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Abstract. In recent research, in the domain of speech processing,
large End-to-End (E2E) systems for Automatic Speech Recognition
(ASR) have reported state-of-the-art performance on various bench-
marks. These systems intrinsically learn how to handle and remove noise
conditions from speech. Previous research has shown, that it is possible
to extract the denoising capabilities of these models into a preprocessor
network, which can be used as a frontend for downstream ASR models.
However, the proposed methods were limited to specific fully convolu-
tional architectures. In this work, we propose a novel method to extract
the denoising capabilities, that can be applied to any encoder-decoder
architecture. We propose the Cleancoder preprocessor architecture that
extracts hidden activations from the Conformer ASR model and feeds
them to a decoder to predict denoised spectrograms. We train our pre-
processor on the Noisy Speech Database (NSD) to reconstruct denoised
spectrograms from noisy inputs. Then, we evaluate our model as a fron-
tend to a pretrained Conformer ASR model as well as a frontend to train
smaller Conformer ASR models from scratch. We show that the Clean-
coder is able to filter noise from speech and that it improves the total
Word Error Rate (WER) of the downstream model in noisy conditions
for both applications.
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1 Introduction

End-to-End (E2E) systems have been the state-of-the-art approach to Auto-
matic Speech Recognition (ASR) for a few years now [1,4,17]. An E2E system
usually takes audio as input, processes it into an internal representation, and
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produces a transcript of the speech. The big advantage of these systems is that
all components are trained together, so they can learn a joint representation.
However, the disadvantage is that they often require deep models with a large
number of parameters to perform well. For example, the recent Whisper-large
model [17] contains about 1550 M parameters. Training a model like this from
scratch is computationally expensive and usually not possible for research insti-
tutions. However, most of these models can be successfully adapted to smaller
domains through the use of transfer learning, which indicates the quality of
speech representations learned [9,17]. Additionally, E2E systems usually do not
have preprocessing applied to their input and the model itself has to learn how
to separate speech from noise [17]. Usually, the earlier layers of recent ASR archi-
tectures are required to separate noise from speech implicitly. When a new ASR
architecture is developed, the earlier noise-handling layers need to be trained
again. This raises the question if it is possible to separate the processing capa-
bilities of such a large and powerful pretrained ASR model and reuse them for
another model.

Our work takes inspiration from the recent findings of Möller et al. [13]. They
were able to utilize a pre-trained Jasper [12] ASR model to create a preprocessor,
which increases the noise robustness of pretrained models and improves the per-
formance of smaller ASR models trained from scratch. However, their approach
has two disadvantages: 1) their approach is only applicable to a specific archi-
tecture of Jasper, and 2) Jasper is no longer state-of-the-art for English ASR.
Instead, attention-based models derived from the Transformer [23] architec-
ture have outperformed convolutional and recurrent ASR approaches [3,7,9,17].
Therefore, we propose a new extraction method (Parallel Weighted Sum), which
is potentially applicable to any encoder-decoder ASR architecture. We apply
this method to a Conformer [7] model, a state-of-the-art attention-based archi-
tecture, to create our preprocessor called Cleancoder. Our model can function
either as an independent frontend for pre-trained ASR models or can be used
in combination with architectures trained from scratch to improve their noise
robustness. In our experiments, we measure the performance (Word Error Rate;
WER) on different noise levels on the Noisy Speech Dataset (NSD) [20] to show
that our methods improve the performance under noisy conditions and the per-
formance does not decrease under clean conditions (LibriSpeech [16]) when using
our preprocessor.

2 Related Work

To improve the noise robustness of a speech recognition model, training processes
usually include adding both artificial and realistic noise to the training data. This
leads to large-scale ASR models showcasing certain noise robustness without
any further preprocessing steps. However, since smaller models might not be
able to perform the same internal denoising steps, it is important to examine
how the capabilities of larger models can be exploited by smaller models. When
mentioning ‘small’, ‘medium’, and ‘large’ ASR models we refer to the number
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of parameters defined by Gulati et al. [7] for their Conformer configurations
(∼10M, ∼30M, ∼100M).

There are different approaches to creating external preprocessors, that
denoise speech for further speech recognition. Many of these focus on filtering
noise from speech using statistical methods in combination with deep learning
methods [2,6,8]. A recent example of such a method is the Cleanformer model.
Cleanformer [2] is a multichannel frontend architecture for speech enhancement
based on the Conformer [7] architecture. The model combines raw noisy speech
and enhanced input features, produced by a SpeechCleaner [10] noise cancel-
lation algorithm, to create an Ideal Ratio Mask (IRM) [14]. This mask in the
spectral space, estimates the ratio of speech in the noisy signal. These ratios are
then applied to the input signal to filter out noise. The model works indepen-
dently of the combined ASR model and can reduce WERs across multiple SNR
values by approximately 50%.

Instead of applying a filtering method to the noisy signal, our approach recon-
structs clean spectrograms completely from latent representations. Our work is
based on the findings of Möller et al. [13], who created a frontend architecture for
noise filtering based on the Jasper [12] architecture. Based on the findings of Li
et al. [11] and their probing methods to extract and predict spectrograms from
hidden representations, Möller et al. applied this method to gauge the denoising
capabilities of a pre-trained Jasper model. The underlying assumption is that
areas of speech that the model perceives as noise are filtered out very early by
the system and are not represented in the model’s latent space. Thereby, those
filtering capabilities could be leveraged for other ASR models and increase their
noise robustness.

Möller et al. demonstrate how the reconstructed representations of speech
support other already pretrained ASR systems in noisy conditions. Addition-
ally, they observe that those features support other ASR systems as input while
training and that models with those representations generally perform better on
noisy and clean data. However, their approach relies strongly on the architecture
of Jasper [12] and its residual connections. They retrain the batch normalization
layers in the model and are therefore limited to one specific architecture, which
is not state-of-the-art anymore. Our work introduces a way that could poten-
tially reconstruct speech from any ASR system while still retaining denoising
capabilities.

3 Methodology

Our method of constructing a denoising preprocessor from a pretrained ASR
model is inspired by the work of Möller et al. [13]. However, we propose an
architecture that can extract latent representation from potentially any encoder-
decoder ASR architectures and is not limited to the Jasper architecture. Our
Cleancoder model extracts the latent representations of an ASR model’s encoder
and reconstructs denoised spectrograms.
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Fig. 1. This figure shows the architecture of our Cleancoder. On the left, we display
the original Conformer encoder architecture (a). Then, the output of every Conformer
block is fed into our extraction method (b). This method computes a weighted sum
of the latent representation and feeds this vector to our reconstruction decoder (c).
This decoder contains four different Highway Networks tasked with reconstructing
one-fourth of the final output frame. The subsampling layer of the Conformer reduces
the temporal dimension of the input by a factor of four. Thus we generate four outputs,
which are appended along the temporal axis to reconstruct a complete spectrogram of
a frame (d). Then we compute the L1 loss (e) between the reconstructed spectrogram
and the clean ground truth.

The architecture follows an encoder-decoder structure, shown in Fig. 1. We
choose pretrained Conformer models as a baseline to extract our preprocessor
from it. These models are larger than the Jasper [12] used by Möller et al. [13]
but still can be trained from scratch in a reasonable time. There are multi-
ple pretrained Conformer models with Connectionist Temporal Classification
(CTC) available from NVIDIA NeMo1. Jasper has been outperformed by many
more recent ASR models, which are using attention-based architectures [4,5,7].
The Jasper model used by Möller et al. only reported a WER of 2.84%(test-
clean)/7.84%(test-other) [12] on the LibriSpeech [16] test set, using an external
language model. The large Conformer we base our model on reported 1.9%(test-
clean)/3.9%(test-other) [7]. Thus, we assume that our Cleancoder will be able
to yield better WER improvements for downstream models.

1 https://catalog.ngc.nvidia.com/models.

https://catalog.ngc.nvidia.com/models
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Fig. 2. This figure shows our Parallel Weighted Sum method. Each of the N latent
vectors of the Conformer encoder has size (D, T) and is fed through a separate fully
connected layer after which we sum all the projected vectors into one output vector of
size (D, T).

We reuse the encoder of the ASR Conformer model (see Fig. 1, a). We disre-
gard the decoder layers as we’re only interested in the latent representations. To
extract these hidden activations, we feed the output of each Conformer block into
our extraction method. We create an approach that applies to potentially any
encoder-decoder ASR architecture while remaining simple. We propose a Paral-
lel Weighted Sum extraction method (see Fig. 1, b and Fig. 2), which extends the
regular weighted sum. However, instead of choosing one weight vector to reduce
all the hidden activations into one, our method feeds each layer through separate
parallel projection layers and computes the sum across these layers. This way,
we not only weigh the contribution of the different blocks to the denoised output
but also weigh the information contained in each feature vector. We took inspi-
ration from the work of Yang et al. [25], who compared different Self-Supervised
Learned (SSL) representations.

For our decoder network, we choose to follow the example of Möller et al. [13]
and use four-layer Highway Networks [18]. They have shown, that these networks
can reconstruct spectrograms sufficiently for ASR from hidden representations.
Since the Conformer preprocessing block reduces the temporal dimension by a
factor of four, we train four different Highway Networks. The four outputs are
appended along the temporal axis. Given the input x consists of t frames, the
Conformer will reduce the temporal dimension by four yielding t/4 frames. We
denote the latent representation constructed by our Parallel Weighted Sum as si
for frame i and our four Highway Networks as N1, N2, . . . , N4. Since our decoder
is almost identical to the one of Möller et al. [13], we obtain a similar equation
for the output y of our model:

y = (N1(s0), N2(s0), N3(s0), N4(s0), . . . , N1(st/4), N2(st/4), N3(st/4), N4(st/4))
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4 Experimental Results

4.1 Datasets

Noisy Speech Database. The Noisy Speech Database (NSD) [20] was designed
to test and train speech enhancement algorithms. It contains pairs of noisy and
clean speech, sampled at 48 kHz, and is divided into a training and test set.
For our experiments, we downsampled our input to 16 kHz. Each sample in
the datasets provides noisy and clean audio, a transcript, information about the
speaker, signal-to-noise ratio (SNR), and noise type. There are two sets of the
NSD with 28 [22] and 56 speakers [21] taken from the Voice Bank Corpus [24].
The noisy samples were created by adding recorded noise from the DEMAND
database [19] as well as generated babble and speech-shaped noise. These noise
types were applied at different SNRs. We combine the 28 and 56-speaker sets
to expose our model to a larger variety of speakers and noise conditions. Thus,
we will ensure better generalization. We use the NSD to train our denoising
preprocessor and to evaluate the performance of downstream ASR models on
noisy data.

LibriSpeech. LibriSpeech [16] is a corpus of approximately 1000 h of clean
English speech, sampled at 16 kHz. LibriSpeech is an established dataset for
evaluating ASR models [7,12]. We use LibriSpeech in our experiments to train
small ASR models from scratch.

4.2 Training the Cleancoder

To evaluate if the Cleancoder architecture filters the noise from speech we train
two preprocessor models (medium, and large) on the NSD train set. This way,
we can estimate the required size of the best preprocessor. Our preprocessors
are trained to reconstruct spectrograms of the same form as the encoder’s input.
These are log-Mel spectrograms with 80 features, a window size of 0.025, and a
windows stride of 0.01. We convert each clean and noisy audio signal of each sam-
ple in the NSD trainset into log-Mel spectrograms. While training, our models
are fed the noisy spectrograms and predict denoised spectrograms.

Then, we can compute the L1 loss between the clean and denoised spectro-
grams. We train two different models with the medium and large-sized Conformer
CTC models. The medium Conformer consists of ∼30.7M parameters, while the
large one consists of ∼118.8M parameters [7]. For each encoder model, we train
our preprocessor for 100 epochs on a batch size of 64 with L1 Loss. The learning
rate is set to a magnitude of 1e−3, where the precise values are taken from a
hyperparameter search, which we conduct before the actual training. The search
was conducted on the NSD trainset. The Adam optimizer is configured with
β1 = 0.9, β2 = 0.98 and a weight decay of 1e−4. The learning rates are set to the
optimal values from our hyperparameter search. We choose to omit the learning
rate scheduler since the initial learning rate is already very small. Our decoder
is configured as four four-layer Highway Networks.
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Fig. 3. This figure presents the mean absolute error (MAE) computed between the
noisy and clean and respective denoised and clean spectrograms of the NSD test set
grouped by the signal-to-noise ratio (SNR). We observe that the denoised spectro-
grams of both preprocessors show a lower MAE than the noisy baseline across all noise
conditions. The large Cleancoder shows the lowest MAE.

After training the two models, we inspect the differences between the noisy,
clean, and denoised spectrograms. We measure their deviation by computing
the mean absolute error (MAE) between the clean and noisy as well as clean
and denoised spectrograms. Our results on the MAE are shown in Fig. 3. For
both preprocessors, we observe that they reduce the MAE compared to just
the noisy input. The lower the SNR the larger the improvement, indicating
that the Cleancoder models filter noise from speech. However, the MAE of the
Cleancoders remains at similar values for all SNRs, which could suggest that the
MAE reduction is already saturated at a low SNR.

4.3 Frontend for Pretrained Models

Next, we test how our Cleancoder affects the performance of existing pretrained
ASR models. Therefore, we use our preprocessors as frontends to first denoise
the input signal and generate spectrograms. These are fed into a pretrained
downstream ASR model which predicts transcriptions. Finally, we measure the
WER between the ground truth texts, the transcripts recognized from the unpro-
cessed noisy spectrograms (noisy baseline), and the transcripts recognized from
the preprocessed noisy spectrograms (our preprocessor).

For our experiments, we choose a medium-sized Conformer with CTC and a
large Conformer Transducer as downstream ASR models, which are both pub-
licly available through NVIDIA’s model collection. We chose two different ASR
models to ensure a degree of invariance to the downstream architecture. This
experiment verifies if it is possible to combine our front end with other down-
stream architectures without the risk of degrading the performance.

Our results are shown in Fig. 4. We can see, that overall, while the WER
increases with the medium preprocessor compared to the baseline, it decreases for
almost all SNR configurations with the large Cleancoder. The large Cleancoder
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Fig. 4. Figure (a) presents the WER on the NSD test set for evaluating our frontends
using a Conformer CTC downstream model. Figure (b) presents the WER using a
Conformer Transducer downstream model. The Transducer was only evaluated with
the large Cleancoder, as the medium Cleancoder had already proven to be unable to
improve ASR performance. Both plots show the WER grouped by SNR. Each bar
denotes either the noisy spectrograms or respective denoised spectrograms. The WER
improves the most on low SNR samples and slightly degrades WER on high SNR
samples.

performs better on samples with low SNR, only for samples with the highest SNR
of 17.5 the performance is slightly worse than the noisy baseline. We observe that
the performance of the baseline Conformer Transducer got worse from SNR 12.5
to 17.5. When analyzing the errors we found minor anomalies in the predictions,
however, since the WER is already very low we accredit this observation to
general variance.

We further discuss the correlation between our MAE and WER results.
Möller et al. [13] suggested, that the MAE and WER do not necessarily cor-
relate. We found little research on the impact of the MAE between noisy and
clean speech on the resulting WER. While we observe significant improvements
of the MAE using our medium and large preprocessors, the WER shows signif-
icantly lower performance on the medium preprocessor. Only the large version
yields positive results. There seems to be no strong correlation between the MAE
and WER. We assume that a different loss function to train the preprocessor
would be more appropriate, and we will examine this in our future work.

4.4 Training an ASR Model from Scratch

We evaluate how the Cleancoder impacts the training of a smaller downstream
ASR model from scratch. The architecture of choice for the ASR model was a
small Conformer using CTC without a language model. We train three different
small Conformer models. All three are trained on LibriSpeech’s training splits.
The baseline model uses no front end, while the others are trained on the outputs
of our medium and large preprocessor, respectively. All three are trained for 100
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epochs with CTC loss using a batch size of 128 and an Adam optimizer with β1

as 0.9 and β2 as 0.98. We apply a NoamAnnealing learning rate scheduler with
10,000 warmup steps, an initial learning rate of 2.0, and a minimal learning rate
of 1.0e−06.

Fig. 5. Figure (a) shows the WER (%) of our three ASR models trained from scratch for
the dev- and test-splits of LibriSpeech. Figure (b) shows the WER (%) for the NSD test
set grouped by SNR. Each model used the same small Conformer architecture and was
trained on either the raw input or the output of our medium and large preprocessors.
We observe that the ASR model using the large preprocessor shows the lowest WER
in both figures.

In the first plot of Fig. 5, we report the WER computed on the test-clean,
test-other, dev-clean, and dev-other splits of LibriSpeech. We observe that both
models using our preprocessors outperform the baseline ASR model. The large
Cleancoder shows the lowest mean WER on all splits.

Furthermore, we show the WER of our ASR models on the NSD test set
grouped by SNR in the second plot of Fig. 5. We observe that both models using
our preprocessors outperform the baseline model. The large preprocessor shows
the best performance with an almost 4% improvement overall. We also observe
that using the Cleancoders yields the biggest improvements on samples with a
low SNR. This shows the models are more robust to noise.

Finally, we investigate the impact of using our Cleancoders over the course
of training. The evaluation CTC loss and evaluation WER are shown in Fig. 6.
We observe that both models using our front end converge faster and reach a
lower loss and WER than the baseline model. The loss curves and WER curves
follow an almost identical course. We observe that the validation loss and WER
are both lowest for the large Cleancoder. As previously discussed, this supports
the assumption that the large Cleancoder generalizes better to different noise
conditions.
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Fig. 6. Plot (a) shows the CTC loss over the number of training steps for the validation
dataset. Plot (b) shows the WER, computed on the validation dataset, over the training
steps. Each plot shows three curves for the baseline ASR model (blue), the medium
preprocessor (orange), and the large preprocessor (green). Both preprocessors converge
lower than the baseline ASR model, except for the CTC validation loss of the medium
preprocessor. (Color figure online)

5 Conclusion

We created preprocessors from pretrained Conformer [7] ASR models by extract-
ing the hidden activations and training a decoder to predict denoised spectro-
grams. In our experiments, we showed that our Cleancoder improves the per-
formance (WER) under noisy conditions (SNR: 2.5 and 7.5) for two different
downstream ASR models. Under clean audio conditions (SNR: 12.5 and 17.5)
the performance stayed mostly stable (with one outlier). The results indicate
that our preprocessor is capable of improving the performance of downstream
ASR models under noisy conditions without the necessity of performing any
training for the downstream ASR models. In the second experiment, we trained
the downstream ASR model from scratch by first feeding the audio training data
through the Cleancoder and then using the generated spectrograms as training
data for our downstream ASR model. The performance substantially improved
under both noisy and clean audio conditions. Comparing the results of the first
and second experiments suggests, that reconstruction errors of our Cleancoder
might disturb a pretrained ASR model, but can be compensated by training on
these errors. Furthermore, we measured the training and validation loss while
performing the training. These results show that the training time of an ASR
model can be reduced due to an improved convergence, and the performance can
be increased when using our preprocessor as input to a downstream ASR model.

In future work, we plan to research different loss functions aside from MAE
to train the Cleancoder for denoising. One example could be the Ideal Ratio
Mask (IRM) [15], which has recently been successfully utilized for a denoising
frontend [2]. A loss function with better correlation to the downstream WER
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could further improve our Cleancoder’s performance as an ASR frontend. Fur-
thermore, we will evaluate our preprocessor using additional downstream ASR
architectures. Especially the combination of our preprocessor and the recent
Whisper [17] model would be worth investigating. Finally, applying our app-
roach to create denoising preprocessors from other architectures will confirm if
our method works with any encoder-decoder ASR architecture.

Acknowledgements. The authors gratefully acknowledge support from the German
BMWK (SIDIMO), the DFG (CML, LeCAREbot), and the European Commission
(TRAIL, TERAIS).
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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