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Abstract
As robots are expected to get more involved in people’s everyday lives, frameworks that enable intuitive user interfaces 
are in demand. Hand gesture recognition systems provide a natural way of communication and, thus, are an integral part 
of seamless human-robot interaction (HRI). Recent years have witnessed an immense evolution of computational models 
powered by deep learning. However, state-of-the-art models fall short of expanding across different gesture domains, such 
as emblems and co-speech. In this paper, we propose a novel hybrid hand gesture recognition system. Our Snapture archi-
tecture enables learning both static and dynamic gestures: by capturing a so-called snapshot of the gesture performance at 
its peak, we integrate the hand pose and the dynamic movement. Moreover, we present a method for analyzing the motion 
profile of a gesture to uncover its dynamic characteristics, which allows regulating a static channel based on the amount 
of motion. Our evaluation demonstrates the superiority of our approach on two gesture benchmarks compared to a state-
of-the-art CNNLSTM baseline. Our analysis on a gesture class basis unveils the potential of our Snapture architecture for 
performance improvements using RGB data. Thanks to its modular implementation, our framework allows the integration 
of other multimodal data, like facial expressions and head tracking, which are essential cues in HRI scenarios, into one 
architecture. Thus, our work contributes both to integrative gesture recognition research and machine learning applications 
for non-verbal communication with robots.
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Introduction

Gestures are a form of non-verbal communication promi-
nently used in day-to-day communication. Therefore, they 
can play a fundamental part of human-robot interaction 
(HRI). Gestures are categorized in the literature as static and 
dynamic [1]. Static gestures portray meanings through hand 
postures. They can substitute words or be used together with 
words in the form of signs or emblems. Such gestures can 
be recognized by precisely interpreting the emphasized hand 
shape and spelled-out finger arrangements [2]. In contrast, a 
dynamic gesture has a temporal aspect articulated through 

hand movement. Therefore, recognizing it requires employ-
ing different techniques, e.g., segmenting and tracking the 
moving body limb (we refer to a good overview of gesture 
recognition techniques by Anwar et al. [3]).

However, such categorization of gesture types might be 
oversimplified. More specifically, static information is essen-
tial for recognizing dynamic gestures with similar movement 
paths. For example, the gesture commands “stop” and “go 
forward” have an identical motion with the arm extend-
ing forward. Understanding these two commands requires 
observing their unique hand shape and finger arrangements 
(open palm vs. extended finger). Furthermore, a precise 
interpretation of the distinctive characteristics of each hand 
gesture is desired for a smooth HRI experience. This is also 
vital in robot applications with safety concerns, e.g., medi-
cal or industrial applications. Confusion between gestures in 
such environments might have severe safety consequences.

This precise interpretation is challenging for approaches 
that rely solely on RGB data. However, RGB-based methods 
are beneficial [4] because of their convenience and potential 
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compatibility with low-resource systems, such as robots [5]. 
Also, they facilitate the reproduction of results, especially 
as reproducibility issues related to deep learning are getting 
more attention from the scientific community [6]. Despite 
the recent development triggered by the deep learning trend 
using networks like 3DCNN, ResNet, and Inception V3, 
dynamic gesture recognition is still a challenging task.

Some of the factors that influence vision-based approaches 
are indistinctive and subtle movements [7]. Subtle movements 
refer to the slight movement of the hand and fingers at the peak 
with no clear arm movement. Indistinctive movements mean 
that multiple gestures follow a very similar path of motion. One 
limitation prominent in various approaches is the reliance on the 
motion path only (the interested reader can find a good overview 
in [8]). Consequently, some techniques lack the consideration of 
hand details, which leads to misclassifications between gestures 
with similar motion properties. Therefore, it is worth inspecting 
whether integrating hand details into the classification system 
would refine the performance of such models.

In this study, we propose a modular RGB-based approach 
called Snapture. Our architecture is an extension of the 
CNNLSTM [9] network, which is robust at learning motion 
patterns but limited at capturing hand details. By integrat-
ing hand information in a hybrid architecture, our model 
aims to improve the performance of the CNNLSTM. Since 
each dataset imposes different challenges due to the unique 
gesture vocabulary, we evaluate our approach on multiple 
domains: robot commands and co-speech gestures. This 
study is organized as follows: we present our literature 
review on recent gesture recognition systems. Then, we 
describe the datasets and our proposed Snapture frame-
work, including its various components. Next, we discuss 
the experiments carried out in this study. After comparing 
the performance of our model to a CNNLSTM baseline, we 
discuss our results and conclude with potential directions 
for future research.

Related Work

Recent work in dynamic gesture recognition uses various pre-
processing techniques for motion representation which tend 
to lose the hand details. One such technique called star RGB 
was proposed by dos Santos et al. [10]. Each gesture sequence 
was divided into three parts corresponding to the pre-stroke, 
stroke, and post-stroke stages as defined by Kendon [11]. The 
algorithm generated a motion representation for each part, fur-
ther merged using the frame’s color channels. The data was fed 
into a feature extraction model using pre-trained ResNet50 and 
ResNet101 networks. The features were weighted using a soft-
attention mechanism, while a final classification was accom-
plished using a two-layered feedforward network. Similar to 
our work, the authors evaluated their approach in both the robot 

command and co-speech gesture domains. The system achieved 
an accuracy of ∼0.98 and ∼0.95 on the GRIT [12] and Mon-
talbano [13] datasets. However, the architecture is overly com-
plex, especially considering that the GRIT dataset is limited to 
543 samples. Despite that, the system encountered confusion 
between multiple gestures with the same motion since it did not 
consider the hand shape. Therefore, the results confirm that the 
problems of indistinctive and subtle gestures are not trivial. The 
authors hypothesized that these issues could be addressed by 
integrating hand information into the system.

The stated hypothesis is supported by the work of Wu 
et al. [14]. The authors demonstrated increased performance 
concerning gestures with a similar motion by fusing RGB, 
depth, and skeleton data. The proposed approach, called 
Deep Dynamic Neural Network (DDNN), consisted of 
three networks corresponding to each modality. RGB and 
depth information was fed into a 3DCNN, while skeleton 
data was passed through a Deep Belief Network (DBN). 
A Hidden Markov Model (HMM) was responsible for the 
temporal modeling of gestures using a set of defined states. 
Each observation was classified by calculating the most 
probable path using the Viterbi algorithm. The authors 
reported a score of 0.816 on the Montalbano [13] dataset 
using the Jaccard index. When considering RGB and depth 
modalities, the authors showcased less confusion regarding 
implicit Montalbano movements. Thus, the results hint at 
the importance of integrating RGB data to preserve the hand 
pose information. However, the model was computationally 
intensive and required long training times of 5 days. Thus, 
its robotic applications might be limited.

Mazhar et al. [15] utilized RGB data when integrating 
static and dynamic recognition in their system. The authors 
proposed a framework called StaDNet consisting of two 
Inception V3 CNNs. Each CNN extracted the spatial fea-
tures of one of the two hands. The authors stated that by 
cropping the CNN input to the hand and removing the back-
ground, the framework could learn subtle movements. The 
temporal learning was carried out using an LSTM network. 
The framework scored an accuracy of 0.8675 and 0.989 on 
the Chalearn 2016 [16] and OpenSign [17] datasets. How-
ever, the method still relied on other modalities for train-
ing besides RGB, such as a 2D body skeleton and Kinect 
depth estimators. Another requirement of this model is the 
two datasets for training: one static and one dynamic. This 
requirement implies that the architecture learns each gesture 
vocabulary separately. Thus, the model does not seamlessly 
classify a gesture based on its dynamic and static character-
istics. Therefore, achieving such integration between static 
and dynamic recognition remains an open question.

A recent study proposed a system using a transformer-based 
architecture [18]. The study employed a self-attention mecha-
nism for the sequence modeling of data streams from multiple 
sensors. A ResNet18 network was responsible for frame-level 
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feature extraction. A temporal function was implemented using 
a transformer module of six encoders, while the sequences 
were classified using a fully connected neural network. The 
system achieved an accuracy of 0.876 and 0.962 on the 
NVGestures [19] and Briareo [20] datasets. However, the sys-
tem did not perform very well with RGB data. In contrast, the 
scores dropped to 0.765 and 0.906 with a single RGB modal-
ity. The authors experimented with different combinations of 
modalities using a late fusion technique. The best results were 
reported using a fusion of depth, surface normals, infrared, 
and RGB. Thus, the system’s applications are limited to con-
strained environments with sensors placed close to the opera-
tor’s hand. Furthermore, the system encountered confusion 
between symmetric gestures, which illustrates the challenge 
of sequence modeling of dynamic gesture sequences.

Aditya et al. [21] used attention for modeling sequences 
in a multi-feature setup to classify continuous sign language. 
The architecture contained spatial and temporal components. 
The spatial module performed feature extraction on two 
channels: RGB and key points encoding the body and hand 
poses. The temporal part consisted mainly of convolution 
and pooling layers. Sequence modeling was supported by 
a self-attention mechanism, avoiding blurry frames in the 
input. However, a following bidirectional LSTM with CTC 
was needed to interpret the signs and align predicted words 
into sentences. Using a variety of configurations for atten-
tion, the authors found the best performance when attention 
followed temporal pooling. The system achieved a word 
error rate (WER) of 0.7 and 21.5 on the CSL [22–24] and 
RWTH-PHOENIX [25] datasets, respectively. However, 
the error rate increased to 31.2 with the RWTH-PHOENIX 
dataset when pooling was dropped. Thus, the approach only 
performed well in capturing short-term dependencies and 
fell short of modeling longer sequences.

Another approach for dealing with noisy frames was 
suggested by Cao et al. [26]. The architecture used a self-
attention and transformer encoder module for input repre-
sentation. A feedforward network was used for classifica-
tion. However, they implemented an additional temporal 
sampling method to identify the meaningful frames. Using 
a sliding window technique, they performed a gesture detec-
tion step using a single-shot detector to identify whether 
the hand was present. Then, frames were sampled using 
step size and length values that were empirically found. 
Using the NVGestures [19] and EgoGesture [27] datasets, 
the approach achieved the following accuracy values: 0.807 
and 0.926. The sampling technique was found to improve 
the performance to 0.832 and 0.938 on the NVGestures and 
EgoGesture datasets, respectively. However, the used data-
sets contain a mixture of emblems and control commands. 
Thus, such sampling using hand detection would be limited 
concerning co-speech gestures, for which the hand would 
need to be continuously present in all frames.

Similarly, Chen et al. [28] proposed a dynamic gesture 
recognition system based on an attention mechanism. 
Two networks, R2plus1D and ConvLSTM, extracted the 
long-term and short-term temporal features of gesture 
sequences. The relevance of the extracted features for a 
given sequence was learned by an RPCNet network. The 
approach accommodated the contextual information across 
channels by weighing the contribution of its temporal chan-
nels. Multiple experiments were conducted: using a chan-
nel fusion component, sequential channel and spatial com-
ponents, and parallel channel and spatial components. The 
channel fusion as the first module produced the best accu-
racy (0.9353) on the EgoGesture [27] dataset. Using aver-
age and max pooling of the channel and spatial components 
further boosted the score to 0.9393. However, the accuracy 
boost was not significant compared to a base R2plus1D 
model (0.9276) that did not use attention. The authors also 
reported an accuracy of 0.997 and 0.693 on the SKIG [29] 
and IsoGD [16] datasets, respectively. However, they did 
not provide a comparison to the R2plus1D model using 
these two datasets. Therefore, the influence of attention on 
the overall architecture is not fully unveiled.

Tsironi et al. [9] proposed a recurrent network for the 
motion learning of robot commands. A step of hand seg-
mentation was done using a pre-processing algorithm called 
the differential image. The processed data passed through 
a CNNLSTM architecture, which performed the hand’s 
implicit feature extraction and motion tracking. Gestures 
with similar movements were challenging to the system due 
to the loss of hand details. In particular, the system confused 
gestures like “hello” and “no.” Since the motion similarity 
was limited to a small subset of gesture classes, it did not 
overly influence the model’s performance. The framework 
still achieved an accuracy of ∼0.92 using the GRIT [12] 
dataset. However, this dataset is small-scale (543 samples), 
as previously mentioned. It also consists of only robot com-
mands designed with distinct arm movements. Thus, the per-
formance of such an approach remains unknown on natural 
gestures with less intense arm movement and more focus on 
the hand, such as co-speech gestures.

Proposed Model

As mentioned in our literature review, using multiple 
benchmarks can provide an insightful assessment of the 
system’s performance. Therefore, we evaluate our archi-
tecture on multiple gesture domains: robot commands and 
co-speech gestures. In this section, we present the two data-
sets used to evaluate our framework. We also introduce our 
proposed Snapture architecture for hybrid gesture recogni-
tion and show our method for motion profile analysis of 
gesture sequences.
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The GRIT Robot Commands Dataset

In the context of robot commands, the “Gesture commands 
for Robot InTeraction" (GRIT)1 [12] is one of the few pub-
licly available dynamic gesture datasets. The corpus contains 
543 isolated gestures distributed over nine gesture classes 
and recorded with six subjects. Each gesture has a distinct 
arm movement. An exception is the case of classes “hello” 
and “no,” which are indistinctive movements. The dataset 
was collected under lab-controlled settings with a plain 
white background and no surrounding noise.

The Montalbano V1 Co‑Speech Dataset

The Montalbano dataset contains co-speech gestures and 
is publicly available. It was collected with about 50 par-
ticipants as part of the ChaLearn2 Looking at People chal-
lenge [13]. It contains around 14,000 Italian gestures spread-
ing over 20 gesture classes. Each recorded video contains 
a subject in various indoor environments with noisy back-
grounds. The Montalbano dataset provides multiple sensory 
data. However, we only use RGB data due to the advantages 
of vision-based systems, such as reproducibility and port-
ability. Since the gestures are continuous with little to no 
pause, we convert them into isolated gestures by identifying 
the start and end of each movement. We make the annota-
tions created for isolating the sequences and source code of 
the experiments presented in our work publicly available.3

Snapture—Hybrid Gesture Recognition

Our architecture consists of two main components: a 
dynamic channel for capturing the gesture’s movement and a 
static channel for the hand pose. A classifier is trained using 

the combined output of the channels. We analyze the motion 
profiles of the gesture sequences, which are utilized when 
extracting the hand pose. Our approach can be extended with 
an optional component for controlling the static channel to 
address the issue of blur in the frames. We present the details 
of the mentioned components in the following subsections. 
A simplified overview of our so-called SNAPshot capTURE 
(Snapture) architecture is shown in Fig. 1.

Motion Profile Analysis

Our approach for tackling the issues of indistinctive and sub-
tle movements relies on fusing the hand motion and pose. We 
extract motion features by exploiting the temporal informa-
tion across consecutive frames. The hand pose is interesting 
at the stroke phase of co-speech gestures, as described by 
Kendon [11]. However, the temporal relationship between 
frames and stroke in the studied datasets is unclear. There-
fore, we analyze the gesture sequences in terms of motion and 
pause. Due to the lack of approaches for gesture analysis, we 
utilize the structural similarity index measure (SSIM) [30] as 
a metric for the similarity between consecutive frames. The 
SSIM calculation is shown in Eq. (1).

where x and y are spatially local windows of the input 
frames. �x and �y represent the mean intensity of x and y, 
respectively. Similarly, �x and �y denote the standard devia-
tion. N is the number of pixels, while xi and yi represent the 
pixel values at index i of x and y, respectively. C1 and C2 are 
stability constants to avoid a division by zero. K1 and K2 are 
positive values much smaller than 1, while L is the pixel 
range (255 for 8-bit grayscale frames).
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Fig. 1   An overview of the 
Snapture framework. The 
architecture consists of dynamic 
and static channels, fused into a 
final classifier. Thus, it performs 
a hybrid hand gesture recogni-
tion task

1  https://​www.​inf.​uni-​hambu​rg.​de/​en/​inst/​ab/​wtm/​resea​rch/​corpo​ra.​
html
2  http://​chale​arnlap.​cvc.​uab.​es/
3  https://​github.​com/​hassa​nali-​90/​snapt​ure/

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html
http://chalearnlap.cvc.uab.es/
https://github.com/hassanali-90/snapture/
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Using the first frame as a reference, we can quantify the 
amount of motion and pause across the gesture time span. By 
inverting the equation, we can express change across frames. 
We express that in Eq. (2) and refer to it as the Inverted 
SSIM (ISSIM).

where Ii and I0 denote the grayscale frames at time steps i 
and 0, respectively.

We observe two variations of movements in the GRIT 
dataset based on our analysis. Paused gestures include a pro-
nounced period of pause around the gesture peak. For exam-
ple, “turn left” (cf. Fig. 2a) lacks motion around the peak 
since participants hold their hand briefly still. In contrast, in 
gestures, such as “turn” (cf. Fig. 2b), subjects continuously 
repeat a circular pattern. We refer to these movements as 
repeating pattern gestures. These unique characteristics of 
motion and pause of each gesture influence the design of our 
approach, as will be discussed later. In contrast to the GRIT 
dataset, the Montalbano gestures follow Kendon [11] model 
of gesticulation and concurrent speech. The intensity of the 
movement starts and ends gradually, with a clear peak in 
between, ex: gesture “ok” (cf. Fig. 3).

Dynamic Channel

The dynamic channel of Snapture is a CNNLSTM [9] imple-
mentation using PyTorch.4 The network consists of a two-
layer stacked convolutional neural network (CNN) followed 
by a long short-term memory (LSTM) network (cf. Fig. 4). 
The input to the network represents segmented gestures. The 
segmentation is done using the differential image algorithm. 
In Eq. (3), we show the algorithm’s calculation as described 
by Tsironi et al. [9]. This algorithm operates on three subse-
quent frames subtracting every two consecutive frames of a 
three-frame sequence. The moving hand is extracted in the 
input by applying a bitwise AND operator to the output of 
the two subtraction operations.

where Δi and Δi−1 are the segmented gesture input frames 
at the current and previous time steps, respectively. Ii−1 , Ii , 
and Ii+1 denote the grayscale frames at time steps i − 1 , i, and 
i + 1 , respectively. ∧ is the bitwise AND operator.

The stacked convolution layers have five and ten kernels of 
size 11× 11 and 6 × 6, respectively. These are the same kernel 
size and number of filters of the CNN as the original CNN-
LSTM model [9]. Each layer has a 1 × 1 stride, zero-padded 
input, and a hyperbolic tangent (Tanh) activation function. A 

(2)ISSIM = 1 − SSIM(Ii, I0) ,

(3)Δi = (Ii − Ii−1) ∧ (Ii+1 − Ii) ,

max-pooling layer of size 2 × 2 follows each convolution layer. 
Following each convolution, batch normalization is used to 
reduce internal covariate shift [31] and speed up the training. 
We initialize the CNN’s weights with values from a uniform 
distribution [32]. The output of the last convolution layer is 
flattened and propagated through the LSTM.

Since the input represents isolated gestures, each mini-
batch has all the information needed for the network to pro-
duce a classification. Therefore, we opt to use a stateless 
LSTM. We configure the LSTM’s cell state to produce a 
sequence-level classification for each gesture. Therefore, our 
model requires no additional post-processing steps and fits 
the concept of capturing a snapshot more intuitively. The 
LSTM’s numbers of layers and neurons are selected using 
grid search. The optimal number of layers is 2 out of 1, 2, 
4, and 8. The optimal number of neurons has resulted dif-
ferently for the GRIT and Montalbano datasets. We choose 
64 and 512 neurons for the GRIT and Montalbano datasets, 
respectively. We initialize the LSTM with weights from a 
uniform distribution with zero bias. After passing through 
dropout [33], the output of the LSTM is fused through con-
catenation with the static channel’s output (explained in the 
next subsection). The combined outputs are propagated into 
a two-layered feedforward network followed by softmax, 
producing a probability distribution over the gesture classes.

Static Channel

This channel is responsible for capturing the specific hand 
shape and finger arrangements through a so-called snapshot 
at the gesture’s peak. We detect and extract the gesture at the 
peak corresponding to the stroke phase. This provides hand 
pose information, which we fuse with the dynamic channel. 
As a result, our method integrates the characteristics of static 
and dynamic recognition systems.

Gesture Peak Detection  According to Kendon [11] model 
of the relationship between gestures and concurrent speech, 
human gestures are described by five phases (cf. Fig. 5). 
Gestures start with a rest phase, representing a neutral posi-
tion of the arms. In the pre-stroke or preparation phase, a 
gradual intensity in motion of one or both arms starts to 
unveil. Next is the stroke phase in which the static gesture 
properties, i.e., hand shape and finger configurations, com-
pletely unfold. These characteristics start to fade away in 
the post-stroke or retraction phase as the intensity of motion 
gradually decreases. The gesture ends again with a rest 
phase. The Montalbano gestures have a clear peak through 
the frames around the midpoint of the gesture sequence. 
Similar time steps are occupied by a pronounced pause in 
paused gestures (cf. “Motion Profile Analysis” section). 
Therefore, we define the peak as the frame in the middle of 
the gesture sequence.4  https://​pytor​ch.​org/

https://pytorch.org/
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Fig. 2   The motion profile of 
GRIT gestures “turn left” (a) 
and “turn” (b). “turn left” is 
paused at the peak, while “turn” 
is with a repeating pattern 
due to the continuous intensity 
across its time span

(a)

(b)
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Gesture Peak Extraction  We follow a skin detection tech-
nique to extract the hand from the frame. Our implementa-
tion uses Python and OpenCV.5 First, the face is detected 

and removed because the input contains a full body image, 
and skin detection treats all visible skin equally. Next, the 
hand is segmented by converting into the orthogonal color 
space YCbCr [34]: Y representing the luminance, while Cb 

Fig. 3   The motion profile of 
the Montalbano gesture “ok.” It 
starts and ends with low inten-
sity and has a clear peak around 
the midpoint of the timeline

Fig. 4   The dynamic channel 
of Snapture is a CNNLSTM 
network consisting of two layers 
of CNN followed by an LSTM 
and a feedforward network. The 
input is pre-segmented using 
the differential image algorithm. 
For clarity, we show only five 
frames and increase the contrast 
of the differential images

Fig. 5   The five gesture phases, 
according to Kendon [11]. Each 
gesture starts with a rest phase. 
In pre-stroke, the limb moves 
from the rest position into the 
stroke phase. The stroke phase 
contains the most expressive 
information. In post-stroke, the 
limb moves away from stroke 
back into rest phase 

(a) (b) (c) (d) (e)

5  https://​opencv.​org/​opencv-​4-5-​3/

https://opencv.org/opencv-4-5-3/
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and Cr indicate the chromaticity. This is done to avoid the 
high correlation between luminance, hue, and saturation in 
RGB [35]. Since various lighting conditions highly influence 
skin tones, we apply the threshold on chrominance only. We 
use the thresholds Cb=[80, 120] and Cr=[133, 173] pro-
posed by Basilio et al. [36]. According to the authors, these 
threshold values are independent of skin tone. An additional 
step of background removal is applied to the Montalbano 
data using simple background subtraction. This is due to 
the complex surroundings, unlike GRIT. Next, we apply the 
connected component analysis, which describes the YCbCr 
mask in terms of BLOBs. These objects are then sorted by 
size and position. Due to the noisy background in the Mon-
talbano dataset, we filter out objects that do not belong to the 
foreground, calculated in the step of background removal.

We pick the higher object in the frame to avoid assump-
tions about the subject’s dominant hand. As we observe in 
the data, the hand performing the gesture is always in an 
upper position. The other hand is usually at rest or slightly 
raised. For gestures requiring two hands, both hands always 
make the same pose. Therefore, our algorithm has the free-
dom of picking up either hand in this case. A step of hand 
smoothing is applied using erosion and dilation morpho-
logical transformations. However, omitting this step does 
not influence the algorithm’s output. Finally, an area around 
the detected hand is extracted from the original frame and 
resized to 64× 48 pixels matching the CNN input. The 

configuration of the CNN network in the static channel is 
similar to the dynamic channel (cf. “Dynamic Channel” sec-
tion). The hand features learned through this network are 
flattened and concatenated with the dynamic channel’s out-
put before feeding into the two-layered feedforward network. 
The gesture peak extraction module is depicted in Fig. 6.

Static Channel Control

One challenge when using RGB data is capturing hand 
details during rapid hand movements. This is caused by 
factors such as lower camera resolution and exposure time. 
Consequently, it leads to a blurry hand in the frame (cf. 
Fig. 7). This is pronounced for repeating pattern robot com-
mands due to the intense movement. This phenomenon is a 
challenge to any vision-based approach due to the missing 
information in the input frames. However, we address it by 
regulating the static channel based on the amount of motion 
contained in a gesture. More precisely, we integrate the 
extracted static information only if the amount of motion 
lies below a threshold., i.e., the stroke phase contains a 
pause sufficient for the snapshot extraction.

We use the SSIM-based method (cf. “Motion Profile 
Analysis” section) as a quantitative metric for the amount 
of motion and pause. We split each gesture into three parts: 

Fig. 6   The gesture peak extrac-
tion module of the Snapture 
approach. Using a skin detec-
tion technique, the hand shape 
and finger configurations are 
extracted from a target frame at 
the gesture’s peak. Background 
removal is only applied to the 
Montalbano gestures (dotted 
line). The extracted hand is 
passed through a CNN and a 
feedforward network

Fig. 7   Repeating pattern ges-
tures, e.g., “circle” (a), contain 
a blur at the peak compared to 
paused movements, e.g., “stop” 
(b). The blurry hand at the ges-
ture’s peak for highly dynamic 
movements is challenging for 
RGB-based approaches. We 
bypass this issue by regulat-
ing the static channel of our 
approach

(a) (b)
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(1) the first part represents all the frames in the rest and pre-
stroke phases, (2) the second part contains the frames in 
pre-stroke and post-stroke phases, and (3) the third part con-
sists of all the frames consecutively from post-stroke to rest 
phases. We assume the three parts to be of equal length for 
simplicity. The three parts and our defined threshold are visu-
alized for the GRIT (c.f. Fig. 8) and Montalbano (c.f. Fig. 9) 
datasets. The average amount of motion in part 2 is less than 
in part 1 and part 3, which supports our choice of Kendon 
[11] stroke phase as the gesture’s peak. It is also noticeable 
that most samples of paused gestures, such as “stop,” “turn 
left,” and “turn right,” lie well below the threshold due to 
their pronounced period of pause. In contrast, the intensity 
of motion is high for repeating pattern gestures, e.g., “circle” 
(cf. Fig. 8), which corresponds with our definition of repeat-
ing pattern gestures (cf. “Motion Profile Analysis” section). 
On the other hand, most Montalbano gesture classes contain 
pause facilitating capturing a snapshot.

Experimental Procedure

In this section, we present the experiments carried out in 
this study. In each experiment, we evaluate and compare the 
following: (1) a CNNLSTM acting as a baseline for com-
parison, (2) our Snapture architecture, which predicts a class 
by integrating the hand shape and motion, and (3) Snapture 

with the threshold-controlled mechanism for regulating the 
static channel based on the sufficiency of pause to capture a 
snapshot. We will refer to this model as Snapturethold. The 
purpose is to evaluate the influence of subtle and indistinc-
tive gestures on the performance of each of the models in two 
gesture domains, as motivated earlier.

Experimental Settings

The training parameters of each experiment are selected 
using grid search and are listed in the following subsections. 
We run each of the models under similar conditions. The 
hardware specifications used for training and testing are as 
follows: (1) Ubuntu 18.04.5 LTS operating system; (2) Intel 
Core i7-4930K 3.40 GHz with six cores; (3) 8 GB of RAM; 
(4) NVIDIA GeForce GTX 1080 graphics card with 8 GB of 
memory. The performance of each model is evaluated using 
accuracy, F1-score, and training time metrics. We report the 
average performance of each model over five trials. In each 
trial, we repeat the steps of training and testing. We analyze 
the classification behavior using the confusion matrices.

GRIT Experiment

The search space and optimal hyperparameters for the 
experiment on the GRIT dataset are listed in Table 1. 

Fig. 8   Our motion analysis of 
the GRIT dataset after splitting 
gestures into three parts: rest to 
pre-stroke phases, pre-stroke 
to post-stroke phases, and 
post-stroke to rest phases. The 
second part contains more pause 
and facilitates capturing a snap-
shot. The black line denotes our 
defined threshold for regulating 
the static channel
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We choose the parameters using grid search and cross-
validation while leaving out 30% of the data for test-
ing. In this experiment, the optimal values are identical, 
which we explain by the similarity in architecture and 

training procedure across the models. We use the same 
data split ratio for each trained model to conduct a fair 
comparison. To avoid data imbalances, we use stratified 
sampling regarding class labels.

Fig. 9   Our motion analysis of 
the Montalbano dataset after 
splitting gestures into three 
parts: rest to pre-stroke phases, 
pre-stroke to post-stroke phases, 
and post-stroke to rest phases. 
Similar to GRIT, the second 
part contains more pause that 
facilitates capturing a snap-
shot. Our defined threshold for 
regulating the static channel is 
denoted by the black line
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Montalbano Experiment

Similar to the previous experiment, we report the hyper-
parameters in Table 2. Due to the considerable number of 
class labels, the search space is extended compared to the 
GRIT experiment. We choose the parameters using grid 
search and cross-validation while leaving out unseen data 
for testing. The dataset is part of the ChaLearn Looking at 
People challenge and is already split into training and test 
datasets. Each set contains unique subjects. To avoid any 
influence of subject variability, we implement our split with 
data from all participants. We follow this approach since 
we focus on comparing the classification behavior of the 
different models rather than taking part in the challenge. 
Our split consists of 70% and 30% of randomly selected data 
for training and testing, respectively. Stratified sampling is 
utilized for an approximately uniform distribution of class 
labels across the sets.

Results

In this section, we present the results of the experiments 
acquired using the GRIT and Montalbano datasets and under 
the experimental settings described earlier.

Results of the GRIT Experiment

The experiment results are summarized in Table 3. Our 
Snapture approach achieves slightly superior results com-
pared to the CNNLSTM in terms of accuracy and F1-score. 

The scores across the Snapture and Snapturethold variations 
are similar. The three models have a slight deviation across 
the five trials. We explain the marginal accuracy boost by 
three factors. First, GRIT robot commands have unique 
movement paths. Therefore, the CNNLSTM model is suf-
ficient due to its motion-learning capabilities. Second, due 
to the repeating pattern gestures, most GRIT movements do 
not have sufficient pauses for capturing a snapshot (approxi-
mately 44%) based on our threshold definition. Combined 
with the small dataset size, our model may not have seen 
enough training data to learn the unique characteristics 
of hand shapes. Third, only approximately 44% of GRIT 
samples include a motion at the peak beneath the defined 
threshold. Therefore, the Snapturethold acts similarly to a 
CNNLSTM model in 56% of the cases, and it is not able to 
contribute to a noticeable accuracy increase.

However, we analyze the results further through the 
confusion matrix of the average case (cf. Fig. 10), which 

Table 1   The search space and optimal hyperparameter values (in 
bold) of each model in the GRIT experiment

* Similar for Snapturethold  

Hyperparameter CNNLSTM Snapture*

Learning rate [0.01, 0.001, 0.0001] [0.01, 0.001, 0.0001]
Number of epochs [10, 20, 40 ] [10, 20, 40 ]
Mini-batch size [16, 32, 64, 128] [16, 32, 64, 128]
Optimizer [Adam, SGD] [Adam, SGD]

Table 2   The search space and optimal hyperparameter values (in 
bold) of each model in the Montalbano experiment

* Similar for Snapturethold  

Hyperparameter CNNLSTM Snapture*

Learning rate [0.01, 0.001, 0.0001] [0.01, 0.001, 0.0001]
Number of epochs [20, 40, 60, 80, 100 ] [20, 40, 60, 80, 100 ]
Mini-batch size [16, 32, 64, 128] [16, 32, 64, 128]
Optimizer [Adam, SGD] [Adam, SGD]

Table 3   The results of the GRIT experiment under the described set-
tings. The reported metrics represent the mean of five trials, while the 
values in parentheses correspond to the standard deviation. The supe-
rior accuracy and F1-score values are in bold

* In seconds

Model CNNLSTM Snapture Snapturethold

Accuracy 0.91 (0.012) 0.924 (0.006) 0.926 (0.008)
F1-score 0.913 (0.012) 0.927 (0.005) 0.913 (0.012)
Time* 140.612 (0.255) 170.012 (1.027) 125.156 (1.117)

Fig. 10   The confusion matrix of the average case for the CNNL-
STM on the GRIT dataset. The confusion is pronounced between the 
classes “hello” and “no,” “hello” and “stop,” “no” and “stop”
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is calculated using the average of predicted labels over all 
trials. The most confusion in the CNNLSTM model occurs 
between “hello” and “no,” “hello” and “stop,” “no” and 
“stop,” and “stop” and “abort.” These movements have a 
similar motion profile but differ in hand shape. Thus, this 
supports that indistinctive movements negatively influ-
ence the performance of CNNLSTM. On the other hand, 
the confusion between these classes is less pronounced 
in Snapture (cf. Fig. 11) due to the additional hand pose 
information. However, the misclassification of “hello” 
samples as “no” still negatively impacts the performance 
of Snapture. We observe that some participants perform 
“hello” and “no” rapidly, resulting in a blur effect and 
noisy input to the network. Therefore, the Snapturethold 
improves the situation (cf. Fig. 12) by excluding the snap-
shot in case the frame is not clear for interpreting the hand 
details. On the other hand, repeating pattern movements, 
e.g., “circle” yields comparable F1-score values across 
the three architectures (cf. Fig. 13) due to the distinctive 
movement. However, the number of false positives and 
true negatives associated with “circle” drops noticeably in 
Snapturethold, further emphasizing that the static channel is 
indeed counterproductive for such movements.

On a different note, the confusion between the classes 
“no” and “stop” is less pronounced in Snapture and Snap-
turethold compared to CNNLSTM. Despite the dissimilarity 
between the two classes, some subjects tend to perform “no” 

with a slight left and right hand movement around the wrist, 
making it very similar to “stop” in terms of arm movement 
(raised and directed towards the camera). The CNNLSTM 
struggles with this sort of implicit hand movements due to 
the loss of hand details. Therefore, our approach improves 
performance with the static channel.

Fig. 11   The confusion matrix of the average case for Snapture on the 
GRIT dataset. The confusion is less pronounced between the classes 
“hello” and “no,” “hello” and “stop,” “no” and “stop.” However, the 
performance is still negatively influenced by the false classification of 
some “hello” samples as “no”

Fig. 12   The confusion matrix of the average case for Snapturethold on 
the GRIT dataset. Less confusion can be observed concerning class 
“circle,” which confirms that the static channel should be disabled for 
such repeating pattern movements

Fig. 13   A comparison of per-class F1-score values between the dif-
ferent approaches on the GRIT dataset. Snapture increases the score 
for classes “hello” and “no,” while the performance across the 
remaining classes is comparable
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Results of the Montalbano Experiment

Our Snapture approach scores superior accuracy and F1-score 
compared to CNNLSTM. Also, the Snapturethold improves 
the results even further (cf. Table 4). However, we observe 
a noticeable time increase in Snapturethold. We explain that 
by the additional check for each sample to identify where it 
lies compared to the defined threshold. Approximately 70% 
of the Montalbano data contain a sufficient pause for a snap-
shot. Thus, it gives more insights into the performance of the 
Snapturethold approach. By observing per-class performance, 
Snapture achieves superior per-class F1-scores compared to 

the CNNLSTM except for “basta” (both models achieve an 
identical score). Nonetheless, we report a boost in F1-score 
on all classes with the Snapturethold.

Indistinctive Movements  In CNNLSTM, multiple observa-
tions of classes “vattene” are miscalssified as “vieniqui,” 
“perfetto,” or “tantotempo” (cf. Fig. 14). We explain that by 
the similarity in hand motion. Compared to the CNNLSTM, 
an addition of ∼ 19 and ∼ 32 samples on average are correctly 
classified by the Snapture and Snapturethold, respectively 
(cf. Figs. 15 and 16). Consequently, we observe F1-score 
improvements in the respective classes (cf. Fig. 17). For 
classes “vieniqui,” “freganiente,” “ok,” “noncenepiu,” and 
“buonissimo,” the CNNLSTM achieves poor F1-score val-
ues (below 0.6). Most of the confusion of class “ok” is tied 
to false positives/negatives with one of the said classes. We 
explain that by the similarity in their motion. However, the 
total number of misclassified “ok” samples drops in Snap-
ture and Snapturethold by approximately 30. Therefore, we 
observe an increase in the F1-score. Snapture and Snap-
turethold also enhance the F1-score of class “seipazzo.” An 
additional average of ∼ 23 and ∼ 25 samples are correctly 
classified due to less confusion with “buonissimo.”

Table 4   The results of the Montalbano experiment under the 
described settings. The reported metrics represent the mean of five 
trials, while the values in parentheses correspond to the standard 
deviation. The superior accuracy and F1-score values are in bold

* In minutes

Model CNNLSTM Snapture Snapturethold

Accuracy 0.699 (0.014) 0.755 (0.021) 0.77 (0.008)
F1-score 0.701 (0.013) 0.752 (0.021) 0.772 (0.007)
Time* 234.762 (0.115) 318.578 (0.428) 744.953 (0.724)

Fig. 14   The confusion matrix of 
the average case for CNNLSTM 
on the Montalbano dataset. 
The confusion between gesture 
classes with indistinctive move-
ment is pronounced, e.g., “vat-
tene,” “vieniqui,” “perfetto,” 
and “tantotempo”
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On a different note, classes that share motion and hand 
shape are challenging for our approach. For example, classes 
“vattene,” “vieniqui,” and “tantotempo” use a similar open 
palm at the peak (cf. Fig. 18). Therefore, the confusion 
between such classes is still noticeable in Snapture and 
Snapturethold despite the hand shape information.

Implicit Movements  Besides the motion similarity, some 
gestures include a delicate hand movement at the peak. For 
example, “sonostufo” includes a subtle hand movement 
against the chest. Similarly, “noncenepiu” and “buonissimo” 
include a rotational motion of the extended index and thumb 
fingers around the wrist. Due to the pre-processing, these 
hand details are lost. Consequently, they are not picked up 
by the CNNLSTM. However, the confusion related to these 
classes is noticeably less in Snapture and Snapturethold (cf. 
Figs. 15 and 16). On the other hand, the confusion regarding 
class “buonissimo” is only slightly boosted in Snapture and 
Snapturethold. We explain that by observing that “buonis-
simo” and “furbo” are similar in motion and hand shape, 
i.e., extended index finger. The difference lies in the position 
the finger touches the face (under the eyes vs. on the cheek). 

Efficiently recognizing these gestures requires additional 
modalities, which our study does not consider. However, 
we will discuss this point later. Moreover, since snapshot is 
captured using one frame at the gesture’s peak, it is subject 
to influence by the corresponding hand orientation and light 
reflection. Thus, it becomes more challenging to distinguish 
between an open palm and an extended index finger, espe-
cially since the input is in grayscale (cf. Fig. 19).

Explicit Movements  Five Montalbano gestures are two-
handed. We observe two types of movements under this 
category based on how the arms are extended. “Chevuoi” 
and “combinato” are performed using symmetric hand 
movements in which both arms move from the rest to make 
a distinct shape at chest level. Due to the motion similarity, 
the CNNLSTM comes short in F1-scores, most noticeable 
for “chevuoi,” while Snapture and Snapturethold present a 
noticeable F1-score boost for these classes (cf. Figure 17). 
On the other hand, gestures “cheduepalle” and “basta” are 
symmetric but made with a movement of both arms to the 
body side. Both gestures are used when a person is acting 
decisively and implying “enough.” Therefore, the movement 

Fig. 15   The confusion matrix 
of the average case for Snapture 
on the Montalbano dataset. The 
confusion concerning gesture 
classes with indistinctive and 
implicit movements, e.g., “vat-
tene,” “noncenepiu,” and “ok,” 
is less pronounced than for the 
CNNLSTM
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of the arm is quite firm, making it unique from the rest of 
the gesture vocabulary. Consequently, the CNNLSTM 
is efficient at picking up these movements. Snapture and 
Snapturethold only slightly improve over the performance of 
the CNNLSTM concerning these explicit movements since 
the hand shape and finger arrangement play a minimal role 
in their recognition. In Fig. 20, we display a comparison 
between an implicit and explicit movement and their cor-
responding pre-processing step.

Discussion

We proposed a hybrid gesture recognition architecture called 
Snapture. It integrated the hand pose alongside movement 
through modular static and dynamic channels. Our work 
was motivated by the limitation of RGB techniques, such as 
the CNNLSTM network, across different gesture domains. 
Therefore, we evaluated our approach in the context of robot 
commands and co-speech gestures. In our experiments, we 
compared the performance of Snapture to a CNNLSTM 
baseline using the GRIT [12] and Montalbano [13] datasets. 

Our analysis demonstrated that Snapture improved the clas-
sification of indistinctive and subtle movements. We believe 
the unique characteristics of our approach make it poten-
tially beneficial in the following domains: (1) emblematic 
hand gestures, which substitute words to convey a particu-
lar meaning, and (2) co-speech gestures, which accompany 
words as means of verbal communication. Furthermore, our 
system is compatible with mobile systems and robot applica-
tions due to the few required data streams. We use only RGB 
frames to extract the motion and hand pose. The participants 
stand freely in front of the camera without needing environ-
ments with constrained setup conditions [18]. We also avoid 
issues that result from using skeleton data to extract the 
hand, such as the occasional loss of joint information [15]. 
Thus, our approach is one of the few pure RGB-based mod-
els that operate on the Montalbano dataset.

Recent RGB-based approaches are influenced by similari-
ties in hand movements [9] and the loss of delicate small-
scale motions at the peak [10]. The effects of this phenom-
enon are limited in the GRIT dataset because it includes 
robot commands with intense arm movements. On the other 
hand, these effects are more pronounced in the Montalbano 

Fig. 16   The confusion matrix of 
the average case for Snapture-
thold on the Montalbano dataset. 
The confusion concerning 
gesture classes “vattene,” 
“furbo,” and “buonissimo” is 
less pronounced than for the 
CNNLSTM
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Italian gestures, which are part of human communication. 
These movements are more natural than robot control, have 
a simple motion path, and involve particular hand and finger 
configurations. Thus, capturing the hand pose in addition 
to the movement becomes more critical. However, this is 
challenging for recent approaches, which require intensive 
training of networks, such as 3DCNN [14], ResNet [10], and 
Inception V3 [15]. In contrast, our system captures the hand 
details by merely incorporating an additional static channel. 
We integrate the hand information at the gesture’s peak on 
top of the CNNLSTM model. Therefore, our architecture is 
easier to train yet effectively capable of addressing the issues 

of indistinctive and subtle movements. The simplicity of our 
approach facilitates a robot application due to its lightweight 
architecture.

Furthermore, the scheme of fusing the static and dynamic 
features influences the system. Our approach operates on a 
single frame in the static channel, which has several advan-
tages. First, it matches Kendon [11] model of gesticulation and 
concurrent speech. The literature shows that the stroke phase 
plays an essential role in recognition. Following this model 
also helps simplify our approach since it does not require 
dedicated networks for learning the short-term and long-term 

Fig. 17   A comparison of per-class F1-score values between the dif-
ferent approaches on the Montalbano dataset. Snapture improves the 
score for all classes except “basta.” The performance of explicit arm 
movements, e.g., “basta” and “cheduepalle,” is comparable across the 
three models

Fig. 18   Our snapshot extraction takes place using a single frame at 
the peak. Thus, a challenging scenario to our approach is when ges-
tures that have a similar hand pose during the stroke phase

Fig. 19   Some challenges concerning class “buonissimo”: a similarity 
in hand motion and pose with “furbo.” Therefore, another modality 
is required, which is not considered by our approach, b similarity in 
hand orientation and light reflection causes misclassifications with 
“freganiente” and “cosatifarei.” It becomes challenging to interpret 
the open palm under these conditions
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dependencies [21, 28]. Second, the spatial and temporal traits 
are treated with equal importance. Thus, we avoid the issues 
of fusing features at each time step and the dominance of par-
ticular modalities in the learning process [14]. Therefore, we 
are better able to analyze the influence of each stream on the 
final outcome. Our experimental design provides evidence that 
classification performance concerning indistinctive and subtle 
movements can be boosted by learning hand details.

Another consideration for RGB-based methods is the 
issue of blurry frames caused by rapid hand movement and 
leading to noise in the input data. Due to a lack of literature 
concerning the analysis of gesture sequences, we employ an 
SSIM-based algorithm for analyzing motion profiles. This 

technique is used in a threshold-based fashion and further 
benefits our approach. The performance is improved by 
regulating the static channel and bypassing the blurriness 
issue. Thus, our method is comparable to others that use 
adaptive sampling of the input frames [26]. In both architec-
tures, the performance is improved by reducing noise in the 
input frames. However, we control the noise by focusing on 
the hand’s motion rather than just the presence of the hand, 
so that our approach works with co-speech gestures. How-
ever, one disadvantage of such empirical methods is that 
they do not guarantee generalization to new samples. There-
fore, introducing robustness by learning the cut-off values 
of the threshold is desired. We hypothesize that approaches 

Fig. 20   A comparison between 
implicit and explicit hand 
movements. We observe miss-
ing hand details concerning 
“sonostufo” (b). In contrast, 
the explicit arm movement of 
“basta” is conserved (d). a and c 
depict the original sequence for 
clarity. We increase the contrast 
of b and d for clarity

(a)

(b)

(c)

(d)
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using attention-based methods, such as [21], might provide 
an alternative solution. However, this issue still negatively 
influences vision-based systems, and our results show that 
the blur phenomenon is challenging. We hope our work 
raises more attention to the quality of collected RGB ges-
ture datasets and encourages more research in producing 
affordable, higher-quality cameras compatible with robots.

Our observations on the GRIT and Montalbano datasets 
show high variability in hand preference. Besides hand domi-
nance, fatigue and injuries are among the most common fac-
tors that drive the interchangeable use of both hands. There-
fore, a robust system that works with subjects regardless of 
the dominant hand is beneficial. Our system accomplishes that 
by extracting the pose of the hand actively used while making 
the gesture. Thus, it does not require mirroring videos of left-
handed subjects [14] or a dedicated network for each hand [15]. 
Consequently, our approach facilitates higher flexibility, which 
should assist in less restrictive and guided HRI scenarios. 
However, this is a broader research domain, and more work 
could be done in this area. Another interesting finding is that 
our architecture is prone to confusion between classes with a 
similar hand pose at the stroke phase. Gestures such as “furbo” 
and “buonissimo” are almost identical at the peak with minor 
distinction. Thus, precisely recognizing these classes requires 
a more detailed interpretation of facial or speech information. 
Our modular architectural design facilitates that by incorpo-
rating additional channels. We hypothesize that such faulty 
system behavior can be avoided by including the body pose 
information. However, it remains an open question whether this 
is achievable in an architecture based on RGB data only.

Finally, our training scheme could be further improved. In 
our evaluation, we use a stratified sampler for the data splits 
to avoid imbalances of class labels. Having a representative 
test set is important due to the small size of the GRIT dataset 
and to make sure that challenging gestures, such as “hello” and 
“no,” are represented fairly in the test set. Although our data 
split guarantees mutually exclusive sample sets, some of those 
samples might be recorded for the same participants. Since 
many participants were recorded in different surroundings 
and appearances, i.e., different outfits, each environmental and 
appearance combination presents a different challenge to our 
RGB approach. However, having a different training strategy, 
e.g., using a subject-wise split, would demonstrate the model’s 
robustness to subject variability. Although this is not part of 
this study, we highlight it as a potential future improvement.

Conclusion

Our study presents a novel architecture called Snapture, which 
integrates static and dynamic information. Our use of RGB 
data only and our lightweight architecture allow compatibility 

with any system equipped with a camera, including robots. We 
also suggest an algorithm for analyzing gesture motion profiles, 
which is essential for revealing the unique characteristics of 
gestures. Our results show that incorporating the hand pose 
at the gesture’s peak with motion information offers a solu-
tion to the issues of indistinctive and subtle movements. The 
results also demonstrate that these challenges are more promi-
nent in the context of co-speech gestures than robot commands. 
Therefore, this hints at the substance of evaluating frameworks 
across multiple gesture domains. Additionally, our Snapturethold 
extension highlights the influence of RGB data quality for sys-
tem performance and provides a means for optimization based 
on a snapshot of a gesture. Overall, our work contributes to 
bridging the gap between static and dynamic gestures allowing 
gesture applications that foster immersive and less controlled 
HRI experiences.
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