .01 < p < .05, ∗∗ .001 < p < .01, ∗∗∗ p < .001, and n.s. denotes no significance.
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Fig. 6. Robot rated as intelligent more often than random. Intelligence
rating increases from 16 before switching roles to 16.8 times after the switch.

the importance of experience and practice in enhancing
collaborative skills. However, robot ratings did not follow
a consistent trend. The paired-samples t-test performed on
robot ratings indicated no significant difference between the
first 5 rounds (mean ± SE = .64± .05) and the last 5 rounds
(mean ± SE = .67 ± .06), t (24) = −.44, p = .67. These
results suggest that participants’ perception of the robot did
not change with more practice of the game (rating counts
after different rounds are shown in Figure 6).

E. Godspeed Questionnaire

Means and standard deviations for completion time, robot
rating, five sub-dimensions (Anthropomorphism, Animacy,
Likeability, Perceived Intelligence, Safety) of the Godspeed
questionnaire, as well as the correlation coefficients between
them, are displayed in table 1. The rating of the robot
during the game was positively correlated to Perceived
Intelligence (r = .41, p < .01). The Completion time was not
significantly correlated with any other measurements (ps >
.05). Additionally, a weak positive correlation was observed
between robot rating and Likeability (r = .27, p = .063).
Within the sub-dimensions of the Godspeed questionnaire,
only the association between Perceived Intelligent and Safety
was marginally significant (r = .27, p = .056). Associations
between other dimensions reached significance (ps < .05).

V. DISCUSSION

Our study showed that a robot displaying a positive
(happy) facial expression on initiating interaction improves
collaboration between humans: participants completed the

task within a shorter period of time — less than 30 seconds
— when the iCub robot appeared happy. We hypothesize that
emotional contagion plays a role in altering the participants’
emotions. The iCub robot’s expression of happiness reflected
positively on the participants’ mood, resulting in them be-
ing more productive and collaborative. This hypothesis is
supported by studies examining the relationship between
emotional states and productivity [24], [25], indicating that
happy individuals tend to have better performance.

Participants completing the task within 30 seconds also
rated the iCub robot as more intelligent, even though the
robot followed the same strategy in every interaction. One
influencing factor could be that the iCub robot displayed
a negative (sad) facial expression when the participants
took longer than 30 seconds to complete the task. A robot
that displays a happy facial expression may be perceived
as more friendly, trustworthy, and competent than a robot
that displays a negative emotion [26]. However, we were
unable to examine the effect of deferred facial expressions
— shown after 30 seconds — due to the limited sample
size. Examining whether a display of negative emotions has
an effect on the robot’s intelligence rating would only be
possible if we were to vary the facial expressions when
participants took longer than 30 seconds to complete a
round. Given the infrequent occurrence of the event, the
two conditions would not result in sufficient samples for a
statically sound comparison.

On establishing mutual gaze with the guide, the iCub
was regarded as more intelligent than when looking at the
actor. Given that the guide rates the robot, we compared
their ratings under the condition of mutual gaze — the iCub
robot looking at the guide — and looking elsewhere. Our
results align with previous findings, indicating that mutual
gaze caused participants to perceive a robot as more engaged,
human-like, and attentive, eliciting them to attribute higher
intelligence to it [12], [13].

Several limitations in the current study could be addressed
in future research. First, the gaze directions for the final facial
expressions should be balanced to study their interaction
effect on rating the robot. Second, more measurements could
be conducted on participants’ personality traits and their trust
in the robot. This could lead to a deeper understanding of
the current results. Finally, involving more emotions and
increasing human-human interaction rounds could yield more
nuanced findings. Addressing these limitations would lead to



an even more comprehensive understanding of the impact of
non-verbal social cues on triadic collaboration.

Our findings sparked several directions for future research.
First, it would be valuable to investigate the interaction
between robots’ verbal and non-verbal social cues in human-
robot or human-human collaboration. Investigating how the
use of various emotional expressions in addition to verbal
communication affects collaboration and productivity [27]
would also be an important path to explore. Additionally,
in order to create effective human-robot communication,
robots need to be able to understand natural language and
respond accordingly. One promising approach is the use
of large language models, such as InstructGPT [28] and
LaMDA [29], which have the ability to generate human-
like responses to user input. Furthermore, there is a need
for participant diversity in future studies, such as including
children or individuals with autism, to improve the way they
interact with people and potentially inform the development
of socially assistive robots for these populations.

VI. CONCLUSIONS

We investigated the role of non-verbal social cues de-
livered by a humanoid robot in triadic collaboration. We
evaluated humans’ perception of the robot given such cues.
Our findings revealed that positive robot facial expressions
enhanced triadic collaboration, whereas appropriate robot
gaze with positive expression feedback, can boost the percep-
tion of the robot’s intelligence. These results underscore the
necessity of designing social robots that are capable of dis-
playing non-verbal social cues to promote successful human-
human-robot collaboration. Further research could reveal the
underlying mechanisms of these effects and develop more
socialized robots for effective human collaboration.

ACKNOWLEDGMENT

The authors acknowledge partial support from the German
Research Foundation DFG under project CML (TRR 169).

REFERENCES

[1] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak, “A simple
rule for the evolution of cooperation on graphs and social networks,”
Nature, vol. 441, no. 7092, pp. 502–505, 2006.

[2] S. Strohkorb, E. Fukuto, N. Warren, C. Taylor, B. Berry, and B. Scas-
sellati, “Improving human-human collaboration between children with
a social robot,” in 2016 25th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN). IEEE, 2016, pp.
551–556.

[3] B. Scassellati et al., “Improving social skills in children with ASD
using a long-term, in-home social robot,” Science Robotics, vol. 3,
no. 21, p. eaat7544, 2018.

[4] D. Fu et al., “A trained humanoid robot can perform human-like
crossmodal social attention and conflict resolution,” accepted for
publication in the International Journal of Social Robotics, arXiv
preprint arXiv:2111.01906, 2023.

[5] M. Tomasello and A. Vaish, “Origins of human cooperation and
morality,” Annual review of psychology, vol. 64, pp. 231–255, 2013.

[6] M. Tanis and T. Postmes, “Social cues and impression formation in
CMC,” Journal of Communication, vol. 53, no. 4, pp. 676–693, 2003.

[7] F. Babel et al., “Small talk with a robot? The impact of dialog content,
talk initiative, and gaze behavior of a social robot on trust, acceptance,
and proximity,” International Journal of Social Robotics, pp. 1–14,
2021.
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