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Abstract

We address the Continual Learning (CL) problem, where
a model has to learn a sequence of tasks from non-stationary
distributions while preserving prior knowledge as it encoun-
ters new experiences. With the advancement of founda-
tion models, CL research has shifted focus from the ini-
tial learning-from-scratch paradigm to the use of generic
features from large-scale pre-training. However, existing
approaches to CL with pre-trained models only focus on
separating the class-specific features from the final represen-
tation layer and neglect the power of intermediate represen-
tations that capture low- and mid-level features naturally
more invariant to domain shifts. In this work, we propose
LayUP, a new class-prototype-based approach to continual
learning that leverages second-order feature statistics from
multiple intermediate layers of a pre-trained network. Our
method is conceptually simple, does not require any replay
buffer, and works out of the box with any foundation model.
LayUP improves over the state-of-the-art on four of the
seven class-incremental learning settings at a considerably
reduced memory and computational footprint compared with
the next best baseline. Our results demonstrate that fully
exhausting the representational capacities of pre-trained
models in CL goes far beyond their final embeddings. The
code will be made publicly available upon acceptance.

1. Introduction

Continual Learning (CL) is a subfield of machine learn-
ing that focuses on enabling models to learn from a stream
of data and adapt to novel concepts without forgetting
previously acquired knowledge [6, 45]. While traditional
works on CL primarily focus on the learning-from-scratch
paradigm, the introduction of large foundation models has
initiated a growing interest in developing CL methods upon
the powerful representations resulting from large-scale pre-
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Figure 1. Overview of LayUP: Enriching last layer representations
of pre-trained models with features from intermediate layers leads
to better calibrated similarity measures for prototype-based classifi-
cation and more robustness to domain gaps in the continual learning
setting.

training. Continual learning with pre-trained models builds
on the assumption that a large all-purpose feature extractor
provides strong knowledge transfer capabilities and great
robustness to catastrophic forgetting [39] during incremental
adaptation to downstream tasks.

Such methods for downstream adaptation can be catego-
rized into two general strategies [40, 61]: (i) Carefully fine-
tuning the pre-trained representations (full body adaptation),
or (ii) keeping the pre-trained backbone fixed while learning
additional parameters (such as prompts [22, 31, 35], adapters
[5,7, 19, 20, 50], or other methods [25, 34, 38]). Both strate-
gies have in common that they do not rely on rehearsal from
past data to perform well, unlike many of the top-performing
CL strategies used for models trained from scratch. De-
spite their merits, most approaches to CL with pre-trained



models that fall under one of those strategies update a fully
connected classification head (linear probe) via iterative gra-
dient methods during training and inference, which is subject
to task-recency bias [37, 54, 62] and catastrophic forgetting
[48, 69]. Class-prototype methods [21, 40, 72] have been
established as a viable alternative, as they average extracted
features directly, which is not only computationally efficient
but also superior to CL methods applied to the trainable
linear probe.

Despite their effectiveness, contemporary class-prototype
methods for CL use only the features obtained by the last
layer of the backbone for class-prototype construction. How-
ever, as the discrepancy between the pre-training and fine-
tuning domain increases, the high-level last-layer features
might not generalize well enough to provide a good class
separability in the target domain anymore. The challenge is
therefore to find a prototype-based classifier that leverages
the representations of a pre-trained feature extractor holisti-
cally, ideally at comparably low memory and computational
cost.

In this work, we hypothesize that representations are most
effectively leveraged from multiple layers to construct a
classifier based on first-order (class-prototypes) and second-
order (Gram matrix) feature statistics. Such a strategy is
inspired by works on Neural Style Transfer [13, 23], which
involve applying the artistic style of one image to the content
of another image, a problem that can be viewed through
the lens of domain adaptation [32]. To achieve neural style
transfer, a model has to disentangle image information into
content and style (e.g., textures, patterns, colors). While
content information is expressed in terms of activations of
features at different layers (which translates to calculating
intra-layer class-prototypes in our case), style information
is expressed as correlations between features of different
layers (which corresponds to us calculating intra-layer Gram
matrices).

We thus propose Intra-Layer Universal Prototypes
(LayUP), a class-prototype method for CL that is based on
the aforementioned strategy to disentangle style and content
information of images at multiple layers of a pre-trained net-
work. An overview of our method is given in Fig. 1. LayUP
obtains rich and fine-grained information about images to
perform a more informed classification that is less sensitive
to domain shifts. We additionally experiment with different
parameter-efficient fine-tuning strategies to further refine
the intra-layer representations obtained by LayUP. Across
several CL benchmarks and learning settings, our method
provides improvements and reduces the gap to upper bound
performance by up to 67% (Stanford Cars-196 in the CIL
setting) compared with the next best baseline while reducing
its memory and compute requirements by 81% and up to
90%, respectively.

Our contributions are threefold: (1) We present and ex-

amine in detail the CL strategy with pre-trained models and
show why it benefits from using intra-layer representations
for classification. We further demonstrate the advantages of
leveraging cross-correlations between intra-layer and inter-
layer features to decorrelate class-prototypes. (2) Building
on our insights, we propose LayUP, a novel class-prototype
approach to CL that leverages second-order statistics of fea-
tures from multiple layers of a pre-trained model. Inspired
by prior works [40, 71], we experiment with different meth-
ods for parameter-efficient model tuning and extend our
method towards first session adaptation. Our final approach
is conceptually simple, light in memory and compute, and
works out-of-the-box with any transformer model. (3) We re-
port performance improvements with a pre-trained Vit-B/16
[12] backbone on several benchmarks both in the Class-
Incremental Learning (CIL) and in the more challenging On-
line Continual Learning (OCL) setting and show that LayUP
is especially effective under large distributional shifts and in
the low-data regime. Our results highlight the importance of
taking a deeper look at the intermediate layers of pre-trained
models to better leverage their powerful representations, thus
identifying promising directions for CL in the era of large
foundation models.

2. Related Work
2.1. Continual learning

Traditional approaches to CL consider training a model from
scratch on a sequence of tasks, while striking a balance
between adapting to the currently seen task and maintaining
high performance on previous tasks. They can be broadly
categorized into regularization [1, 11, 27, 33, 67], which
selectively restrict parameter updates, (pseudo-)rehearsal [2,
4,47, 51], which recover data either from a memory buffer
or from a generative model, and dynamic architectures [53,
55, 66], which allocate disjoint parameter spaces for each
task.

2.2. Continual learning with pre-trained models

Leveraging the powerful representations from large founda-
tion models for downstream continual learning has shown to
not only facilitate knowledge transfer, but also to increase
robustness against forgetting [43, 49]. L2P [65] and Dual-
Prompt [64] outperform traditional CL baselines by train-
ing a pool of learnable parameters (i.e., prompts) that are
used as queries to guide a Vision Transformer (ViT) [12]
towards adapting to downstream tasks. They serve as the
basis for several more recent prompt learning methods such
as S-Prompt [63], DAP [24], and CODA-Prompt [56], which
further increase performance.

Contrary to prompt learning methods that keep the back-
bone parameters fixed while updating a small set of addi-
tional parameters, some parallel works explore methods for



making careful adjustments to the backbone parameters.
SLCA [69] uses a small learning rate for updates to the
ViT backbone, while training a linear probing layer with a
larger learning rate. L2 [57] applies regularization to the self-
attention parameters of a ViT during continual fine-tuning.
First Session Adaptation (FSA) [44] makes adjustments to
the parameters of the backbone only during first task train-
ing.

As an alternative to the methods above that adjust the
feature space via cross-entropy loss and backpropagation,
constructing prototypes directly from the pre-trained features
can avoid catastrophic forgetting during CL without storing
data. Prior works [21, 72] find that a conceptually simple
Nearest Mean Classifier (NMC) outperforms various prompt
learning methods. ADAM [72] combines NMC with FSA
and concatenates the features from the initial pre-trained
ViT and the adapted parameters. Other methods leverage
second-order feature statistics, i.e., covariance information,
for class-prototype accumulation: FSA+LDA [44] applies
an incremental version of linear discriminant analysis to a
pre-trained ResNet encoder [14]. RanPAC [40] uses high-
dimensional random feature projections to decorrelate class-
prototypes of a pre-trained ViT backbone.

All the aforementioned approaches have in common that
they consider only the last layer representations (or, features)
for classification. We provide a different perspective to the
prototype-based approach to CL and show that intra-layer
representations can add valuable information to the linear
transformation of class prototypes (cf. Eq. (5)), which leads
to better class separability and increased robustness to large
distributional shifts.

3. Preliminaries
3.1. Continual learning problem setting

We consider a feature extractor ¢(-) composed of L con-
secutive layers and a sequence of training datasets D =
{Dy,...,Dr}, where the t" task Dy = {(@¢., Y1) }%,
contains pairs of input samples x; ,, € X; and their ground-

truth labels y; ,, € ). Let ); denote the label space of the ¢t
task and Y = Uthl Y. The total number of classes seen in
D (i.e., the number of unique elements in ) is denoted with
C. We represent the d;-dimensional encoded features from
the [ layer of model ¢ from some test image & € Dieqt
with unknown label during inference as ¢;(xz) € R%. We
consider rehearsal-free CL, where historical data can not be
fetched for replay. Experiments in Sec. 5 are conducted un-
der Class-Incremental Learning (CIL) and Online Continual
Learning (OCL) settings which prohibit the access of the
model to task identifiers during testing (notably, our method
does not need any task-specific information during training,
either). OCL is a more tightened definition of CIL towards
each datum in the stream of tasks being observed only once.

3.2. Class-prototype methods for CL with pre-
trained models

To leverage the powerful representations from large-scale
pre-training while overcoming the limitations of full body
adaptation and linear probing, class-prototype methods con-
struct representatives for each class from the last layer fea-
tures of a pre-trained model. The most straightforward class-
prototype method is the Nearest Mean Classifier (NMC),
which aggregates per-class training sample features via aver-
aging (denoted as ¢, for each class y) and, during inference,
selects for each test sample’s feature vector the class with
the smallest Euclidean distance [21] or highest cosine simi-
larity [72] with its class-prototype. Considering the cosine
similarity measure and some € Diqt, the predicted class
label is obtained by:

" ¢r(x)" €,
§ = argmax s,, §,:= —, (D
vetincy T len@) - eyl
where ||-|| denotes the L? norm. However, it was found

that the assumption of an isotropic covariance of features
(i.e., features are mutually uncorrelated) that is made under
Eq. (1) does not hold for pre-trained models. To account for
correlations between features as a means to better “calibrate”
similarity measures, class-prototype methods that leverage
second-order statistics were proposed [40, 44]. One such
method is based on the closed-form ordinary least square
solution [41] to ridge regression [ 18], which is very effective
in decorrelating class prototypes in CL [40]. It takes Gram
matrix G and class-prototypes (or, regressands) ¢, that are
aggregated via summation (instead of averaging to obtain
cy) to yield:

§ = argmax s,, s,:=a¢r(x) (G+A)"'e, (2)
ye{l,...,C}

for a regression parameter A > 0, dy-dimensional identity
matrix I, and G expressed as summation over outer products
as

T N

G= "3 or@n) ®or(@.n) 3

t=1n=1

Although Eq. (1) and Eq. (2) are defined with respect to the
maximum number of classes C' after observing all T tasks,
they can be applied after seeing any task t < 7" or any sample
n < N;. When denoting the extracted features of some
input datum x, ,, € D, as f;,, = ¢ (x;,,) and considering
F € RV*4z a5 concatenated row-vector features f; ,, of all
N training samples, Eq. (3) will be reduced to G = FTF,
which corresponds to the original definition of a Gram matrix
as used in the closed-form ridge estimator [18].



4. LayUP: Intra-Layer Universal Prototypes
4.1. Motivation

We argue that a combination of (i) enriching the last layer
representations with hierarchical intra-layer features and (ii)
decorrelating intra-layer features, which represent image
properties such as content and style, via Gram matrix trans-
formation increases robustness to domain shifts and thus
improves generalizability to downstream continual tasks. To
this end, we propose to integrate embeddings from multiple
layers via concatenation into a ridge regression estimator as
defined in Eq. (2). Let

O_p.(x) = (Pp—kt1(x),...,00-1(x),pr(x)) (4)

denote the concatenated input features of some input sample
T € Diegt, extracted from the last k layers of the pre-trained
model ¢(-). Such features can be, e.g., class embeddings
([CLS])) of a transformer [59] encoder or flattened feature
maps of a ResNet [14] encoder. This yields a modified
estimator

sy =@’ (G+AD 7 ¢, )

with (df,— g1+ - -+d—1+dy)-dimensional identity matrix
I and

T N

G= Z Z D_p. (@) @ P_p.(24,n) (6)

t=1n=1

We first motivate our approach by showing that intra-
layer representations capture expressive class statistics for
prototype-based classification. For the split CIFAR-100
(C' = 100) and ImageNet-R (C' = 200) datasets, we con-
struct one prototype-based classifier using Eq. (2) per layer
I € {1,..., L} and count the total number of classes that
layer [ predicts better than any other layer I’ # I. Results are
provided in Fig. 2a. We observe that especially the last four
intermediate layers (8—11) account for a top performance
of between 25% and 54% of all classes, indicating that the
representations obtained by intermediate layers can gener-
ally add meaningful knowledge to better separate classes at
different hierarchical levels.

There are two intuitive ways to integrate intra-layer repre-
sentations into the class-prototype classifier: Averaging over
k separate classifiers per Eq. (2) or concatenating representa-
tions from the last k layers to obtain shared class prototypes
per Eq. (5). Fig. 2b shows average accuracies for two split
datasets and different values of k. For each &, using shared
class-specific information as per Eq. (5) is superior to aver-
aging over separate classifiers, showing that the correlations
across layers, which are captured in the shared Gram matrix
(cf. Eq. (6)), add meaningful information to enhance class
separability and thus improve performance. Although this

leads us to choose higher memory demands compared with a
last layer classifier and averaging over layer-wise classifiers,
we will show in Sec. 4.3 that our method is still considerably
lighter in memory and computation than other competitive
class-prototype methods for CL.

Interestingly, the performance of the last layer classifier
is roughly the same compared with averaging over sepa-
rate classifiers for all choices of k. This observation refutes
the argument that class embeddings from multiple consecu-
tive layers that are individually strong at predicting specific
classes might, when combined, introduce noise that impairs
performance, which is clearly not the case in Fig. 2b.

4.2. Combination with parameter-efficient model
adaptation

A benefit of class-prototype methods for CL is that they can
be orthogonally combined with adaptation techniques to re-
fine the pre-trained representations. As accumulated class
prototypes are subject to discrepancy upon distributional
shifts during supervised fine-tuning, any adaptation strate-
gies to the latent representations should be carefully tailored
to the class-prototype method used. Previous works [44, 72]
have found adaptation to downstream continual tasks during
First Session Adaptation (FSA) on D; as sufficient to bridge
the domain gap while maintaining full compatibility with
CL.

To maintain the powerful generic features of the pre-
trained backbone, we choose to apply FSA to additional
parameter-efficient transfer learning (PETL) parameters
while keeping the backbone frozen throughout. To update
PETL parameters during FSA, we train a linear classification
head with N; outputs via Adam optimizer and cross-entropy
loss and discard the classification head afterward. During the
CL phase, we keep all model parameters frozen and update
G and ¢, only.

We follow prior works [40, 72] and experiment with Vi-
sual Prompt Tuning (VPT) [22], Scaling and Shifting of
Features (SSF) [34], and AdaptFormer [5] as PETL methods
and refer to the cited papers for details. The pseudocode
of the LayUP algorithm for the CIL setting is depicted in
Alg. 1. For the OCL setting, the FSA stage is omitted and
a fixed ) is used, as a dynamic A search requires multiple
passes over the input data.

4.3. Memory and runtime complexity comparisons

We compare the memory and runtime requirements of
LayUP with the three competitive CL methods ADAM [72],
SLCA [69], and RanPAC [40] for a typical class count of
C = 200. We neglect the memory cost of the ViT backbone,
the fully connected classification layer, and the class proto-
types, as they are similar to all baselines. LayUP stores ~1M
PETL parameters (AdaptFormer [5]) and an additional intra-
layer Gram matrix in memory. The size of this layer depends
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Figure 2. (a) Comparison of classification performance of layers (1, ..., L) for two different pre-training paradigms of a ViT-B/16 [12]

backbone and split ImageNet-R and CIFAR-100 datasets. Each bar indicates the absolute count of classes for which a classifier constructed
using Eq. (2) for the respective layer yields highest classification accuracy compared to all other layers.

(b) Average accuracy (%) over CL training on split ImageNet-R and CIFAR-100 datasets following phase B of Alg. 1: Comparison of
LayUP implementations for different values of k using Eq. (5) versus averaging over separate similarity scores for each layer using Eq. (2).

Algorithm 1 LayUP Training

Require: pre-trained network ¢(-)
Require: PETL parameters
Require: data D = {Dq,...
Require: £
# Phase A: First Session Adaptation with PETL
for every sample (x,y) € D; do
Collect ¢r,(x)
_ Update PETL parameters via Adam [26]
# Phase B: Continual Learning with LayUP
fortaskt=1,...,7T do
for every sample (x,y;) € D; do
Collect ®_y.(x;) (Eq. (4))
G+ G+ (ﬁ_k:(.’llt) ® q)_k:(a:t)
Cy, < Cy, t+ q)*kl(wt)
# Cf. Appendix A.1
Optimize \ to compute (G + A\I)~!

7DT}

on the choice of k and has (dr,_j41+---+dr_1+dg)? en-
tries (note that for ViT-B/16 [12] model, every layer outputs
tokens of the same dimensionality, such that d; = 768 for
le{1,...,L}). For k = 6, which we use in our final exper-
iments, the matrix stores ~21M values. RanPAC updates a
Gram matrix of size 100M and requires an additional ~11M
parameters for the random projection layer and PETL param-
eters. SLCA stores C' additional covariance matrices of size
d? with a total of ~118M entries. Finally, ADAM stores a
second copy of the feature extractor, necessitating 84M addi-
tional parameters. Assuming a comparable memory cost for
model parameters and matrix entries, our method reduces

additional memory requirements by 81%, 82%, and 75%
compared with RanPAC, SLCA, and ADAM, respectively.
Considering runtime complexity during training, ADAM
performs fine-tuning of a full ViT-B/16 backbone during first-
task adaptation. SLCA requires updates to a full ViT-B/16
backbone during slow learning and additionally performs
Cholesky decomposition [9] on the class-wise covariance
matrices for pseudo-rehearsal, which requires C - d3 ~ 10!
operations. RanPAC and LayUP only make updates to PETL
parameters during training and perform matrix inversion dur-
ing inference, albeit with differently constructed and sized
Gram matrices. For k¥ = 6, the matrix inversion needs
(dp_py1+---+dp_1+dg)® ~ 10! operations for LayUP
and 100003 = 102 for RanPAC, thus LayUP reduces Ran-
PAC’s runtime complexity during inference by up to 90%.

5. Experiments

In what follows, we conduct a series of experiments to in-
vestigate the performance of our approach under different
CL settings. First, we provide an overview of the datasets
and implementation details in Sec. 5.1. Second, we perform
empirical comparisons of our method with strong recent
baselines under the CIL and the more challenging OCL set-
tings in Sec. 5.2 and Sec. 5.3, respectively. Third, we conduct
ablation studies in Sec. 5.4. We conclude our empirical anal-
ysis by investigating the contribution of different choices of
k last layers to the classifier performance in Sec. 5.5.

5.1. Datasets and implementation details

Following prior works [40, 64, 65, 69, 72], we experi-
ment with two ViT-B/16 [12] models, the former with



Method CIFAR IN-R IN-A CUB OB VTAB Cars

Joint full FT 93.6 86.6 71.0 91.1 80.3 95.5 83.7
Joint linear probe 87.9 71.2 56.4 89.1 78.8 90.4 66.4

L2P [65] 84.6 725 42.5 65.2 64.7 T7.1 38.2
DualPrompt [64] 81.3 71.0 45.4 68.5 65.5 81.2 40.1
CODA-P [56] 86.3 755 - - - - -

ADAM [72] 87.6 72.3 52.6 87.1 74.3 84.3 41.4
SLCA [69] 91.5 77.0 59.8"84.7 73.1* 89.2" 67.7
RanPAC [40] 92.2 78.1 61.8 90.379.9 92.6 77.7
LayUP 91.5 82.1 63.1 88.1 77.6 94.6 82.0
Ablations

w/o FSA 88.7 73.4 51.6 8.9 77.0 92.9 77.5
k=1 90.4 79.0 61.5 86.0 74.3 93.1 75.5
k=1,w/loFSA 86.5 69.2 55.6 85.4 72.8 92.2 69.2
LayNMC 88.1 75.2 56.2 85.5 71.8 87.5 57.6

Table 1. Average accuracy (%) after training: Comparison of
prompting, backbone fine-tuning, and class-prototype methods for
the CIL setting. Results are taken from [40] except results for
SLCA and Coda-P, which are taken from the respective papers.
Results for SLCA marked with (*) were reproduced using the
officially released code. The remaining results for CODA-P could
not be reproduced due to excessive GPU memory requirements for
training (>24GB).

self-supervised pre-training on ImageNet-21K (ViT-B/16-
IN21K) [52], the latter with additional supervised fine-
tuning on ImageNet-1K (ViT-B/16-IN1K) [30]. During
adaptation in the CIL setting, PETL parameters are trained
using a batch size of 48 for 20 epochs and Adam [26]
with momentum for optimization. We employ learning rate
scheduling via cosine annealing, starting with 0.03. We train
five prompt tokens for VPT and use a bottleneck dimension
of 16 for AdaptFormer. All baselines use the same aforemen-
tioned ViT-B/16 backbones and are trained on seven repre-
sentative split datasets CIFAR-100 (CIFAR) [29], ImageNet-
R (IN-R) [16], ImageNet-A (IN-A) [17], CUB-200 (CUB)
[60], OmniBenchmark (OB) [70], Visual Task Adaptation
Benchmark (VTAB) [68], and Stanford Cars-196 (Cars)
[28]. None of the methods compared in Tab. 1 and Tab. 2
require a data buffer for rehearsal. We use T' = 10 for all
datasets, except T' = 5 for VTAB, which is a benchmark
composed of five different datasets to be learned consecu-
tively. (We report additional results for 7' = 5 and 7" = 20
in Appendix C.4.) VTAB can be considered as a hybrid
class- and domain-incremental learning benchmark accord-
ing to the definition in [58], as label spaces of each task
are partially overlapping. Dataset statistics can be found
in Appendix B. For comparison, we use the average accu-
racy [36] metric A; = % Zle Ry i, with R, ; denoting the
classification accuracy on the i task after training on the

Method CIFAR IN-R IN-A CUB OB VTAB Cars

Sequential FT 128 53 69 51 33 7.3 109

NMC [72] 83.4 61.2 49.3 86.7 73.2 88.4 379
RanPACy—o [40] 88.7 706 14 09 769 93 06
RanPAC,—; [40] 88.7 70.6 0.9 0.7 76.9 9.0 0.6

LayUP,—o 88.7 73.4 40.9 86.4 77.0 10.4 66.3
LayUPy— 88.7 73.4 51.6 86.9 77.0 92.9 77.5
Ablations

k=1,A2=0 86.5
k=1,x=1 86.5
LayNMC 80.8

69.6 55.6 85.4 72.8 92.2 69.2
69.6 55.6 85.4 76.3 92.3 69.2
59.7 50.4 82.9 69.3 85.9 40.0

Table 2. Average accuracy (%) after training: Comparison of class-
prototype methods for the OCL setting. Results for RanPAC and
NMC are reproduced according to the officially released code in
[40].

" task. All experiments are conducted with k¥ = 6 unless
stated otherwise. Final accuracy Ar after learning the last
task is reported for random seed 1993 and the best combina-
tion of PETL method and ViT backbone (similar to [40, 72])
in the main paper. We refer to Appendix C.1 for analysis
of each A, forgetting measures, and variability across ran-
dom initialization, and to Appendix C.3 for average accuracy
over training for different PETL methods and pre-trained
backbones in the CIL setting.

5.2. Performance in the CIL setting

We first compare LayUP with several prompt learning, fine-
tuning, and class-prototype methods for CL. We additionally
report results for joint training of a randomly initialized
linear probe and joint full fine-tuning (FT) of the ViT-B/16
backbone. Final accuracy scores are shown in Tab. 1.
LayUP surpasses all baselines for four of the seven split
datasets. Interestingly, these four datasets (IN-R, IN-A,
VTAB, Cars) have two distinctive characteristics: First, they
have the highest domain gap (indicated by the cosine dis-
tance to the pre-trained minilmageNet domain for the offline
setting and 50 shots, cf. [44]) among all datasets. Second,
they have significantly less training data than CIFAR, OB,
and CUB (cf. Appendix B). The former confirms our initial
hypothesis that intra-layer representations are more domain-
invariant and consequently more robust to large distributional
shifts. The latter indicates that especially in the low-data
regime, in contrast to other methods that tend to overfit to
the target domain, LayUP constructs class prototypes and de-
cision boundaries that generalize well even if the amount of
training data is scarce compared with the data used for ViT
pre-training. It is further noteworthy that RanPAC, which is
the only baseline that LayUP does not consistently outper-
form, is considerably more expensive regarding both mem-



ory and computation (cf. Sec. 4.3).

5.3. Performance in the OCL setting

We are interested in assessing the performance of our method
in the challenging OCL setting, where only a single pass
over the continual data stream is allowed. All baselines are
class-prototype methods for continual learning on a frozen
embedding network (thus we omit FSA stages for RanPAC,
and our approach), except for sequential fine-tuning, where
we update the parameters of the pre-trained ViT via cross-
entropy loss and Adam [26] optimizer during a single epoch.
As the choice of ridge regression [18] parameter as used in
RanPAC and our method requires prior knowledge about
the downstream continual data—which we do not have in a
realistic streaming learning setting—we compare with two
simplified versions of the Gram matrix inversion (G+\I)~!
(cf. Eq. (5) and Eq. (2)): In the first variant, we omit A\-based
regularization completely, such that A = 0 and the Gram
matrix is inverted without regularization (i.e., G~1). In the
second variant, e.g., as used in [44], we compare with A = 1,
such that we linearly transform identity-regularized class
prototypes (i.e., (G + I)™1).

As indicated in Tab. 2, unrestricted fine-tuning of the back-
bone is detrimental to the generalizability of the pre-trained
embeddings and leads to forgetting and low performance.
Consequently, the sequential FT baseline is outperformed by
class-prototype methods in the OCL setting for most bench-
marks. LayUP is largely robust to missing regularization
(A = 0), with the exception of a drop in performance on
VTAB. Moreover, it maintains a high performance across all
benchmarks for regularization with A = 1. On the contrary,
RanPAC shows high variability in performance across bench-
marks under the absence of regularization and for regulariza-
tion with A = 1, partly resulting in near-zero accuracy. Such
results can be explained by the fact that the high-dimensional
Gram matrix obtained after random projections in RanPAC
overfits the training data and thus struggles to generalize, es-
pecially under a complete lack of regularization. The higher
overall robustness to different OCL settings makes LayUP a
favorable approach in continual learning scenarios where the
length of the input stream and the nature of the data might
not be known in advance.

5.4. Ablation Study

An extensive ablation study is provided in the bottom parts
of Tab. 1 and Tab. 2. We particularly analyze changes in per-
formance among three different dimensions: (i) Using intra-
layer representations, (ii) leveraging second-order feature
statistics via Gram matrix inversion, and (iii) applying first
session adaptation to bridge the domain gap to downstream
CL tasks. To address (i), we experiment with LayUPy_; as
a baseline, which takes the last layer representations for clas-
sification only. We further construct LayNMC as a baseline

k CIFAR IN-R IN-A CUB OB VTAB Cars

U800 794 616 (858 716 [031 755
2 895 805 63.1 86.3 728 938 78.2
3901 80.8 62N 87.5 75.1 941 80.7
4 902 8L5 626 874 75.6 945 813
5 907 814632 875 771 935 8LT
6 [MO10 815 62.7 87.2 77.0 (934 82.0
70910 815 624 875 77.1 935 8247
8 81.3 626 87.2 [TL.T 93.6 817
9 820 62.6 875 82.4
10 907 8L5 62.8 81.8
11 90.8 81.6
12 90.7 87.1 775 81.3

Table 3. Average accuracy (%) after training: LayUP performance
for different values of k for a pre-trained Vit-B/16-IN1K and FSA

with AdaptFormer. The ., 2" and 3™ highest scores and the
., 2" and 3™ lowest scores are highlighted.

to analyze (ii), which extends the cosine similarity classifier
in Eq. (1) towards intra-layer presentations. Finally, for (iii),
the FSA stage (phase A in Alg. 1) is omitted.

LayUP consistently benefits from intra-layer represen-
tations for class-prototype construction, with the sole ex-
ception of training on IN-A in the OCL setting (Tab. 2).
It further benefits from leveraging second-order statistics
for the decorrelation of class prototypes and first session
training to bridge the domain gap to downstream CL tasks.
Finally, it is the combination of (i), (ii), and (iii) that yields
the highest performance and thus makes LayUP a strong and
competitive class-prototype method for CL with pre-trained
models.

5.5. Analysis of intra-layer representation depth

To provide more insights into the impact of the intra-layer
representation depth on LayUP performance, we plot in
Tab. 3 the average accuracy after training for different
choices of k using a Vit-B/16-IN1K backbone and Adapt-
Former [5] as PETL method.

We observe that LayUP configurations with k£ > 4 con-
sistently surpass the final layer classifier (i.e., k = 1), which
shows that class-prototype methods for CL can generally ben-
efit from intra-layer representations. Although the optimal
choice of k differs for each dataset, the results are indica-
tive of a choice of larger k. As a larger value of k directly
corresponds to increased memory and runtime complexity
during inference, its choice should be carefully weighed up,
taking into account demands and restrictions at different
dimensions.



CIFAR IN-R IN-A CUB OB VTAB Cars
94% T9% 81% 89% 80% 94% 83%

Table 4. Percentage of classes per dataset that are better or equally
classified with LayUP for £ = 6 compared with the last layer
Gram-inverted classifier (Eq. (2)).

5.6. How universal are intra-layer prototypes?

We are interested in determining how universal the intra-
layer prototypes are for classification, i.e., how broad the
range of classes is that benefit from LayUP. For this purpose,
we run phase B of Alg. 1 and provide the fraction of classes
for each dataset that has an increased or equal final accuracy
score with LayUP for & = 6 compared with LayUP for k = 1
(last layer Gram-inverted classifier, cf. Eq. (2)). Tab. 4 shows
that between 80% and 94% of the total classes in each dataset
are better or equally classified upon introducing intermediate
representations to class-prototype construction, indicating
the universal applicability of intra-layer prototypes to a broad
range of tasks, classes, or domains.

6. Conclusion

In this paper, we propose LayUP, a simple yet effective
rehearsal-free class-prototype method for continual learn-
ing with pre-trained models. LayUP leverages intra-layer
representations of a pre-trained feature extractor to increase
robustness and generalizability, especially under large do-
main gaps and in low-data regimes. It further computes
second-order feature statistics to decorrelate class prototypes,
combined with parameter-efficient first-task adaptation. Ex-
tensive experiments across a range of image classification
datasets and continual learning settings demonstrate that
LayUP performs strongly against competitive baselines at a
small fraction of their memory and compute cost. In future
work, we will further investigate integrating class-prototype
methods with continual adaptation of pre-trained models
beyond first-task adaptation, which is particularly beneficial
for learning under multiple distributional shifts.

References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In Proceedings of
the European Conference on Computer Vision (ECCV), 2018.
2

[2] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide

Abati, and Simone Calderara. Dark Experience for Gen-

eral Continual Learning: a Strong, Simple Baseline. In

Advances in Neural Information Processing Systems, pages

15920-15930. Curran Associates, Inc., 2020. 2

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajan-

than, and Philip H. S. Torr. Riemannian Walk for Incremental

13

—

[4

—

[5

—

[6

—_

[7

—

[8

—_—

[9

—

(10]

(11]

[12]

(13]

(14]

[15]

[16]

Learning: Understanding Forgetting and Intransigence. In
Proceedings of the European Conference on Computer Vision
(ECCV),2018. 1

Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient Lifelong Learning with
A-GEM. In International Conference on Learning Represen-
tations, 2019. 2

Shoufa Chen, Chongjian GE, Zhan Tong, Jiangliu Wang, Yib-
ing Song, Jue Wang, and Ping Luo. AdaptFormer: Adapting
Vision Transformers for Scalable Visual Recognition. In
Advances in Neural Information Processing Systems, pages
16664—-16678. Curran Associates, Inc., 2022. 1,4,7,5
Zhiyuan Chen and Bing Liu. Lifelong Machine Learning,
Second Edition. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3), 2018. 1

Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision Transformer Adapter for
Dense Predictions. In The Eleventh International Conference
on Learning Representations, 2023. 1

Gong Cheng, Junwei Han, and Xiaoqgiang Lu. Remote Sens-
ing Image Scene Classification: Benchmark and State of the
Art. Proceedings of the IEEE, 105(10):1865-1883, 2017. 1
André-Louis Cholesky. Note sur une méthode de résolution
des équations normales provenant de 1’application de la méth-
ode des moindres carrés a un systeéme d’équations linéaires
en nombre inférieur a celui des inconnues. Application de
la méthode a la résolution d’un systeme défini d’équations
linéaires. Bulletin Géodésique, 2(1):67-77, 1924. 5

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing Textures in the
Wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014. 1

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng,
Ziyan Wu, and Rama Chellappa. Learning Without Mem-
orizing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 2
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is
Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representa-
tions, 2021. 2,5

Leon Gatys, Alexander Ecker, and Matthias Bethge. A Neural
Algorithm of Artistic Style. Journal of Vision, 16(12):326,
2016. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 3, 4

Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. EuroSAT: A Novel Dataset and Deep Learn-
ing Benchmark for Land Use and Land Cover Classification.
1EEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 12(7):2217-2226, 2019. 1

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,



(7]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt,
and Justin Gilmer. The Many Faces of Robustness: A Critical
Analysis of Out-of-Distribution Generalization. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 8340-8349, 2021. 6, 1

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt,
and Dawn Song. Natural Adversarial Examples. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 15262-15271, 2021. 6, 1
Arthur E. Hoerl and Robert W. Kennard. Ridge Regression:
Biased Estimation for Nonorthogonal Problems. Technomet-
rics, 12(1):55-67, 1970. 3,7

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-Efficient Transfer
Learning for NLP. In Proceedings of the 36th International
Conference on Machine Learning, pages 2790-2799. PMLR,
2019. 1

Edward J. Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-Rank Adaptation of Large Language Models. In
International Conference on Learning Representations, 2022.
1

Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed
Elhoseiny. A Simple Baseline that Questions the Use of
Pretrained-Models in Continual Learning. In NeurIPS 2022
Workshop on Distribution Shifts: Connecting Methods and
Applications, 2022. 2, 3

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Visual
Prompt Tuning. In Computer Vision — ECCV 2022, pages
709-727, Cham, 2022. Springer Nature Switzerland. 1, 4, 5
Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye,
Yizhou Yu, and Mingli Song. Neural Style Transfer: A Re-
view. IEEE Transactions on Visualization and Computer
Graphics, 26(11):3365-3385, 2020. 2

Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun
Song. Generating Instance-level Prompts for Rehearsal-free
Continual Learning. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
11847-11857,2023. 2

Zixuan Ke, Hu Xu, and Bing Liu. Adapting BERT for Contin-
ual Learning of a Sequence of Aspect Sentiment Classification
Tasks. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 47464755,
Online, 2021. Association for Computational Linguistics. 1
Diederik P Kingma and Jimmy Lei Ba. Adam: A Method
for Stochastic Optimization. In International Conference on
Learning Representations, 2015. 5, 6,7

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences,
114(13):3521-3526, 2017. 2

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D
Object Representations for Fine-Grained Categorization. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV) Workshops, 2013. 6, 1

Alex Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. Master’s thesis, University of Toronto, 2009. 6,
1

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In Advances in Neural Information Processing Sys-
tems. Curran Associates, Inc., 2012. 6

Brian Lester, Rami Al-Rfou, and Noah Constant. The Power
of Scale for Parameter-Efficient Prompt Tuning. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 3045-3059, Online and Punta
Cana, Dominican Republic, 2021. Association for Computa-
tional Linguistics. 1

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou.
Demystifying Neural Style Transfer. In Proceedings of the
26th International Joint Conference on Artificial Intelligence,
pages 2230-2236. AAAI Press, 2017. Place: Melbourne,
Australia. 2

Zhizhong Li and Derek Hoiem. Learning without Forgetting.
Transactions on Pattern Analysis and Machine Intelligence,
40(12), 2018. 2

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang.
Scaling & Shifting Your Features: A New Baseline for Ef-
ficient Model Tuning. In Advances in Neural Information
Processing Systems, pages 109-123. Curran Associates, Inc.,
2022. 1,4,5

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hi-
roaki Hayashi, and Graham Neubig. Pre-train, Prompt, and
Predict: A Systematic Survey of Prompting Methods in Nat-
ural Language Processing. ACM Computing Surveys, 55(9):
1-35,2023. 1

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient
Episodic Memory for Continual Learning. In Advances in
Neural Information Processing Systems. Curran Associates,
Inc., 2017. 6, 1

Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner.
Supervised Contrastive Replay: Revisiting the Nearest Class
Mean Classifier in Online Class-Incremental Continual Learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
pages 3589-3599, 2021. 2

Simone Marullo, Matteo Tiezzi, Marco Gori, Stefano
Melacci, and Tinne Tuytelaars. Continual Learning with
Pretrained Backbones by Tuning in the Input Space, 2023.
arXiv:2306.02947 [cs]. 1

Michael McCloskey and Neal J. Cohen. Catastrophic Inter-
ference in Connectionist Networks: The Sequential Learning
Problem. Psychology of Learning and Motivation - Advances
in Research and Theory, 24(C), 1989. 1

Mark D. McDonnell, Dong Gong, Amin Parveneh, Ehsan
Abbasnejad, and Anton van den Hengel. RanPAC: Random
Projections and Pre-trained Models for Continual Learning. In
Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2023. 1,2,3,4,5,6



[41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

Kevin P. Murphy. Machine learning: a probabilistic perspec-
tive. MIT Press, Cambridge, MA, 2012. 3

M.-E. Nilsback and A. Zisserman. A Visual Vocabulary
for Flower Classification. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition -
Volume 2 (CVPR’06), pages 1447-1454, New York, NY, USA,
2006. IEEE. 1

Oleksiy Ostapenko, Timothee Lesort, Pau Rodriguez, Md Ri-
fat Arefin, Arthur Douillard, Irina Rish, and Laurent Charlin.
Continual Learning with Foundation Models: An Empirical
Study of Latent Replay. In Proceedings of The 1st Conference
on Lifelong Learning Agents, pages 60-91. PMLR, 2022. 2
Aristeidis Panos, Yuriko Kobe, Daniel Olmeda Reino, Rahaf
Aljundi, and Richard E. Turner. First Session Adaptation: A
Strong Replay-Free Baseline for Class-Incremental Learning.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 18820-18830, 2023. 3, 4,
6,7,2

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher
Kanan, and Stefan Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 113:54-71,
2019. 1

O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar.
Cats and dogs. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pages 3498-3505, Providence, RI,
2012. IEEE. 1

Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania.
GDumb: A Simple Approach that Questions Our Progress in
Continual Learning. In Computer Vision — ECCV 2020, pages
524-540, Cham, 2020. Springer International Publishing. 2
Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra Raghu.
Anatomy of Catastrophic Forgetting: Hidden Representations
and Task Semantics. In International Conference on Learning
Representations, 2021. 2

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan
Dyer. Effect of scale on catastrophic forgetting in neural
networks. In International Conference on Learning Repre-
sentations, 2022. 2

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters. In
Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2017. 1

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,
and Christoph H. Lampert. iCaRL: Incremental Classifier and
Representation Learning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2017. 2,1

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-
Manor. ImageNet-21K Pretraining for the Masses. In Thirty-
fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021. 6

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive Neural Networks.
arXiv:1606.04671 [cs], 2016. arXiv: 1606.04671. 2

Dawid Rymarczyk, Joost van de Weijer, Bartosz Zieliniski,
and Bartlomiej Twardowski. ICICLE: Interpretable Class

10

[55]

[56]

(571

(58]

[59]

[60]

[61]

(62]

[63]

[64]

[65]

[66]

Incremental Continual Learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 1887-1898, 2023. 2

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karat-
zoglou. Overcoming Catastrophic Forgetting with Hard At-
tention to the Task. In Proceedings of the 35th International
Conference on Machine Learning, pages 4548-4557. PMLR,
2018. 2

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola
Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar
Panda, Rogerio Feris, and Zsolt Kira. CODA-Prompt: COn-
tinual Decomposed Attention-Based Prompting for Rehearsal-
Free Continual Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11909-11919, 2023. 2, 6

James Seale Smith, Junjiao Tian, Shaunak Halbe, Yen-Chang
Hsu, and Zsolt Kira. A Closer Look at Rehearsal-Free Contin-
ual Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops,
pages 2409-2419, 2023. 3

Gido M. van de Ven and Andreas S. Tolias. Three scenarios
for continual learning, 2019. arXiv:1904.07734 [cs, stat]. 6
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In Advances in Neu-
ral Information Processing Systems. Curran Associates, Inc.,
2017. 4

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical report, California Institute of Technology,
2011. Publisher: California Institute of Technology. 6, 1
Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu.
A Comprehensive Survey of Continual Learning: Theory,
Method and Application, 2023. arXiv:2302.00487 [cs]. 1
Quanziang Wang, Renzhen Wang, Yichen Wu, Xixi Jia, and
Deyu Meng. CBA: Improving Online Continual Learning via
Continual Bias Adaptor. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
19082-19092, 2023. 2

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-Prompts
Learning with Pre-trained Transformers: An Occam’s Razor
for Domain Incremental Learning. In Advances in Neural
Information Processing Systems, pages 5682-5695. Curran
Associates, Inc., 2022. 2

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun,
Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. DualPrompt: Comple-
mentary Prompting for Rehearsal-Free Continual Learning.
In Computer Vision — ECCV 2022, pages 631-648, Cham,
2022. Springer Nature Switzerland. 2, 5, 6, 1

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqgi Ren, Guolong Su, Vincent Perot, Jennifer
Dy, and Tomas Pfister. Learning To Prompt for Continual
Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
139-149, 2022. 2,5, 6

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
Hwang. Lifelong Learning with Dynamically Expandable



[67]

[68]

[69]

[70]

[71]

[72]

Networks. In International Conference on Learning Repre-
sentations, 2018. 2

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual
Learning Through Synaptic Intelligence. In Proceedings
of the 34th International Conference on Machine Learning,
pages 3987-3995. PMLR, 2017. 2

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre
Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga,
Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy,
Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin
Michalski, Olivier Bousquet, Sylvain Gelly, and Neil Houlsby.
A Large-scale Study of Representation Learning with the
Visual Task Adaptation Benchmark, 2020. arXiv:1910.04867
[cs, stat]. 6, 1

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen,
and Yunchao Wei. SLCA: Slow Learner with Classifier Align-
ment for Continual Learning on a Pre-trained Model. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 19148-19158, 2023. 2, 3, 4,
5,6,1

Yuanhan Zhang, Zhenfei Yin, Jing Shao, and Ziwei Liu.
Benchmarking Omni-Vision Representation Through the
Lens of Visual Realms. In Computer Vision — ECCV 2022,
pages 594-611, Cham, 2022. Springer Nature Switzerland. 6,
1

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan
Zhan. A Model or 603 Exemplars: Towards Memory-Efficient
Class-Incremental Learning. In The Eleventh International
Conference on Learning Representations, 2023. 2

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.
Revisiting Class-Incremental Learning with Pre-Trained Mod-
els: Generalizability and Adaptivity are All You Need, 2023.
arXiv:2303.07338 [cs]. 2, 3,4, 5,6, 1

11



Read Between the Layers: Leveraging Intra-Layer Representations for
Rehearsal-Free Continual Learning with Pre-Trained Models

Supplementary Material

Appendices

A. Training and Implementation Details
A.1. Optimization of ridge regression parameter \

We perform the optimization over the regression parameter A
(cf. Alg. 1) as follows: For every task ¢, we perform a
random 80:20 split of the training data stratified by ground
truth labels. We then update G and ¢, V y € ), (which
were already updated during task 1, ...,¢ — 1 training) for
the first 80% of training data of task ¢ and then choose the
value of A € {1073,1072,107,10°,10%,10%, 103} that
yields highest per-sample accuracy on the remaining 20%
of training data. Finally, we update G and ¢, Vy € ),
for those 20% of training data of task ¢ and repeat the same
process with ¢ 4 1.

A.2. Data augmentation

During the training process, data augmentation was applied
to all datasets, incorporating random cropping of the images
to varying sizes, ranging from 70% to 100% of their original
dimensions, while maintaining an aspect ratio between 3:4
and 4:3. After the resizing, images were randomly flipped
horizontally and brightness, contrast, saturation, and hue
were varied randomly in a 10% range. Finally, the images
were center-cropped to 224x224 pixels for all datasets, ex-
cept for CIFAR-100, where images were directly resized
from the original 32x32 to 224x224 pixels. During infer-
ence, images of all datasets were resized to 224x224 pixels
without further modification.

A.3. Compute resources

All experiments in this work were conducted on an Ubuntu
system version 20.04.6 with a single NVIDIA GeForce RTX
3080 Ti (12GB memory) GPU.

B. Datasets

We provide a summary of the datasets compared in the
main experiments in Tab. 5. CIFAR-100 (CIFAR) con-
tains 100 classes of natural images of different domains and
topics and can be considered relatively in-distribution with
the pre-train domain of ImageNet-1K and ImageNet-21K.
ImageNet-R (IN-R) contains image categories overlapping
with ImageNet-1K, but is a selection of out-of-distribution
samples for the pre-train dataset that are either hard examples

or newly collected data of different styles. ImageNet-A (IN-
A) likewise has overlapped categories with ImageNet-1K,
but comprises real-world adversarially filtered images that
fool existing ImageNet pre-trained classifiers. The Caltech-
UCSD Birds-200-2011 (CUB) dataset is a specialized col-
lection of labeled images of 200 bird species, encompassing
a diverse range of poses and backgrounds. OmniBenchmark
(OB) serves as a compact benchmark designed to assess
the generalization capabilities of pre-trained models across
semantic super-concepts or realms, encompassing images of
300 categories that represent distinct concepts. The Visual
Task Adaptation Benchmark (VTAB) as used in our work is
a composition of the five datasets Resisc45 [8], DTD [10],
Pets [46], EuroSAT [15], and Flowers [42], that are learned
consecutively to emulate the emergence of different domains.
The Stanford Cars-196 (Cars) dataset comprises images of
cars belonging to one of 196 unique combinations of model
and make.

Original CL T Niyain Ny C

CIFAR  [29]  [51] 10 50000 10000 100
IN-R [16]  [64] 10 24000 6000 200
IN-A [171  [72]1 10 6056 1419 200
CUB [60]  [72] 10 9465 2323 200

OB [70] [72] 10 89668 5983 300
VTAB [68] [72] 5 1796 8619 50
Cars [28] [69] 10 8144 8041 196

Table 5. Overview of datasets: Original publication, formulation
for the CL setting, number of tasks (7°) in the main experiments in
Sec. 5, number of training samples (/Vinin), number of validation
samples (Nya), and number of classes (C').

C. Additional Results

We use the following two metrics in our work for experimen-
tal evaluation: Average accuracy A; (following the definition
of [36]) and average forgetting F} (following the definition
of [3]). Average accuracy is defined as

1 t
Ay = ;;Rt,i, 7

where R, ; denotes the classification accuracy on task 7 after
training on task ¢. Using the same notion of R; ;, average



forgetting is defined as

t—1

z argmax Ry ; — Ry; ()
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As the number of different classes to choose from in a CIL
and an OCL setting grows as new tasks are being introduced,
A, tends to decrease and F} tends to rise over the course of
training. While we only report on average accuracy metric
in the main paper, the experimental results in Appendix C.1,
Appendix C.2, and Appendix C.3 are reported both with
respect to average accuracy and average forgetting.

C.1. Variability across seeds and performance over
time

LayUP accuracy and forgetting for all seven datasets over
the course of class-incremental training (Phase B in Alg. 1)
is depicted in Fig. 3. There are almost no differences be-
tween final results after the last task across seeds, which
indicates LayUP being insensitive to different task orders
and initialization of PETL parameters. The highest variabil-
ity can be observed for the VTAB benchmark, where each
task represents a completely new domain. Therefore, the
task order—and consequently the domain that the represen-
tations are adjusted to during first session adaptation—has
a greater influence on the generalization capabilities of the
model during CL. As expected, the average forgetting in-
creases as more tasks are being introduced, as the model has
more classes to tell apart during inference.

C.2. Experiments with different layer choice %

To analyze the learning behavior over time in the CIL set-
ting among different choices of maximum representation
depth k for prototype construction, we plot average accu-
racy and forgetting for £ = 1 (last layer only), k£ = 6, and
k = 12 (all layers) in Fig. 4. Clearly, the classification per-
formance based on last layer representations only is inferior
to intra-layer representations as used in LayUP, as it leads
to both a lower accuracy and a higher forgetting rate. At the
same time, there is no difference in performance between
k = 6 and k = 12 evident, indicating that early layers of the
model do not add meaningful knowledge to the classification.
Given that the choice of k is subject to a trade-off between
performance gain and memory and computational cost, the
results confirm & = 6 as used in the main experiments in
Sec. 5 to be a reasonable choice.

C.3. Experiments with different backbones and
PETL methods

Following prior works [40, 72], we experiment with differ-
ent PETL methods and ViT-B/16 models for LayUP, as the
additional benefit from additional fine-tuning of the repre-
sentations differs depending on the characteristics of the
downstream domain [44]. Results are shown in Fig. 5.

In all but one dataset, we found adapter methods (Adapt-
Former) to be superior to be superior to prompt learning
(VPT) or feature modulation (SSF). However, there is no
combination of PETL method and pre-trained model that
generally outperforms all other variants. Such results con-
firm the findings of [44] and underline the importance of
considering different pre-training schemes and strategies for
additional fine-tuning.

C.4. Experiments with different task counts T’

To show whether a benefit of intra-layer representations can
be observed for different task counts, we compare average
accuracy scores after training for six different datasets, three
different task counts (T € {5,10,20}) and three different
choices of k last layers for class-prototype generation. k = 1
corresponds to classification only based on the last layer (i.e.,
final) representations of the backbone, as it is done in prior
work. k£ = 6 means to concatenate layer-wise features from
the latter half of the network layers. Finally, £k = 12 uses
concatenated features of all layers of the pre-trained ViT for
classification. Results are presented in Tab. 6.

Performance scores across task counts and datasets are
consistently higher for intra-layer representations (kK = 6
and k = 12) compared with last-layer-only representations
(k = 1). However, differences in performance between
k = 6 and k = 12 are not apparent (with the exception of a
T = 20 split on the CUB dataset, which can be attributed
to some sensitivity to initialization of adapter parameters).
Considering that a higher & corresponds to an increased
computational and memory demand as G and ¢, increase
in dimension, this confirms & = 6 as reasonable choice for
maximum representation depth.

kT CIFAR IN-R IN-A CUB OB Cars

5 89.9 806 625 83 732 756
1 10 89.1 79.1 614 855 71.6 756
20 86.3 778 595 835 722 755

5 91.3 830 645 876 780 822
6 10 90.8 819 625 877 766 818
20 90.3 804 616 695 778 818

5 91.6 827 627 871 776 818
12 10 91.1 82.1 62.7 875 738 81.7
20 90.5 803 568 8.0 783 819

Table 6. Average accuracy (%) after training: Comparison of differ-
ent task counts 7" for k = 1 (prototype construction from last layer
only), k = 6 (as used in Sec. 5), and k = 12 (prototype construc-
tion from all network layers). Scores listed are for AdaptFormer
and ViT-B/16-IN1K. VTAB has a fixed number of datasets that
are treated as tasks (thus 7' = 5) and is therefore omitted in the
comparison.
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Figure 3. Average accuracy (left) and average forgetting (right) after training on each task ¢ in the CIL setting: Variability across random
seeds for each ViT-B/16 models after first session training with AdaptFormer as PETL method. Results are reported for seeds 1993-1997 to
ensure reproducibility with the resulting standard error indicated by shaded area.



Figure 4. Average accuracy (left) and average forgetting (right) after training on each task ¢ in the CIL setting:
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Figure 5. Average accuracy (left) and average forgetting (right) after training on each task ¢ in the CIL setting: Comparison of different
PETL methods (AdaptFormer [5], SSF [34], and VPT [22]) and ViT-B/16 models.
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