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Abstract

A desirable trait of an artificial agent acting in
the visual world is to continually learn a se-
quence of language-informed tasks while strik-
ing a balance between sufficiently specializing
in each task and building a generalized knowl-
edge for transfer. Selective specialization, i.e.,
a careful selection of model components to spe-
cialize in each task, is a strategy to provide con-
trol over this trade-off. However, the design of
selection strategies requires insights on the role
of each model component in learning rather spe-
cialized or generalizable representations, which
poses a gap in current research. Thus, our aim
with this work is to provide an extensive analy-
sis of selection strategies for visually grounded
continual language learning. Due to the lack of
suitable benchmarks for this purpose, we intro-
duce two novel diagnostic datasets that provide
enough control and flexibility for a thorough
model analysis. We assess various heuristics
for module specialization strategies as well as
quantifiable measures for two different types of
model architectures. Finally, we design concep-
tually simple approaches based on our analy-
sis that outperform common continual learning
baselines.1 Our results demonstrate the need
for further efforts towards better aligning con-
tinual learning algorithms with the learning be-
haviors of individual model parts.

1 Introduction

Grounding language in visual perception is a cru-
cial step towards agents that effectively understand
and interact with the physical world (Bisk et al.,
2020). In a realistic setting, such an agent would
require the ability to continuously integrate novel
experience and skills with existing knowledge in an
open-ended process, a challenge commonly known
as Continual Learning (CL) (Chen and Liu, 2018;
Parisi et al., 2019; Wang et al., 2023).

1Code and datasets will be made available at https://
github.com/ky-ah/selective-lilac.
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Figure 1: The specialization-generalization trade-off in
a continual learning setting. Expert solutions train a
copy of the network for each new task, while monolithic
networks make unrestricted updates to all parameters. In
this paper, we focus on selective specialization to strike
a balance between full specialization and generalization.

Ideally, the underlying neural model of an agent
would sufficiently solve each isolated task (i.e., spe-
cialization) while harnessing the shared structure
and subproblems underlying all tasks to create gen-
eralizable representations for knowledge transfer
(i.e., generalization). A strategy to provide con-
trol over this trade-off is to introduce task-specific
parameters to a carefully selected subset of model
components (i.e., selective specialization), as can
be seen in Fig. 1.

Understanding which model components (here
referred to as modules) are suited for task-
specialization requires insights on their role in
solving each task, which prior works on contin-
ual Vision-Language (VL) grounding fail to ex-
plain. At the same time, there is a lack of suitable
benchmarks that allow for a fine-grained model
analysis, as existing CL scenarios for language
grounding based on synthetic images are too sim-
plistic concerning the CL problem (e.g., only one
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distributional shift) (Greco et al., 2019) or the VL
grounding problem (e.g., single-object, trivial lan-
guage) (Skantze and Willemsen, 2022), while those
based on real-world images (Srinivasan et al., 2022;
Jin et al., 2020) may encourage models to take
shortcuts in the vision-language reasoning process,
which leaves the generalizability of statements de-
rived from any model analysis questionable. To this
end, we introduce the LIfelong LAnguage Compo-
sitions (LILAC) benchmark suite that comprises
two diagnostic VL datasets that allow for investigat-
ing the continual learning behavior of the models
with a high degree of control and flexibility while
being challenging enough to require object local-
ization, spatial reasoning, concept learning, and
language grounding capabilities of the continual
learner.

Based on the two proposed LILAC benchmarks,
we conduct a fine-grained analysis of two different
vision-language model architectures in this work
that comprises the following steps: (i) We analyze
whether selective specialization generally benefits
from dividing the learning process into the two in-
termittent stages of task adaptation, where only
the specialized parameters are being updated, and
knowledge consolidation, where only the shared
parameters are updated with respect to the task-
specific learned representations. (ii) We derive
and evaluate heuristics from prior literature about
introducing task-specific parameters with respect
to different layer depths and specific VL network
modules. (iii) We assess the suitability of param-
eter importance measures from pruning research
as indicators of the efficacy of module selection
strategies.

We conclude our work by demonstrating the
superior performance of module selection strate-
gies found in our analysis, when trained under the
adaptation-consolidation (A&C) procedure as de-
scribed above, over common CL baselines. Thus,
we summarize the contributions made in our work
as follows:

1. We propose two novel datasets for visually
grounded continual language learning whose
problem spaces have a well-defined shared
structure, thus inherently promoting a careful
selection of specialized modules (cf. Sec. 3).

2. We provide a thorough analysis of the efficacy
of different selective specialization strategies
for two representative vision-language archi-
tectures (cf. Sec. 4.2.1–Sec. 4.2.3).

3. We show that carefully balancing the trade-off
between generalization and specialization via
selective specialization helps us design sim-
ple approaches that outperform CL baselines
(cf. Sec. 4.2.4), ultimately demonstrating the
importance of aligning CL methods with the
learning behavior of individual model compo-
nents.

2 Background

2.1 Continual Learning Setting

An overview of the learning setting is provided in
Fig. 2. We consider a VL model composed of a
language encoder g(·), a visual feature extractor
h(·), a VL fusion network fθ(·), and a decoder
d(·). We initialize the model at time tinit and freeze
g, h, and d afterwards. After initialization, the
model learns an ordered sequence of tasks from
their training sets Dt for t ∈ {1, 2, . . . , T} and up-
dates VL fusion parameters θ to perform well on
the test sets. We assume access to the task identity
of every model input during training and testing.
Each data point in Dt is composed of visual ob-
servations and input instructions (lt,ot, (o+t ,o

−
t ))

where o+t and o−t denote the visual scenes corre-
sponding to a correct and a wrong execution of
the instruction lt upon observing ot, respectively.
This setting is an extension of Natural Language
Inference (Bowman et al., 2015) towards visual
language grounding that can be approached using
contrastive learning (Li et al., 2023), where we
consider (ot, lt) to be an image-text premise and
o+t ,o

−
t to be visual hypotheses.

2.2 The Specialization-Generalization
Trade-off

Let θt denote the set of parameters that contains a
subset of parameters specific to task t. Then we can
express the learning objective as finding parameter
values θ1, . . . , θT for network fθt that maximize
the average accuracy across all test sets. From
this objective arises a parameter-sharing trade-
off between specialization and generalization that
can be addressed by different design choices for
f (Ostapenko et al., 2021).

One approach is to use a monolithic network
with parameters to be fully shared across tasks
such that θ = θt ∀ t ∈ {1, . . . , T} (Kirkpatrick
et al., 2017; Chaudhry et al., 2019b), which fa-
cilitates knowledge transfer between tasks at the
cost of forgetting. The opposite approach is to
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Figure 2: Overview of the model training on a LILAC-
3D example. Each of the L vision-language fusion
layers (gray box) contains modules m that are candi-
dates for specialization.

train task-specific expert solutions (Aljundi et al.,
2017; Rusu et al., 2016) such that θi ∩ θj = ∅
for i, j ∈ {1, . . . , T} with i ̸= j, which allevi-
ates forgetting at high memory most and impeded
transfer. van de Ven and Tolias (2019) propose
to balance this trade-off by learning task-specific
“multi-headed” output layers. However, this ap-
proach assumes a uniform feature space and does
not work for VL fusion networks that are trained
continually.

Inspired by works on modular continual learn-
ing (Ostapenko et al., 2021; Mendez and Eaton,
2021; Mendez et al., 2022), we consider f as a
set M of modules, where a module m in this con-
text can be any kind of self-contained paramet-
ric function in f (e.g., a convolutional layer or a
batch normalization layer).2 Our aim is to find a
strategy for selecting a subset S ⊂ M of mod-
ules that is task-specific and parameterized by θSt
for t ∈ {1, . . . , T}, while keeping the remaining
modules shared across tasks, thus parameterized
by θM\S , yielding θt = {θSt , θM\S}. Notably,
S = ∅ for a monolithic (or fully shared) network
and S = M for the expert solutions.

2Hence, the notion of a module in this paper is more gen-
eral than that in a neural module network (Andreas et al.,
2016).

"move the blue
box to the right"

Figure 3: Example of the LILAC-2D dataset. Based on
the instruction and the visual premise, a model learns to
separate the two visual hypotheses (true target image,
false target image) corresponding to a right and a wrong
understanding of the instruction, respectively.

2.3 Intermittent Adaptation and
Consolidation (A&C)

We apply a simplified version of the lifelong com-
positional learning scheme introduced in Mendez
and Eaton (2021) that is inspired by Piaget’s the-
ories on intellectual development (Piaget, 1976)
and has been successfully applied in CL of neural
architectures with specialized modules: Instead of
updating θt jointly upon learning task t, we repeat-
edly alternate between multiple adaptation steps
(here, epochs) to update the task-specific param-
eters θSt (assimilation, fast learning) and a single
consolidation step that updates the shared param-
eters θM\S (accommodation, slow learning). We
show in Sec. 4.2.1 that the adaptation-consolidation
(A&C) learning scheme can consistently improve
performance over joint optimization of θt. The
algorithm pseudocode can be found in Sec. A.5.

3 LILAC Datasets

In what follows, we propose two benchmark
datasets that explicitly model the compositional
nature of a problem, thus maintaining a high de-
gree of overlap across tasks. This should encourage
the models to use as few task-specific parameters
as possible and facilitate the exploration of a rea-
sonable selection strategy for specialized modules.
During training, the model receives as input three
images representing objects in a simulated envi-
ronment, along with a templated language instruc-
tion. Examples of the two proposed datasets can
be found in Fig. 2 and Fig. 3.

LILAC-2D tasks. This dataset is based on the
minigrid (Chevalier-Boisvert et al., 2018) envi-
ronments. For each example, three to nine objects
are randomly placed in a 7× 7 grid. Each instruc-
tion describes a desired interaction with a desig-
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nated target object and takes the form of “move the
<color> <object> <direction>”, where we choose
from a set of six colors, three object types, and four
directions. All three subproblems described by the
instruction can be orthogonally combined, yielding
6 × 3 × 4 = 72 distinct instructions. False target
images are generated by randomly choosing one of
the three subproblems to be wrongly solved, e.g.,
a blue key is moved down, although a green key
was supposed to be moved down. The LILAC-2D
dataset comprises 500 train, 100 validation, and
100 test samples per instruction, yielding a total of
36,000 train and 7,200 validation and test samples,
respectively. For the continual learning stream, we
construct T = 10 tasks comprising training sam-
ples of six different instructions each and keep sam-
ples from the remaining 12 instructions for model
initialization at time tinit.

LILAC-3D tasks. To further narrow the gap to
real 3D images while maintaining a high degree
of control and flexibility for model analysis, we
additionally propose LILAC-3D, a dataset with in-
creased spatial complexity and distracting informa-
tion. It is based on the simulated Ravens (Zeng
et al., 2021) benchmark and its extension towards
language instructions (Shridhar et al., 2022). Im-
ages show a tabletop scenario, where between five
and eight blocks and between three and four bowls
are randomly placed within the range of a robot
arm. Instructions describe a pick-and-place opera-
tion with a target block and a target bowl and take
the form of “put the <size> <color1> block in the
<color2> bowl”, where we choose from a set of
two different sizes, six block colors, and six bowl
colors, thus yielding a total of 2× 6× 6 = 72 dis-
tinct instructions. The sets of colors for blocks and
bowls are fully disjoint to allow the objects to be
clearly distinguished from one another. False target
images are designed in a way that either the wrong
block and the right bowl or the right block and the
wrong bowl are chosen for interaction. The dataset
statistics as well as the continual stream design are
similar to those of the LILAC-2D dataset.

4 Evaluations

4.1 Experimental Setup

Model architectures. We conduct experiments
with a transformer encoder (Vaswani et al., 2017)
and a feature-wise linear modulation (FiLM) net-
work (Perez et al., 2018) as our VL fusion networks
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Figure 4: The two VL fusion networks fθt(·) used in our
experiments consist of L consecutive VL transformer
or FiLMed layers. Each network receives as input the
encoded language input and vision input to produce a
joint representation fθt(g(lt), h(ot)). Each colored box
is a module m and one or multiple modules can be part
of a selection strategy S.

fθt(·), which are both well established in research
on visual language grounding both in supervised
and imitation learning settings (cf. Tan and Bansal,
2019; Chen et al., 2020; Panos et al., 2023; Hui
et al., 2020; Lee et al., 2022). An overview of the
two VL fusion networks can be found in Fig. 4,
where we also indicate the modules that we con-
sider for selection strategies in the experiments. We
use the first block of a ResNet-18 (He et al., 2016)
as image encoder h(·). For the VL transformer, g(·)
is the concatenation of word embeddings of the in-
put instruction, whereas for the FiLMed network,
g(·) is a sequence encoding by a single-layer Gated
Recurrent Unit (GRU) (Cho et al., 2014). The
projection decoder d(·) is a linear fully-connected
layer. The VL fusion is followed by a max-pooling
operation for FiLM and a mean-pooling operation
for the transformer. All model configurations were
found based on extensive hyperparameter tuning to
achieve maximum performance on each validation
set in the i.i.d. training setting and are described in
detail in Appendix A.

Baselines. We compare to the following base-
lines: Sequential fine-tuning (SFT) performs unre-
stricted updates on a monolithic architecture with
all module parameters shared across tasks and is
usually considered as a lower bound for CL model
performance. Experience replay (ER) (Chaudhry
et al., 2019b) is an extension to SFT which stores
samples in a fixed-size buffer via reservoir sam-
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pling, from which samples are drawn for rehearsal.
Elastic Weight Consolidation (EWC) (Kirkpatrick
et al., 2017) is another extension to SFT that regu-
larizes parameter updates depending on their rela-
tive importance. For our experiments, we use the
Online EWC version (Schwarz et al., 2018) that
does not require storing a separate approximation
of the Fisher information matrix per task. Consider-
ing a potential upper bound for model performance,
multi-task training (MTL) optimizes a monolithic
architecture on all tasks in the i.i.d. training setting
and independent experts (Expert) train a randomly
initialized set of modules separately for each task.

Evaluation metrics. We report the average accu-
racy across all tasks under a choice of parameters
θ as ACC(θ) (or, ACC(θ1:T ) for the set of all task-
specific parameters θ1:T = {θ1, . . . , θT }). Fur-
thermore, we measure the accuracy gain under a
specialization strategy S compared with using a
monolithic network as

∆ACC(S) = ACC(θ1:T ) − ACC(θ), (1)

where θ1:T = {θS1:T , θM\S}. Both ACC(θ1:T ) and
∆ACC(S) are measured after training on the last
task T .

4.2 Results
In what follows, we first examine whether the
A&C learning scheme is useful for training with
a module selection strategy S (cf. Sec. 2.2), such
that we can use A&C throughout our experiments
(Sec. 4.2.1). Next, we analyze different selection
strategies and compare the results with findings
from prior literature (Sec. 4.2.2). We then assess
whether the efficacy of selection strategies can be
quantified using importance scores from pruning
research (Sec. 4.2.3). Finally, we compare several
selection strategies with CL baselines (Sec. 4.2.4).
Each experiment is run ten times with different ran-
dom seeds that affect parameter initialization and
task order in the continual stream.

4.2.1 Does the A&C learning scheme benefit
training with a module selection
strategy?

To assess the effectiveness of the A&C learning
scheme, we measure the difference in accuracy
gain under the selection strategy S = {m} for
each module m ∈ M, as shown in Fig. 5. Overall,
we observe a positive effect of introducing A&C
for the majority of specialized FiLM modules and
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Figure 5: Difference between accuracy gains from iso-
lating each module between A&C (cf. Alg. 1) and joint
training of all shared and task-specific modules. Green
values indicate the superiority of A&C over joint train-
ing.

even consistently across all VL transformer mod-
ules. This indicates that despite being updated less
frequently, the shared network modules learn the
subproblem underlying all tasks sufficiently well
while being less prone to forgetting.

4.2.2 Does the performance of different
module selection strategies align with
insights about general model behavior
from prior literature?

Specialization at different layer depths. To an-
alyze the effect of isolating task parameters at dif-
ferent layer depths for specialization, we construct
one model for each of the transformer and FiLMed
layers to be specialized, respectively. The results
can be found in the first column of Fig. 6.

For the VL transformer, we observe that spe-
cialization of late layers yields a higher accuracy
gain than specialization of early layers. This indi-
cates that parameters of early transformer layers
benefit from being shared across tasks, as such lay-
ers learn transferable representations that should
be slowly learned via infrequent updates. Such
findings confirm prior research on transformers for
natural language processing (Hao et al., 2019; Ten-
ney et al., 2019) claiming that late layers capture
most local syntactic phenomena, while early layers
capture more general semantics.

In their analysis of FiLMed networks, Perez et al.
(2018) claim that early layers perform low-level
reasoning, such as querying attributes of an ob-
ject, while late layers perform high-level reasoning,
such as comparing two objects. As solving the
LILAC-2D tasks requires the model to identify and
interact with a single object, whereas for solving
the LILAC-3D tasks, two objects would have to
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Figure 6: Evaluation of different selection strategies S trained with A&C for specialization. 1st column: Layer-
depth analysis. 2nd+3rd column: Transformer feed-forward and multi-head attention modules. 4th+5th column:
Normalization scaling factors.

be identified and put into a shared context, we hy-
pothesize that specialization on LILAC-2D tasks
happens early and specialization on the LILAC-
3D tasks happens late in the FiLMed network. As
shown in the first column of Fig. 6, introducing
task specialization to the first layer yields the high-
est accuracy gain for LILAC-2D, while the highest
accuracy gain for LILAC-2D can be achieved by in-
troducing specialized parameters to the penultimate
or the last layer, which confirms our hypothesis.

Transformer feed-forward and self-attention
blocks. Geva et al. (2021) consider the outputs
of the feed-forward networks to be a composition
of their key-value memories and discover that such
layers learn some semantic patterns, especially in
early layers. Consequently, such layers can be
suitable candidates for specialization during CL.
The results of our experiments can be found in
the second column of Fig. 6. We make two key
observations, which are roughly consistent across
datasets: First, isolating the first transformer feed-
forward layer alone (ffn1) is as effective as isolating
the entire feed-forward block (ffn1+ffn2). Second,
a selective specialization of this layer improves
performance most if applied in the early layers
(particularly, isolation at the second transformer
encoder layer yields the best performance through-
out). These observations show that, when chosen
carefully, selection strategies can achieve high ef-
fectiveness with only a small amount of specialized
parameters.

In a recent work on parameter-efficient transfer-
learning methods, Smith et al. (2023) show the
efficacy of adapting self-attention blocks in a vi-
sion transformer to downstream image classifica-
tion tasks while keeping the remaining transformer
parameters frozen. To assess whether their findings
can be transferred to our CL setting, we conduct
experiments with specialized self-attention mod-
ules and report our results in the third column of
Fig. 6. We observe a substantial increase in ac-
curacy, especially for specialization in intermedi-
ate transformer layers, albeit the greatest increase
(∼30% on LILAC-2D, ∼14% on LILAC-3D) is
achieved by specializing self-attention parameters
across all layers. Although it is worth noting that
self-attention modules account for about 73% of the
parameters in each transformer layer, the results in-
dicate a clear benefit from including self-attention
parameters in specialization strategies.

Normalization scaling factors. Bilen and
Vedaldi (2017) argue that specialized instance,
layer, or batch normalization scaling factors can
reduce task-specific biases, allowing them to
intercept distributional shifts at low additional
memory cost. However, as can be seen in
the penultimate column of Fig. 6, specializing
batch normalization parameters of the FiLMed
network hardly improves (LILAC-2D) or even
degrades (LILAC-3D) performance compared
with fully shared batch normalization parameters.
Nevertheless, introducing task-specific layer
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Figure 7: 1st row: Accuracy gain of each specialized
module m ∈ M over fine-tuning a monolithic network.
Each field represents an experiment with S = {m}.
2nd row: Normalized gradient-based importance score
ISgrad(m). 3rd row: Normalized activation-based im-
portance score ISact(m).

normalization parameters in the VL transformer
can slightly improve accuracy on the LILAC-2D
tasks and achieves a performance gain of more
than 5% on the LILAC-3D tasks. We addition-
ally find that specializing layer normalization
parameters that follow the multihead-attention
operation (norm1) is generally more effective than
specializing those that follow the feed-forward
block (norm2), and even outperforms specializing
both (norm1+norm2) on the LILAC-3D dataset.

4.2.3 Can we find quantifiable measures for
the effectiveness of module selection
strategies?

Quantifying the importance of neural connec-
tions to construct specialized weight masks is
common practice in neural pruning research for
CL (Molchanov et al., 2019). We aim to evalu-
ate whether such importance scores can not only
measure the suitability of specialization for single
parameters but also for entire network modules.
Therefore, we will compare two commonly used
types of measurements for calculating the impor-
tance score (IS) of each module in the network:
Gradient-based (ISgrad) and activation-based (ISact)
(cf. Wang et al., 2022; Gurbuz and Dovrolis, 2022;

Jung et al., 2020). Let θm denote the parameters
of network module m during training and let θmt
denote the parameters of the m-th module after
training on the t-th task.

The gradient-based importance score ISgrad(m)
of a module is computed as the sum of the L1-norm
of each parameter w of m and the accumulated
absolute gradients arriving at w during training on
each task:

ISgrad(m) := α

T∑

t=1

∑

w∈θm
|w|+ 1

2

∣∣∣∣
∂L(Dt; θ)

∂w

∣∣∣∣ ,

(2)
where the constant α = 1/(T · log(|θm|)) is used
for averaging across all tasks and normalizing by
the magnitude of the parameter count of m.

The activation-based importance score ISact(m)
is computed as the total activation at module m
with the same normalization constant α as used
above:

ISact(m) := α
T∑

t=1

∑

(lt,ot)∈Dt

∣∣fθmt (g(lt), h(ot))
∣∣

(3)

We calculate the Pearson coefficient (Pearson,
1895) between the importance scores ISgrad(m)
and ISact(m) of each network module m ∈ M
(cf. Fig. 7, second and third row) and the relative
accuracy gain yielded from isolating this module
for task specialization (S = {m}) (cf. Fig. 7, top
row).

The Pearson values for the gradient-based im-
portance score (FiLM/Transformer) indicate a
strong positive correlation for the LILAC-2D
tasks (0.91/0.90) and a weak positive correla-
tion for the LILAC-3D tasks (0.09/0.40), respec-
tively. Conversely, there is no conclusive evidence
from the activation-based importance score (2D:
0.48/−0.53, 3D: −0.09/−0.32). Our results sug-
gest that the magnitude of the gradients on the pa-
rameters of a module is a better indicator of the per-
formance gain from specializing the whole module
than the activation of the module during training.
As shown in Fig. 7 (second row), the 2D convo-
lutions in the last FiLMed layer and the attention
modules in the VL transformer have high impor-
tance and thus seem to be particularly suited for
specialization.
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Table 1: ACC scores of baselines for the proposed
datasets and model architectures. All selective special-
ization baselines are trained with A&C learning. Results
from other selection strategies as well as forgetting and
forward transfer measures can be found in Appendix B.

Transformer FiLM

Baseline 2D 3D 2D 3D

Expert 85.9 88.4 76.5 78.7
MTL 88.3 95.4 87.1 80.1

SFT 51.1 67.0 52.1 63.2
ER 52.4 77.7 53.1 66.9

EWC 55.5 79.0 56.1 69.0
Sfirst-layer 70.0 76.5 68.4 64.2
Slast-layer 74.2 76.5 66.8 68.2
Sall-ffn1 63.1 75.0 - -

Sconv-last-layer - - 59.4 62.5
Sall-attn 81.2 81.2 - -

Sall-attn + ER 85.7 88.5 - -
Sall-attn + EWC 87.1 87.9 - -

4.2.4 How does the performance of different
specialization strategies compare against
CL baselines?

Based on the analyses conducted in Sec. 4.2.2
and Sec. 4.2.3, our aim is to determine whether
selective task specialization can outperform CL
baselines for the proposed LILAC datasets. Given
that all possible selection strategies form a power
set that grows exponentially with the number of
modules in a network, we choose the following
strategies for baseline comparison: In line with
the findings on specialization at different layer
depths, we compare with specialization of the first
layer (Sfirst-layer) and last layer (Slast-layer) for trans-
former and FiLMed blocks, respectively. As we
found the selection of the first feed-forward net-
work in a transformer block to be particularly ef-
fective, we further compare with the specialization
of such layer across all blocks (Sall-ffn1). Finally,
we add the two selection strategies of specializing
self-attention modules in the transformer encoder
(Sall-attn) and the convolutions in the last FiLMed
layer (Sconv-last-layer) for comparison, as the corre-
sponding modules yield the highest ISgrad scores.
The results are reported in Tab. 1.

Multiple selection strategies exhibit superior per-
formance compared to CL baselines on LILAC-2D
tasks. However, the sole strategy that surpasses
all baselines on LILAC-3D is the specialization
of attention across all layers. A possible explana-
tion is that learning LILAC-2D tasks is generally

1 2 3 4 5 6 7 8 9 10
Task
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0.4
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FiLM LILAC-3D
FiLM LILAC-2D

Transformer LILAC-3D
Transformer LILAC-2D

1 2 3 4 5 6 7 8 9 10
Task
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Figure 8: Accuracy of the SFT baseline on the first
and the sixth task during training. LILAC-2D tasks
are almost completely unlearned during training of the
following tasks. Conversely, after training on LILAC-
3D tasks, model performance has a slower decrease and
tasks are not fully unlearned despite a lack of means to
prevent forgetting.

more brittle and subject to forgetting than learning
LILAC-3D tasks, as can be seen in Fig. 8. Thus, a
reasonable module specialization strategy signifi-
cantly increases a model’s robustness to forgetting.

An advantage of selective specialization is that
it can be orthogonally combined with CL methods
following the paradigms of replay or regularization.
We find in our experiments that combining the most
successful specialization strategy Sall-attn with ER
or EWC by performing rehearsal or regularization
during the consolidation phase of A&C learning
reaches an accuracy close to the network of experts
and even outperforms it by a 1.2% margin (Sall-attn
+ EWC on LILAC-2D). Such results indicate that a
combination of selective specialization with other
CL methods is not only robust to forgetting but ac-
tually promotes transfer between shared modules,
thus successfully striking the balance between spe-
cialization and generalization.

5 Related Work

Continual learning. In a CL scenario, an agent is
exposed to a sequence of tasks with the objective of
learning to solve the currently seen task while main-
taining high performance on previous tasks. Ap-
proaches to CL can be broadly categorized into reg-
ularization (Kirkpatrick et al., 2017; Zenke et al.,
2017; Li and Hoiem, 2018; Aljundi et al., 2018)
that restrict parameter updates to bound plasticity,
(pseudo-)rehearsal (Rebuffi et al., 2017; Chaudhry
et al., 2019a; Buzzega et al., 2021), where data that
are either retrieved from a memory buffer or syn-
thetically generated from previous distributions are
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periodically replayed to the model, and dynamic
architectures (Rusu et al., 2016; Yoon et al., 2018),
where models are gradually expanded in response
to distributional shifts.

A few works explore the intersection of contin-
ual learning and visually grounded language learn-
ing with diagnostic (Skantze and Willemsen, 2022;
Greco et al., 2019) and real-world (Srinivasan et al.,
2022; Jin et al., 2020) datasets. All works conclude
that common CL baselines struggle with striking a
balance between forgetting and cross-task knowl-
edge transfer, yet do not provide any insights on
how this struggle is connected with the learning
behaviors of the architecture used.

Introducing task-specific parameters. Re-
search on continual neural pruning assigns some
model capacity to each task by iteratively pruning
and retraining (sub-)networks that are specialized
to each task (Mallya and Lazebnik, 2018; Geng
et al., 2021; Dekhovich et al., 2023; Kang et al.,
2022; Hung et al., 2019; Gurbuz and Dovrolis,
2022; Jung et al., 2020; Wang et al., 2022).
However, while such methods are effective in
overcoming forgetting, the evolution and learning
behavior of pruned subnetworks provides little
interpretability regarding the role of individual
parts of the network in solving CL problems.

Another line of research is modular CL, which
trains a structural combination of independent pa-
rameterized components under the common as-
sumption that each component solves a subprob-
lem of each given task (Mendez and Eaton, 2021;
Mendez et al., 2022; Ostapenko et al., 2021; Ve-
niat et al., 2021). Similarly to neural pruning, ap-
proaches to modular CL fail to explain which role
the interplay between learnable structural configu-
rations and shared components takes in solving the
tasks. In this topic area, the analysis provided by
Csordás et al. (2021) is closely related to our work,
except that we analyze model behavior on the level
of entire modules rather than isolated parameters.

In an effort to promote parameter-efficient trans-
fer in CL with foundation models, recent works
utilize task-specific plugins such as capsule net-
works (Ke et al., 2021a) or adapters (Ke et al.,
2021b; Zhao et al., 2022; Ermis et al., 2022) that
leverage the pretrained representations as shared
structure. This line of research is parallel to ours
rather than competing, as we analyze existing parts
of a trainable model rather than adding additional
components to pretrained networks.

6 Conclusion

Striking a balance between specialization and gen-
eralization poses a challenge for agents that learn a
sequence of language-conditioned tasks grounded
in a visual environment. In this work, we con-
sider vision-language models as a composition of
modules and propose two datasets that allow us to
analyze and compare strategies to selectively spe-
cialize modules to continual tasks with respect to
different layer depths and module types. We further
establish a gradient-based importance measure that
quantifies the suitability of modules for specializa-
tion. Finally, we show that the module specializa-
tion strategies found in our analysis outperforms
common CL baselines when trained under a con-
ceptually simple adaptation-consolidation learning
scheme. With this work, we show the merit of
designing CL methods based on a careful analy-
sis of selective specialization. Beyond introducing
specialization to existing model parts, we plan to
leverage our insights for the design of parameter
isolation CL methods that introduce additional pa-
rameters into a pretrained model for future work.

Limitations

Generally, we consider the results and analyses
provided in this paper to be merely a cornerstone
towards gaining more knowledge about model be-
havior during learning, an insight that can be used
to better understand where in a model to introduce
task-specific parameters. Nevertheless, we recog-
nize the following limitations of our work: First,
we conduct our experiments with two established
vision-language architectures with just one model
configuration each. More notably, the architectures
we use are smaller and conceptually simpler than
those used for large-scale realistic datasets on vi-
sual language grounding. Second, introducing task
specialization to network modules naturally has
a linear growth with the number of tasks. This
can, however, be mitigated by choosing smaller
modules for specialization with reasonable perfor-
mance to strike a balance between parameter size
and model performance.
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Appendices
A Experimental Settings

A.1 LILAC-2D and LILAC-3D Datasets

Examples of both datasets are provided in Fig. 2
and Fig. 3. For the LILAC-2D dataset, object col-
ors are {blue, green, grey, purple, red, yellow},
object types are {ball, box, key}, and directions
are {down, to the left, to the right, up}. For the
LILAC-3D dataset, blocks have the colors {blue,
green, grey, purple, red, yellow}, bowls have the
colors {brown, cyan, orange, petrol, pink, white},
and block sizes are {big, small}.

A.2 Model Architectures

In the following, we describe further details about
the two model architectures used in our experi-
ments.

FiLM. The FiLMed layer is illustrated in the left
part of Fig. 4. We largely follow the architectural
design of the FiLMed layers as suggested in Hui
et al. (2020): Each FiLMed layer consists of a Con-
vBlock and the linear modulation fully-connected
layers γ (weight) and β (bias) that condition the
feature maps of the convolutional layers by scaling
by the factor γ and shifting by the value β. The
ConvBlock consists of two two-dimensional con-
volutional layers with a kernel size of 3, a stride of
1, and a padding of 1, and two batch norm layers.
Features of visual observations ot, o+t , and o−t are
initially extracted by the first block of a ResNet-18
(this configuration yielded better performance on
both datasets than using the feature extractor as pro-
posed in Hui et al. (2020)). Subsequently, the visual
features of the premise observation ot are passed
through the first convolutional layer, followed by
batch normalization, rectified linear unit (ReLU)
activation, and the second convolutional layer. The
language instruction lt is passed through a word em-
bedding layer, followed by a single-layer GRU. The
embedded instruction sequence is passed through
the two fully connected layers β and γ, the output
of which is used to modulate the visual features
from the second convolutional layer. Finally, the
modulated features are passed through a second
batch normalization layer and ReLU activation. Af-
ter passing L FiLMed blocks, the features are max-
pooled across the height and width of the feature
maps and finally passed through a linear projection
layer. In contrast to the ‘premise’ observation ot,

ResNet-18 features of the visual observations o+t
and o−t are directly max-pooled and passed through
the linear projection layer.

Vision-Language Transformer. The right part
of Fig. 4 provides an overview of the transformer
architecture used in our experiments. Each trans-
former encoder layer follows the original design
as proposed in Vaswani et al. (2017) and consists
of a multi-head attention operation, two normaliza-
tion layers, and two fully connected feed-forward
layers. Similarly to the FiLM model, visual fea-
tures of ot, o+t , and o−t are extracted from the first
block of a ResNet-18 encoder and passed through
an additional linear encoder layer to match the la-
tent dimension of the word embeddings from the
input instruction lt. Word embeddings of lt and
visual features of ot are then concatenated and fed
to a multi-head attention layer, followed by a resid-
ual adding operation layer normalization. After-
wards, the latent VL features are passed through
two fully connected linear layers, i.e., the feed-
forward blocks of the network, which is again fol-
lowed by a residual operation and layer normal-
ization. After passing the total of L transformer
encoder layers, the features are mean-pooled across
the height and width of the language-conditioned
feature maps and fed to a linear projection layer.
In the same way as with the FiLM architecture, vi-
sual features of o+t and o−t from the ResNet-18 are
directly pooled and passed through the projection
layer.

A.3 Hyperparameter Configuration

An overview of the design choices and selected
parameters for the model architectures can be found
in Tab. 2.

A.4 Metrics and Performance Evaluation

During training, we use the InfoNCE loss (Oord
et al., 2019) Linfo to maximize the cosine simi-
larity between d(fθt(h(ot), g(lt))) and d(h(o+t ))
and minimize the cosine similarity between
d(fθt(h(ot), g(lt))) and d(h(o−t )). During in-
ference, the model predicts the target image by
choosing the image representation of d(h(o+t )),
d(h(o−t )) that has higher cosine similarity with the
representation of d(fθt(h(ot), g(lt))), i.e.

Scos(d(fθt (h(ot),g(lt))),d(h(o
+
t ))

> Scos(d(fθt (h(ot),g(lt)),d(h(o
−
t ))) (4)
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Table 2: Overview of the hyperparameters selected for the model architectures with respect to the two datasets. We
used the Weights&Biases (https://wandb.ai/site) sweep with Bayes optimizer.

Transformer FiLM Search space
2D 3D 2D 3D

init lr 4.5e-4 2e-4 4.5e-4 2e-4 [1e-6, 1e-3]
continual lr 6e-4 7e-4 8e-4 1e-3 [1e-6, 1e-3]
batch size 128 128 128 128 -
init epochs 10 10 10 10 -
continual epochs (per t) 30 30 30 30 -
word embedding dim 256 256 128 128 {32, 64, 128, 256, 512}
instr embedding dim - - 256 256 {32, 64, 128, 256, 512}
ResNet-18 layer features 1 1 1 1 {1, 2, 3, 4}
encoder layers (L) 4 4 4 4 { 1, 2, 4, 6, 8, 10, 12 }
attn heads 2 2 - - { 1, 2, 4, 6, 8}
ffn dim 64 64 - - {32, 64, 128, 256, 512}
EWC discount 0.9 0.9 0.9 0.9 [ 0, 1 ]
EWC λ (joint) 2,000 600 2,000 600 [1e-2, 1e14]
EWC λ (A&C) 20,000 20,000 20,000 20,000 [1e-2, 1e14]
ER buffer size 3,000 3,000 3,000 3,000 -

The prediction accuracy At can then be calculated
as the number of samples of the t-th task for which
Equation 4 holds, divided by the total number of
samples from the t-th task, |Dt|.

Accuracy, transfer, forgetting. We provide
more details on evaluation metrics and some addi-
tional results on catastrophic forgetting (CF), and
forward transfer (FT). Let Ai,j denote the test ac-
curacy of a model on the j-th task after observing
the last sample of the i-th task. We largely follow
the commonly used evaluation metrics as proposed
in Lopez-Paz and Ranzato (2017):

ACC :=
1

T

T∑

t=1

AT,t, CF :=
1

T

T−1∑

t=1

At,t −AT,t

FT :=
1

T − 1

T∑

t=2

At−1,t −Ainit,t, (5)

where Ainit,t denotes the performance on the t-th
task after initialization. Note that CF can be also
interpreted as negative backward transfer, as it de-
scribes the influence of training on a task on previ-
ously seen tasks.

A.5 Adaptation-Consolidation Algorithm

The pseudocode of the A&C training algorithm as a
modification to the lifelong compositional learning
algorithm proposed by Mendez and Eaton (2021)

is shown in Alg. 1. θM\S denotes all shared param-
eters, whereas θSt are the task-specific, or isolated,
parameters. We choose adaptFreq= 6 for our
experiments.

Algorithm 1 Adaptation-Consolidation (A&C)
Select modules S ⊂ M for task specialization
Initialize all model parameters via joint training
on Dtinit

for t = 1..T do
Freeze θM\S

for e = 1..adaptationEpochs do
Update θSt upon training on Dt

if e mod adaptFreq = 0 then
Freeze θSt , unfreeze θM\S

Update θM\S upon training on Dt

Freeze θM\S , unfreeze θSt
end if

end for
end for

B Additional Results

We provide some additional results on the effect of
introducing task specialization to network modules
in Fig. 9, Fig. 10, and Fig. 11. We provide more
detailed results from our baseline comparison in
Tab. 3. Finally, we provide two additional findings
that might be interesting to the community:
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FiLM modulation parameters. We observe that
introducing task-specific parameters to either the
weight (γ) or bias (β) separately yields the highest
accuracy gain and forward transfer as well as the
lowest forgetting. However, while the FiLMed
model trained on the LILAC-2D tasks benefits most
from weights to be specialized, the same model
trained on LILAC-3D needs bias to be specialized
to optimize performance metrics.
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Figure 9: Analysis of specializing feature-wise linear
modulation parameters in different layers. Top to bot-
tom: 1) accuracy gain of specialization and A&C com-
pared with monolithic SFT baseline, 2) forward transfer,
and 3) forgetting.

Modules whose specialization maximized for-
ward transfer. While for the FiLMed net-
work the specialization of modulation parameters
(weight for LILAC-2D, bias for LILAC-3D) maxi-
mizes the forward transfer, for the VL transformer
it is the feed-forward layers and the layer normal-
ization parameters that maximize forward transfer
when specialized.
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Figure 10: Analysis of specialization in different layers
for feed-forward layers (top) and layer normalization
parameters (bottom). Each plot shows (from top to
bottom): 1) accuracy gain of specialization and A&C
compared with monolithic SFT baseline, 2) forward
transfer, and 3) forgetting.
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Figure 11: Analysis of specialization of layers in different depths (top left) and module specialization in different
layers for self-attention (top right), batch normalization parameters (bottom left), and convolutional layers (bottom
right). Each plot shows (from top to bottom): 1) accuracy gain of specialization and A&C compared with monolithic
SFT baseline, 2) forward transfer, and 3) forgetting.
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FiLM LILAC-2D LILAC-3D
ACC FT CF ACC FT CF

MTL 87.1± 0.9% - - 80.1± 1.1% - -

Expert 76.5± 1.4% - - 78.7± 2.7% - -

SFT 52.1± 0.3% 2.4± 0.4% 35.0± 1.0% 63.3± 0.8% 2.5± 1.0% 17.5± 1.7%

ER 53.1± 0.3% 2.7± 0.3% 33.9± 0.9% 66.9± 1.2% 4.8± 1.4% 14.6± 1.7%

EWC 56.1± 0.9% 2.9± 0.6% 7.7± 0.9% 69.0± 1.4% 3.6± 0.6% 10.1± 0.8%

Mfirst-layer 68.4± 0.8% 3.7± 0.4% 16.4± 0.5% 64.2± 2.1% −1.6± 0.5% 11.6± 0.9%

Mlast-layer 66.8± 0.8% 0.1± 0.1% 15.2± 0.4% 68.2± 1.8% −0.2± 0.3% 7.0± 0.9%

Mconv-last-layer 59.4± 0.4% 2.9± 0.5% 21.4± 1.7% 62.5± 0.9% −1.3± 0.6% 16.0± 2.6%

Transformer LILAC-2D LILAC-3D
ACC FT CF ACC FT CF

MTL 88.3± 0.3% - - 95.4± 0.3% - -

Expert 85.9± 0.4% - - 88.4± 0.2% - -

SFT 51.1± 0.2% 2.5± 0.6% 35.7± 0.6% 67.0± 0.8% −2.5± 0.8% 24.2± 0.6%

ER 52.4± 0.4% 2.7± 0.3% 34.6± 0.5% 77.7± 0.8% 1.6± 0.9% 12.7± 0.7%

EWC 55.5± 0.7% 2.2± 0.6% 14.2± 0.4% 79.0± 0.7% 1.8± 0.9% 8.9± 0.6%

Mfirst-layer 70.0± 0.4% 0.9± 0.3% 15.3± 0.6% 76.5± 0.7% −0.7± 0.4% 12.5± 0.7%

Mlast-layer 74.2± 0.6% 1.7± 0.3% 14.1± 0.4% 76.5± 1.0% −3.1± 0.6% 14.0± 1.0%

Mall-ffn1 63.1± 0.5% 2.3± 0.3% 20.9± 0.5% 75.0± 0.7% −1.7± 0.9% 14.2± 1.0%

Mall-attn 81.2± 0.6% 0.0± 0.3% 7.5± 0.7% 81.2± 0.8% 0.2± 0.5% 9.3± 0.9%

Mall-attn + ER 85.7± 1.7% 0.1± 0.2% 0.8± 0.2% 88.5± 0.5% −0.8± 0.2% 0.4± 0.2%

Mall-attn + EWC 87.1± 0.4% 0.4± 0.1% 0.6± 0.2% 87.9± 0.5% −0.5± 0.3% 0.6± 0.1%

Table 3: Average accuracy (ACC), forward transfer (FT), and forgetting (CF) of FiLM (top) and vision-language
transformer (bottom) baselines for all datasets. Results are averaged across ten seeds. Standard error after ±.
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