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Abstract
To enhance human-robot social interaction, it is essential for robots to process multiple social cues in a complex real-world
environment. However, incongruency of input information across modalities is inevitable and could be challenging for robots
to process. To tackle this challenge, our study adopted the neurorobotic paradigm of crossmodal conflict resolution to make a
robot express human-like social attention. A behavioural experiment was conducted on 37 participants for the human study.
We designed a round-table meeting scenario with three animated avatars to improve ecological validity. Each avatar wore a
medical mask to obscure the facial cues of the nose, mouth, and jaw. The central avatar shifted its eye gaze while the peripheral
avatars generated sound. Gaze direction and sound locations were either spatially congruent or incongruent. We observed that
the central avatar’s dynamic gaze could trigger crossmodal social attention responses. In particular, human performance was
better under the congruent audio-visual condition than the incongruent condition. Our saliency prediction model was trained
to detect social cues, predict audio-visual saliency, and attend selectively for the robot study. After mounting the trained model
on the iCub, the robot was exposed to laboratory conditions similar to the human experiment. While the human performance
was overall superior, our trained model demonstrated that it could replicate attention responses similar to humans.
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1 Introduction

Robots are increasingly becoming an integral part of daily
life. It is essential for robots to behave as social actors capable
of processing multimodal social cues, enriching interactions
with humans. Moreover, to understand humans’ intentions,
it is crucial to explore how they process information and the
underlying cognitivemechanismsbehind it [46]. Theneed for
such solutions encourages the design of socially functional
robots to meet more significant challenges and difficulties in
human-robot communication.

The current study adopts a dynamic variant of the
gaze-triggered Posner cueing paradigm [53] for testing the
attentional orienting effect of eye gaze on auditory target
detection. We construct a synthetic scenario using the frame-
work introduced by Parisi et al. [50] and Fu et al. [23] to
study crossmodal spatial attention for sound localisation. In
the aforementioned studies, a 4-avatar round-table meeting
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scenario experiment was conducted on human participants.
During the task, lip and arm movements were used as the
visual cues, either spatially congruent or incongruent with
the auditory target. Our previous findings indicated that lip
movement was more salient than arm movement, implying
a stronger visual bias on auditory target localisation. This is
due to the physical association between lip movement and
speech [77]. Furthermore, previous research also revealed
that head orientation was a primary social cue for triggering
the reflexive attention of an observer [38]. To align our exper-
imental setup with the Posner gaze-cueing task, we reduce
the number of avatars to three. The central avatar shifts its
eyes with a slight tilt in its head and upper body posture
towards the direction of gaze. To avoid distractions from lip
movements, all three avatars wear medical masks to obscure
their faces partially. The current social norm inspires this task
design. In multiperson social contexts during the COVID-19
pandemic, the use of medical masks is common. Research
shows that wearing masks decreases both adults’ and chil-
dren’s face recognition abilities [26, 68]. As a result, humans
have to rely on gaze cues to compensate for the lack of lip
movement in identifying social intentions [16].

For the robotic experiment in this work, an iCub head
is used to emulate human social attention [49]. We modify
the Gated Attention for Saliency Prediction (GASP) model
[1] and mount it on the iCub head to predict crossmodal
saliency. GASP can detect multiple social cues, producing
feature maps for each. These maps are prioritised based on
a weighting mechanism to mitigate stronger cues. Following
the weighting stage, the features are sequentially integrated,
and the model is trained on eye tracking data to predict
saliency. The iCub gazemovements are based on the saliency
density maps predicted by the GASP model.

We define two goals for our current study. First, we aim
to detect human responses for a crossmodal social atten-
tion task with dynamic stimuli to determine the eye gaze
orienting effect on sound localisation. Second, we emu-
late human behavioural patterns using a humanoid robot,
running a social attention model which is tested in simi-
lar laboratory conditions. Thus, human and robot responses
are compared under congruent and incongruent audio-visual
localisation conditions in the gaze-cueing task. In this study,
the Stimulus-Response Compatibility (SRC) effect [54] is
measured to detect the conflict resolution ability of the par-
ticipants and the iCub robot. This effect occurswhen stimulus
and response in an SRC paradigm are spatially incongruent.
Participants show poorer performance (e.g., lower accuracy
and slower response to stimuli) under incongruent condi-
tions compared with congruent conditions [4]. Larger SRC
effects indicate weaker conflict resolution ability [40]. Pre-
vious research also set a neutral condition as a baseline to

distinguish whether irrelevant or incongruent stimuli cause
the SRC effect entirely [60]. If there is no significant differ-
ence between participants’ performance under neutral and
congruent conditions, the SRC effect comes from irrelevant
or incongruent stimuli interference. If the performance of the
neutral condition is significantly worse than the congruent
condition, it means that congruent stimuli have a facilitation
effect on conflict processing [37, 41]. Thus, we set a neutral
condition to study whether there is an interference or facili-
tation effect where the central avatar does not shift its eyes,
head, or upper body in any direction in the current study.

According to our research goals, the current study pro-
poses the following hypotheses:

In the human experiment:

H1: Eye gaze can trigger the attentional orienting effect,
which leads to better performanceswith the congruence
of gaze direction and auditory targets.

H2: For the neutral condition, no irrelevant visual stimu-
lus shows up before the auditory target. We assume
that participants’ performance in the neutral condi-
tion might be intermediate between congruent and
incongruent conditions. More specifically, no signifi-
cant difference between performance under congruent
and neutral conditions, suggests that the SRC effect is
from the interference of the incongruent condition.

In the robot experiment:

H3: Modelling the reflexive attentional orienting effect is
achievable by integrating a binaurally aware auditory
localiser for estimating the direction of sound arrival.

H4: Aneurocognitivemodel trained on human eye fixations
can result in a robot attentional orientation consistent
with human responses under the congruent, incongru-
ent, and neutral conditions.

To test the validity of these hypotheses, the article is struc-
tured into two parts. The first part focuses on how humans
behave in a crossmodal conflict task triggered by eye gaze as
a visual cue. Background on the use of eye gaze as a social
cue is provided in Sect. 2. The full description of the exper-
iment performed with human participants and the results
achieved are provided in Sect. 3. The following part of the
article focuses on whether a robot can behave similarly to a
human in the same experimental scenario. For that, a descrip-
tion of GASP, the attention mechanism used by the robot, is
presented in Sect. 4, and the setup of the robotic experiment,
as well as a comparison between the performances of the
robot and those of the human participants, are presented in
Sect. 4.3.2. Finally, Sect. 5 offers a discussion on the achieved
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results, and Sect. 6 indicates potential future research direc-
tions.

2 Background and RelatedWork

2.1 Social Attention

Social attention is the ability to follow others’ eye gaze and
infer where and what they are looking at [10]. Social atten-
tion is the fundamental function of sharing and conveying
information with other agents, contributing to the functional
development of social cognition [44]. Social attention allows
humans to quickly capture and analyse others’ facial expres-
sions, voices, gestures, and social behaviour, so that they can
participate in social interaction and adapt within society [38,
39]. Furthermore, this social function enables the recognition
of others’ intentions and the capture of relevant occur-
rences in the environment (e.g., frightening stimuli, novel
stimuli, and reward) [49]. The neural substrates underlying
social attention are brain regions responsible for processing
social cues and encoding human social behaviour, including
the orbital frontal and middle frontal gyrus, superior tem-
poral gyrus, temporal horn, amygdala, anterior precuneus
lobe, temporoparietal junction, anterior cingulate cortex, and
insula [3, 49]. From a developmental perspective, infants’
attention to social cues helps them quickly learn how to
interact with others, learn a language, and build social rela-
tionships [66]. However, dysfunctional social attention is one
of the primary social impairments for children with Autism
Spectrum Disorder (ASD) [67]. For example, infants with
(ASD) are born with less attention to social cues, an inability
to track the sight of others, and a fear of looking directly at
human faces [61]. This might be a crucial mechanism that
results in their failure to understand others’ intentions and
engage in typical social interactions [67]. Research on devel-
opmental mechanisms of social attention is still in its early
stages. Exploring these scientific questions will be signif-
icant for understanding mechanisms of interpersonal social
behaviour and developing clinical interventions to assist indi-
viduals diagnosed with ASD.

2.2 Eye Gaze as Social Cue

One of the most critical manifestations of social attention is
the ability to follow others’ eye gazes and respond accord-
ingly [62]. Eye gaze is proven to have higher social saliency
and prioritisation than other social cues [38] since it indi-
cates to a person the direction in which another person is
looking [22]. Gaze following is considered as the founda-
tion of more sophisticated social and cognitive functions like
the theory of mind, social interaction, and survival strate-
gies formed by evolution [7, 38]. For instance, infants can

track the eye gaze of their parents at the age of 3 months
[19, 32, 33]. After 10 months, gaze following ability signif-
icantly contributes to their language development [11, 62].
Psychological studies use the modified Posner cueing task
[52] or named gaze-cueing task [20] to study reflexive atten-
tional orienting generated by the eye gaze. During the task,
the eye gaze is presented as the visual cue in the middle of
the screen, followed by a peripheral target, which could be
spatially congruent (e.g., a right-shift eye gaze followed by a
square frame or a Gabor patch shown on the right side of the
screen), or incongruent. However, studying the visual modal-
ity alone is not enough to reveal how humans can quickly
recognise social and emotional information conveyed by oth-
ers in an environment full of multimodal information [8].
Selecting information from the environment across different
sensory modalities allows humans to detect crucial informa-
tion such as life threats, survival strategies, etc. [24, 45].
Therefore, several studies conducting a crossmodal gaze-
cueing task demonstrate the reflexive attentional effect of
the visual cue on the auditory target [17, 42]. Most of these
studies rely on images of gaze shifts as visual cues to trig-
ger the observers’ social attention [45, 48]. However, these
images are not dynamic and lack ecological validity.

2.3 Stimulus–Response-Compatibility tasks and
Effects

Researchers study humans’ cognitive control mechanism
by using the Stimulus–Response-Compatibility (SRC) tasks
to measure the behavioral performance and neural acti-
vation on conflict processing. The SRC effect measured
by those tasks reflects humans’ better performance in the
Stimulus–Response congruent conditions than the incongru-
ent conditions. The classic SRC tasks conducted in the lab
are Stroop task [69], Flanker task [18], and Simon task [64].
The size of the SRC effect represents the capacity of conflict
processing. The larger SRC effect may be accompanied with
the weaker top-down control, dysfunction or immaturity of
conflict control [14, 43].

2.4 Audio-Visual Saliency Modelling

Saliency prediction models are trained on eye tracking data
collected from multiple participants looking at images or
videos under the free-viewing condition. Several studies
show that audio-visual input improvesmodels’ performances
in predicting saliency. Tavakoli et al. [70] propose a late
fusion audio-visual model for enhancing saliency predic-
tion compared to visual-only models. Tsiami et al. [71] show
that the early fusion of auditory and visual stimuli reduces
reliance on visual content when inferring salient regions. Jain
et al. [31] compare multiple approaches for integrating the
two modalities within different layers of the model hierar-
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chies. In contrast to previous findings, the authors show that
auditory input degrades performance, suggesting that bet-
ter audio-visual integration methods are needed. Moreover,
sound localisation performances of monaural audio-visual
models cannot surpass binaural audio-visualmodels [55, 75].
This is due to the reduced ability ofmonaural models to accu-
rately localise sound since the interaural temporal and level
difference cannot be computed [73]. Since our task relies
mainly on sound direction, we design a binaural sound local-
isation model that infers saliency both from auditory and
visual stimuli.

3 Human Experiment

3.1 Participants

37 participants (female = 20) participated in this experiment.
Participants were between 18 to 29 years of age, with a mean
age of 22.89 years. All participants reported no history of
neurological conditions (seizures, epilepsy, stroke, etc.) and
had either normal or corrected-to-normal vision and hearing.
This study was conducted following the principles expressed
in the Declaration of Helsinki. Each participant signed a con-
sent form approved by the Ethics Committee of the Institute
of Psychology, Chinese Academy of Sciences.

3.2 Experimental Setup

All participants watch clips under normal indoor light con-
ditions. Auditory noise in their surroundings is minimal,
and the room acoustic effects are negligible since the sound
is played directly through on-ear headphones. This section
describes the stimuli generation procedure, the environmen-
tal setup, and the data recording methodology.

3.2.1 Apparatus, Stimuli and Procedure

Virtual avatars are chosen over recordings of real people,
as the experiment requires strict control over the avatar’s
behaviour, both in terms of timing and exactmotion. By using
synthetic data as the experimental stimuli, it can be ensured,
for instance, that looking to the left and right are exactly sym-
metrical motions, thus avoiding any possible bias. Moreover,
using three identical avatars that are only different in terms
of clothing colour also alleviates a bias towards individuals
in a real setting. The static basis for the highly-realistic vir-
tual avatars was created in MakeHuman.1 Based on these
avatar models, a data generation framework for research on
shared perception and social cue learning with virtual avatars

1 http://www.makehumancommunity.org/

[34] (realised in Blender2 and Python) is used to create the
animated scenes with the avatars, which are used as the
experimental stimuli in this study. The localised sounds are
created from a single sound file using a head-related transfer
function3 that modifies the left and right audio channels to
simulate different latencies and damping effects for sounds
arriving from different directions. In our 3-avatar scenario,
the directions are frontal left and frontal right at 60 degrees,
corresponding to the positions where the peripheral avatars
stand.

During the experiment, the participants sit positioned
55cm from the monitor at a desk and wear headphones, as
depicted in Fig. 1a. In each trial, a fixation cross appears in
the middle of the screen for 100–300 ms with equal proba-
bility. Next, a visual cue is displayed for 400 ms, consisting
of an eye gaze shift and a synchronised slight head and upper
body shift from the central avatar. In each trial, the central
avatar randomly chooses to look at the avatar at the right, at
the one at the left, or directly towards the participant, mean-
ing no eye gaze shift at all. Afterwards, the left or the right
avatar says “hello” with a human male voice as the auditory
target. This step lasts for 700 ms. Finally, another fixation
cross is shown at the centre of the screen for 700, 800 or
900 ms, with equal probability, until the end of the trial (cf.
Fig. 1c for a schematic representation of the trial).

The experimental design has three directions for the visual
cue (left, right, and central) and two for the auditory target
location (left, right). The congruent audio-visual condition
occurs when the central avatar’s eye gazes in the same direc-
tion as the avatar who generates the sound. The incongruent
audio-visual condition occurs when the central avatar’s eye
gazes in the opposite direction as the avatar who generates
the sound. The neutral condition is when the central avatar
does not shift its eye gaze, so there is no spatial conflict
between the visual cue and the following auditory target.
The participants begin the experiment with 30 practice trials
and enter into the formal test when their accuracy of practice
trials reaches 90%. Each condition is repeated 96 times, with
a total of 288 trials separated into four blocks. There is a
1-minute rest between every two blocks. The time duration
for each trial is 1900–2300 ms, and the formal test lasts for
12min.

During the task, the participants are asked to determine as
soon and precisely as possible whether the auditory stimulus
originated from the avatar on the left or on the right. The
participants make decisions by pressing the keys “F” and “J”
on the keyboard, corresponding to the left and right avatars.
The participants’ responses during the display of the auditory
target and the second fixation are recorded. The stimulus
display and response recording are both under the control of

2 https://www.blender.org/
3 https://sound.media.mit.edu/resources/KEMAR.html
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(a) (b)

(c)

Fig. 1 Audio-visual gaze-cueing social attention task. a Participant
engaging in the formal test with a headphone to hear the auditory stim-
ulus, and a keyboard to respond; b The iCub robot engaging in the test

with a headphone to get the auditory input, and responding to the target
by moving its eyeballs (see Fig. 4); c Schematic illustration of a single
trial

E-prime 2.0.4 In the current study, all participants perceive
the simulated masks as typical.

3.2.2 Data Recording and Analyses

Reaction time (RT) and error rates (ER) are analysed as
human response indices. For the RT analysis, error trials,
and trials with RTs shorter than 200 ms, and those with RTs
beyond three standard deviations above or below the mean
were excluded, corresponding to 2.42% of the data being
removed. To examine the Stimulus–Response Compatibility
effects of the crossmodal audio-visual conflict task, one-way
repeated measures analysis of variance (ANOVA) is used to
test differences in the participants’ responses under the three
congruency conditions (congruent, incongruent and neutral).
All post hoc tests in the current study use Bonferroni correc-
tion.

4 Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime (Ver-
sion 2.0). [Computer software andmanual]. Pittsburgh, PA: Psychology
Software Tools Inc.

3.3 Experimental Results

Our experimental results indicate that the participant response
time and accuracy under the audio-visually congruent con-
dition exceeded the performance under the incongruent
condition. There are no significant differences between the
neutral and incongruent conditions for both RT and ER. The
lack of difference between the neutral and incongruent con-
ditions shows that the lack of congruent audio-visual cueing
negatively affects the participants’ performance.

3.3.1 Reaction Time

A repeated measures ANOVA with a Greenhouse-Geisser
correction shows that the participants’ RT differs signifi-
cantly between different congruency conditions, F (2, 34) =
24.19, p < .001, η2p = .40 (see Figs. 2a and b). Post hoc
tests show that the participants responded significantly faster
under the congruent condition (mean ± SE = 466.25 ±
14.92ms) than both incongruent condition (mean ± SE =
485.12±14.82ms, p < .001) and neutral condition (mean±
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Fig. 2 a RT of participants under different congruency conditions –
group level; b RT of participants under different congruency conditions
– individual level; c ER of participants under different congruency con-
ditions – group level; d ER of participants under different congruency

conditions – individual level; e ER of the iCub under different con-
gruency conditions – group level; f ER of the iCub under different
congruency conditions – individual level. ∗ denotes .01 < p < .05, ∗∗
.001 < p < .01, ∗∗∗ p < .001, and n.s. denotes no significance

SE = 485.11 ± 14.80ms, p < .001). However, the differ-
ence between the incongruent and neutral condition was not
significant, p > .05.

3.3.2 Error Rates

A repeated measures ANOVA with a Greenhouse-Geisser
correction shows that the participants’ ER differs signifi-
cantly between different congruency conditions, F (2, 34) =

5.69, p < .05, η2p = .14 (see Fig. 2c and d). Post hoc tests
show that the participants presented significantly lower ER
under the congruent condition (mean ± SE = .02 ± .002)
than the incongruent condition (mean ± SE = .03 ± .004),
p < .01. However, there was no statistical significance in
the difference between the neutral condition (mean ± SE =
.02 ± .003) and both other congruency conditions, p > .05
in both cases.
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Fig. 3 a SCD – Social cue detection stage in which the representations of the sound source localisation (SSL), gaze estimation (GE), and gaze
following (GF) are extracted; b GASP – Saliency prediction; c Binaural DAVE – Audio-visual sound source localisation

4 Robot Experiment

4.1 Neural Modelling

Toassesswhether the iCubheadwoulddisplaydegradation in
performance under the incongruent condition relative to the
congruent condition, a model capable of dealing with stim-
uli from the gaze following modality showing the attention
targets of all individuals observed in the video, as well as the
gaze estimationmodality, indicating their head and eye poses
as well as audio source localisation, was needed. For that
sake, we opted for using the GASPmodel [1], which showed
a high performance when dealing with gaze and audio-visual
stimuli. However, GASP was originally projected to work
solely with monaural inputs. Since the auditory stimulus in
the three-avatar scenario arrives from a single direction, we
modify GASP to accommodate stereo audio. We do so by
replacing the saliency predictionmodelwith a binaural sound
localisation model.

4.1.1 Dynamic Saliency Prediction

The process of predicting saliency is divided into two stages.
The first stage, Social Cue Detection (SCD), is responsible
for extracting social cue feature maps from a given audio-
visual sequence. Figure3adepicts the architecture of theSCD
stage. Given a sequence of images and their corresponding
high-level feature maps, the second stage, GASP, then pre-
dicts the corresponding saliency region by integrating the
social cue feature map sequences. The overall integration
pipeline followed by GASP is shown in Fig. 3b.

Following the implementation of GASP, the SCD stage
comprises four modules, each responsible for extracting
a specific social cue [1]. Those modules include gaze
following, gaze estimation, facial expression recognition,
and audio-visual saliency prediction. For the current task,
however, the facial expression recognition module is not
employed since the virtual avatar faces are partially occluded
and do not display facial expressions. In order to closely
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replicate the experiments done with participants, the iCub
robot receives auditory stimuli from both ears. An audio-
visual saliency prediction module was originally designed
to work with monaural stimuli. To operate on binaural stim-
uli, we replace the saliency predictionmodulewith a binaural
audio-visual sound source localisation (SSL)model, denoted
the “SSL model” in Fig. 3a. The binaural SSL model archi-
tecture is shown in Fig. 3c.

The video streams used as input are split into their frames
and corresponding auditory signals. For every video frame
and corresponding audio signal, the SCD stage covers the
extraction of social cue feature maps, which are then prop-
agated to GASP. The Directed Attention Module (DAM)
weighs the feature map channels to emphasise those that rep-
resent high unexpectedness with respect to their predictions.
Convolutional layers further encode those weighted feature
map channels. In Fig. 3b, these layers are denoted by “Enc.”
(for encoder). The encoded feature maps of all video frames
are then integrated using a recurrent extension of the con-
volutional Gated Multimodal Unit (GMU) [6]. The GMU’s
mechanism weighs the features of its inputs. Adding a con-
volutional aspect to it accounts for the preservation of spatial
properties of the input features. The recurrent property of the
integration unit considers the whole sequence of frames by
performing the gated integration at every timestep.

For this work, the LARGMU (Late Attentive Recur-
rent Gated Multimodal Unit) is used because of its high
performance compared to other GMU-based models [1].
Since LARGMU is based on the convolution GMU, it pre-
serves the input spatial features. The LARGMU’s recurrent
structure allows it to integrate those features sequentially.
Adding a soft-attention mechanism based on the convolu-
tional Attentive Long Short-Term Memory (ALSTM) [15]
prevents gradients from vanishing as feature sequences get
sufficiently large. As the name implies, LARGMU is a late
fusion unit, meaning that the gated integration is performed
after the input channels are concatenated and, in sequence,
propagated to the ALSTM.

4.1.2 Binaural Sound Localisation

DAVE (Deep Audio-Visual Embedding) [70] is used as a
sound source localisation module in the SCD stage. In its
original form, the audio-visual DAVE encodes inputs from
one video and one audio stream, which are projected into a
feature spaceby3D-ResNets [28] (one for each input stream).
3D-ResNet extends theResNetmodel [30] to operate onmul-
tiple frames by replacing 2D convolutional layers with their
3D counterparts. Its encoder is followed by a convolutional
saliency decoder that upscales the latent representation and
provides the corresponding saliency map. For our current
work, DAVE is extended to accept binaural input, and this
binaural extension structure uses a similar rationale to the

Fig. 4 The iCub head

monaural DAVE, see Fig. 3c. The main difference is using
two 3D-ResNets to process the auditory modality, whose
output features are concatenated and then encoded and down-
sampledby a two-dimensional convolutional layer. This layer
is responsible for guaranteeing that the dimension of the fea-
ture produced by this part of the architecture matches that
of the feature produced by DAVE’s original audio-stream
3D-ResNet.

We initialise the binaural DAVE with the pre-trained
parameters of the audio-visual DAVE [70]. The left and
right auditory streams are initialised with identical param-
eter weights extracted from the 3D-ResNet auditory stream
of the monaural variant. The 1 × 1 convolutional layer that
encodes the concatenated audio features is initialised using
the normalisation method proposed by He et al. [29]. All
model parameters are optimised except for the video 3D-
ResNet, which are frozen throughout optimisation following
DAVE’s training procedure [70].

4.1.3 Binaural DAVE as a Prior to GASP

The GASP architecture used in the experimental setup
consists of the pretrained GASP, excluding the facial expres-
sion recognition input stream. We replace the audio-visual
saliency detector with DAVE’s binaural sound localisation
variant. Abawi et al. [1] show that replacing saliency predic-
tors does not require re-training GASP, allowing us to use
a sound localisation model in the place of a saliency pre-
diction model without fine-tuning the sequential integration
parameters.
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GASP receives four sequences of data as input, one
sequence of consecutive frames of the original video and
three sequences of feature maps, one for each model in the
social cue detection stage. In our experiment, we capture
sequences of 10 frames (cf. timesteps t ′0 to t ′9 in Fig. 3b). The
number of frames received as input by eachmodel in the SCD
stage varies due to dissimilarity in their expected inputs. The
sound localisation model receives a sequence of 16 frames
as input, whereas the gaze estimation and following models
receive sequences of 7 frames each. A more detailed expla-
nation of how the frames are selected based on the timestep
being processed is provided by Abawi et al. [1]. The audi-
tory input is captured as a one-second chunk and propagated
to each audio 3D-ResNet of the sound localisation model.
In this experiment, GASP is embedded in the iCub robot
and subjected to the same series of one-second videos as
the participants. The one-second chunk used as input to the
binaural sound localisation model corresponds to the entire
audio recording per video.

4.2 iCub EyeMovement Determination

After the iCub acquires the visual and auditory inputs, the
social cue detectors and the sound source localisation model
extract features from those audio-visual frames. Following
the detection and generation of the feature maps, they are
propagated to GASP, which, in turn, predicts a fixation den-
sity map F : Z2 → [0, 1], which is displayed in the form of
a saliency map for a given frame. The fixation peak (xF , yF )

is determined by calculating

(xF , yF ) = argmaxx,y F (x, y) . (1)

The values of xF and yF , originally in pixels, are then nor-
malised to scalar values x̂F and ŷF within the [−1, 1] range,
such that

x̂F = 2xF
lx

− 1, (2)

ŷF = 2yF
ly

− 1, (3)

where the width lx and height ly indicate the number of fix-
ation density map pixels in each axis. A value of x̂F = −1
represents the left-most point and x̂F = 1 the right-most one.
The vertical axis, ŷF = −1 represents the top-most point and
ŷF = 1 the bottom-most one.

The robot is actuated to look towards the fixation peak.
For simplicity, eye movement is assumed to be independent
of the exact camera location relative to the playback mon-
itor. For all experiments, only the iCub eyes were actuated
while disregarding microsaccadic movements and vergence
effects. The positions the iCub should look at are expressed

in Cartesian coordinates while assuming the monitor to be at
a distance of 30cm (δ = 0.3) from the image plane. To limit
the viewing range of the eyes, x̂F and ŷF are scaled down
by a factor of α = 0.3. The Cartesian coordinates are then
converted to spherical coordinates by

θ = arctan

(
α · x̂F√

δ2 + (α · ŷF )2

)
, (4)

φ = arctan(ŷF ), (5)

where θ and φ are the yaw and pitch angles respectively.
These angles are used to actuate the eyes of the iCub such
that they pan ∼27◦ and tilt ∼24◦ at most5.

4.3 Experimental Setup

We train the binaural model on a stereo audio-visual dataset
and propagate its predicted maps to GASP. We describe the
physical setup of the robot environment under which the
model used for integrating social cues with binaural sound is
evaluated. The human and robot experimental setups closely
resemble each other, allowing us to emulate the environ-
mental surrounding experienced by the participants that was
described in Sect. 3.2.1.

4.3.1 Binaural Model Training and Evaluation

The binaural DAVE is fine-tuned on a subset of the FAIR-
Play dataset [25], comprising 500 randomly chosen videos.
The FAIR-Play dataset consists of 1,871 video clips of single
or multiple individuals playing musical instruments indoors.
Auditory input is binaural with the sound source location
maps provided by Wu et al. [75].

Similar to itsmonaural counterpart, the loss of the binaural
DAVE model is computed as Kullback–Leibler divergence
between the predicted and ground-truth fixation maps at the
last timestep of the 16-frame sequence. The input frames,
sound channels and ground-truth maps were together flipped
at random during training as an augmentation transform. We
use the Adam optimiser with β1 = .9, β2 = .999, and a
learning rate of .001. The model is trained for five epochs
with mini-batches containing four sequences of 16 visual
frames with their corresponding one-second stereo record-
ings of audio. We train the model on an NVIDIA GeForce
RTX 3080 Ti with 32 GB RAM.

We test our model on 200 randomly chosen clips from the
FAIR-Play dataset. Another set of 200 clips are used for val-
idation. Given the close resemblance of audio-visual sound
localisation to saliency modelling, we rely on metrics com-

5 The iCub can pan its eyes within a [−45◦, 45◦] range and tilt them
within a [−40◦, 40◦] range.
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monly used to evaluate the latter [12]. We measure Pearson’s
correlation coefficient (CC) and similarity (SIM) to quan-
tify the performance of our model. CC calculates the linear
correlation between two normalised variables, whereas SIM
signifies the similarity between two distributionswith a value
of 1 indicating that they are identical.

4.3.2 Physical Robot Environment

Some technical adjustments proved necessary to replicate the
human experiments on the iCub head as closely as possible.
First, the iCub head was placed at a distance of approxi-
mately 30cm from a 24-inch monitor (1920 × 1200 pixel
resolution), as depicted in Fig. 1b. This distance is, however,
shorter than the 55cm distance the participants sat from the
desktop screen. The distance reduction was performed so
that the iCub’s field of vision covers a larger portion of the
monitor. Since the robot lacks foveated vision, the attention
is distributed uniformly to all visible regions, causing the
robot to attend to irrelevant environmental changes or visual
distractors. Second, the previous robot’s eye fixation posi-
tion needed to be retained as a starting point for the next
trial to provide scenery variations to the model. Direct light
sources also needed to be switched off to avoid glare. Once
the experimental setup was ready, the pipeline started the
video playback in fullscreen mode, simultaneously captur-
ing a 30-frame segment of the video using a single iCub
camera6 along with one-second audio recordings from each
microphone7 mounted on the iCub’s ears.

In the current study, the iCub head shifts its eyes towards
the auditory target. This differs from how participants
responded to the stimuli. The participants provided feedback
by pressing a key, with their hands were already resting on
the keyboard, leading to a much faster response than the time
it takes for an iCub head to shift its eyes. This difference
could lead to systematic differences in RT, making the RT
of the iCub head incomparable to those of the participants.
For that reason, the RT of the robot was not measured nor
analysed. Nevertheless, it is worth noticing that even though
humans and the robot respond differently to a trial, the task
they perform is essentially the same. Therefore, ER can be
adequately measured and analysed as the robot response.
One-way repeated measures ANOVA is used to test the SRC
effects of the robot’s response under the three congruency
conditions (congruent, incongruent and neutral). All post hoc
tests in the current study use Bonferroni correction. Addi-
tionally, an independent t-test is conducted to compare the
difference in SRC effects between humans and the robot. The
SRC effect is measured by subtracting congruent responses
from incongruent responses.

6 http://wiki.icub.org/wiki/Cameras
7 http://wiki.icub.org/wiki/Microphones

Table 1 Evaluating the binaural audio-visual sound source localisation
model on the test subset of the FAIR-Play dataset

Methods CC↑ SIM↑
Visual-only DAVE 0.5030 0.3972

Audio-visual DAVE 0.6068 0.4398

Binaural audio-visual DAVE (ours) 0.6411 0.5050

4.4 Experimental Results

Our binaural audio-visual sound localisation model outper-
forms monaural and visual-only variants in terms of the CC
and SIM metrics. For processing conflicting auditory and
visual stimuli, using a binaural model becomes necessary
to estimate the direction of sound arrival. This allows us to
replicate human-like patterns in attending to sound under
congruent, incongruent, and neutral conditions.

4.4.1 Binaural Sound Localisation

We fine-tune the DAVE variants on the FAIR-Play training
subset and evaluate theCCandSIMmetrics on the test subset.
We compare the predicted saliency maps against the ground-
truth audio maps for all video frames. The input consists of
the preceding 15 frames of a given video’s final frame at
timestep t15 including the final frame. The evaluation results
are reported following the fifth training epoch, given that
the validation loss increases after that. The binaural DAVE
outperforms both the audio-visual and visual-only variants
of DAVE, as shown in Table 1.

We observe a significant gap in SIM, but not in CC,
between the binaural DAVE and other variants. The SIM
metric is highly sensitive to false negatives [12]. Given the
objective of localising sounds in the visual stream, saliency
prediction models would produce maps uncorrelated with
regions having high sound activity. In the case of audio-
visual and video-only variants, the models are unaware of
the sound location and rely on the activity observed in the
visual stream. This implies that those model variants behave
like saliency predictors.

In Fig. 5, we observe that the predictions highly corre-
spond to the ground-truth maps, with an incorrect prediction
displayed in the last column.Wrong predictions lead to faulty
movement on the iCub during inference. We note that such
false predictions often occur due to the labels being provided
as constant audio maps for entire video clips [75]. Changes
during the video in which one musician begins playing at a
later stage are ignored, as seen from the example shown in
the last column of Fig. 5. As indicated by the handmovement
in transition between the timesteps t0 and t15, the musician
is playing the cello.
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Fig. 5 Qualitative examples showing the binaural DAVE predictions on the FAIR-Play test subset

4.4.2 Error Rates

A repeated measures ANOVA with a Greenhouse-Geisser
correction showed that the robot’s ER differed significantly
between different congruency conditions, F (2, 34) = 8.02,
p < .01, η2p = .18 (see Figs. 2e and f). Post hoc tests showed
that the robot presented significantly lower ER under the
congruent condition (mean ± SE = .37 ± .01) than the
incongruent condition (mean ± SE = .41 ± .01), p < .01.
However, there was no statistical significance in the differ-
ence between the neutral condition (mean ± SE = .38±.01)
and both other congruency conditions, p > .05 in both cases.

4.4.3 Human-Robot Comparison

The SRC effect was computed as the difference between
ER under incongruent and congruent conditions (SRC =
ERincongruent − ERcongruent ). Results of the t-test dis-
played that the robot showed a significantly larger SRC effect
(mean ± SE = .04 ± .001) than humans (mean ± SE =
.01 ± .01), t (72) = 2.35, p < .05 (see Fig. 6).

Human Robot
-0.1

0.0

0.1

0.2

SR
C 

Ef
fe

ct

*
Human
Robot

Fig. 6 SRC effects comparison between humans and the robot. ∗
denotes .01 < p < .05

5 General Discussion and Conclusions

Our current neurorobotic study investigated human atten-
tional response and modelled the human-like response with
the humanoid iCub robot head in a crossmodal audio-
visual social attention meeting scenario. According to the
research goals, the main findings of the current study are
twofold. First, in line with previous crossmodal social atten-

123



International Journal of Social Robotics

tion research [47, 65], our study shows that the visual cue
direction enhances the detection of the following auditory tar-
get occurring in the same direction, although from a different
modality. The current study uses a dynamic gaze shift with
corresponding head and upper bodymovements as visual cue
stimuli. It replicates the previous findings by studies using
static eye gaze [27, 48], showing a robust reflexive atten-
tional orienting effect. More specifically, the participants
show longer RT and higher ER under the incongruent audio-
visual condition than the congruent one. Some previous
research shows that eye gaze has a stronger attentional orient-
ing effect than simple experimental stimuli (e.g., arrows) [21,
57]. Although we do not have any conditions using arrows as
visual cues in our current study,wefirst demonstrate that real-
istic and dynamic social cues could have a similar effect in
a human crossmodal social attention behavioural study (H1,
H2). Second, the results from the iCub response demonstrate
a successful human-like simulation. With the GASP model,
the iCub robot could trigger similar attentional patterns as
humans, even in a complex crossmodal scenario. Lastly, the
statistical comparison of the SRC effects between humans
and the iCub shows that the robot experienced a larger con-
flict effect than humans (H3, H4).

In the human experiment, corresponding to our H1
hypothesis, social cues that trigger social attention are
extended to multiple modalities. Our results support the
nature of social gaze cueing, and the view of stimulus-
driven shifts of auditory attention might be mediated by
othermodality information [62]. Furthermore, different from
previous gaze-cueing experiments [47], we add a neutral
condition to study the interference and facilitation effects
during conflict processing. For the neutral condition, partici-
pants only see a static meeting scenario without any dynamic
social visual cues before the auditory target comes out. The
results of humans’ RT contradict our H2 hypothesis. Partici-
pants have significantly longerRTunder the neutral condition
than in the congruent condition. However, no significant dif-
ference in RT between neutral and incongruent conditions is
found. Thus, the congruent condition in our study has a facil-
itation effect on the audio-visual conflict processing. These
results are consistent with previous studies using the static
eye gaze as the visual cue. Their researchers also report a
faster response to the gaze-target spatially congruent condi-
tions than the neutral and incongruent conditions, implying a
benefit effect of the gaze-oriented attention [20, 60]. The ER
results show that the incongruent condition would have sig-
nificantly more response errors than the congruent condition,
and the neutral condition intermediates between incongruent
and congruent conditions with slight differences.

In the robot experiment, the iCub experiment results ver-
ifyH3 andH4 that, similarly to humans, the robot’s response
accuracy is significantly better (p < .01) in a congruent con-
dition than in an incongruent one. This similarity is further

corroborated by the lack of significant difference (p > .05)
in both the humans’ and the robot’s ER in the neutral condi-
tion compared to either of the other conditions (cf. Fig. 2c and
e). The current study did not directly compare ER between
humans and the robot under each condition. Because robots
do not respond as accurately as humans, a lower accuracy is
to be expected for robots [72]. However, it is still impor-
tant to find that the relevant values between incongruent
and congruent conditions between humans and the robot are
closely related. Although the robot shows significantly larger
SRC effects than the humans, it is reasonable for responses
from the robot to have more variability than those of the
humans. Though very low, the iCub’s ego noise still makes
audio localisation more challenging than for a human who
could adjust to the visuals of the avatars in the pretrials. In
contrast, the iCub could rely solely on its pretrained model.
Besides, although the participants respond to the stimuli by
pressing the corresponding keys on the keyboard, while the
iCub robot responds by shifting its eyes, the SRC effects still
significantly show during the iCub experiment. The robot
provides a fixation density map, representing the most likely
region a human would tend to fix his/her attention in a cross-
modal audio-visual scenario. By providing different degrees
of attention to each modality, guaranteeing that all of them
would be considered for the determination of the fixation
density map, the neurorobotic model is capable of generat-
ing the human-like crossmodal attention. The possibility of
making a humanoid robot mimic human attention behaviour
is an essential step towards creating robots that can under-
stand human intentions, predict their behaviours, and behave
naturally and smoothly in human-robot interactions.

6 FutureWork

The current work could give way to studies from multiple
areas and perspectives. For instance, during the social atten-
tion task, eye-tracking techniques could be used to collect
human eye movement responses, e.g., pupil dilation, visual
fixation, and microsaccades. This allows for a more com-
prehensive analysis of human attention under the different
conditions of audio-visual congruency. Fine-tuning audio-
visual saliency models on the collected task-specific data
could lead to performance on par with humans.

To make the experimental design more diverse and realis-
tic, future studies could utilise other social cues from the
avatar’s face and body. Besides, the experimental design
could be enhanced by considering additional factors, such as
the avatars’ emotions and other identity features. This could
be helpful for target speaker detection, emotion recognition,
and sound localisation in future robotic studies. Considering
that speaking activity is one key feature in determiningwhich
people to look at [76], it is crucial to consider when creating
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robots that mimic human attention behaviour. Also, the high
performance of the most recent in-the-wild active speaker
detection models [13, 36, 58] indicates their reliability in
providing accurate attention maps.

Our current work and findings can be applied to build
social robots to play with children who have ASD or autistic
traits. Previous research has shown that children with ASD
avoid mutual gaze and other social interaction with humans,
but not with humanoid robots [59]. This can be explained by
the fact that humanoid robots with child-like appearance are
more approachable by children with ASD [56, 63]. Thus, it
is possible and meaningful for social robots to help children
with ASD improve their social functions.

Finally, the current experiment could be extended to a
human-robot interaction scenario, such as replacing avatars
with real humans or robots and evaluating responses from the
participants and robots [5]. There have been several human-
robot interaction studies about how humans react to a robot’s
eye gaze [2, 51, 74] or the mutual gaze effect on human
decision-making [9, 35]. Based on our study, what can be
extended, but can also be challenging, is to make robots
learn multiperson eye gaze and detect the active speaker in
real-time during a collaborative task or social scenario with
humans.

In conclusion, our interdisciplinary study provides new
insights into how social cues trigger social attention in a
complex multisensory scenario with realistic and dynamic
social cues and stimuli. We also demonstrated that by pre-
dicting the fixation density map, the GASP model triggered
the iCub robot to have a human-like response and sim-
ilar socio-cognitive functions, resolving sensory conflicts
within a high-level social context. By combining stimulus-
driven information with internal targets and expectations, we
hypothesise that these aspects of multisensory interaction
should enable current computational models of robot per-
ception to yield robust and flexible social behaviour during
human-robot interaction.

Supplementary Materials

The example of experimental stimuli and videos for both
human data and the iCub robot data collection can be viewed
at this link: https://www.youtube.com/watch?v=bjiYEs1x-
7E.
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