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Abstract. Conducting a dialog in human-robot interaction (HRI) in-
volves complexities that are hard to reconcile by individual research or
engineering works. Towards the development of a robotic dialog agent,
we develop a verbal and visual instruction scenario in which a robot
needs to enter into a dialog to resolve ambiguities. We propose a novel
hybrid neural architecture to learn the robotic part of the interaction. A
neural dialog state tracker learns to process the user input depending on
visual inputs and dialog instances. It uses variables to allow certain gen-
erality to generate the robot’s physical or verbal actions. We train it on
a new visual dialog dataset, test different forms of input representations,
and validate the robot agent on unseen examples. We evaluate our hy-
brid neural network approach in handling an HRI conversation scenario
that is extendable to a real robot. Furthermore, we demonstrate that the
hybrid approach allows generalization to a large range of unseen visual
inputs and verbal instructions.

Keywords: Human-robot interaction - Visual dialog generation - Nat-
ural language processing - Computer vision - Recurrent neural networks.

1 Introduction

Human-robot interaction (HRI) utilizing dialog is a challenge for neural net-
work research. Open-domain dialog agents produce dialog actions of reasonable
quality, but they do not pursue any specific goal [27]. In contrast, for real-world
applications, dialog is usually domain-specific and goal-oriented. Task-oriented
dialog systems show good performance in specific tasks helping in our daily
lives, such as for making a restaurant reservation, receiving orders, getting tech-
nical support, or giving smart-home commands [2]. Beyond these language-based
systems, visually grounded human-robot interaction is usually situated in an en-
vironment that can be perceived visually and with other sensors, and in which
a robot can interact, or execute commands. Verbal interaction usually involves
multi-turn dialog. Due to ambiguities in language or complex scenarios, if one
person wants to instruct another person to perform a certain task, this often re-
quires multiple turns to unambiguously determine the goal. Conducting a dialog
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(a) Conversational scenario. (b) Hybrid neural architecture.

Fig.1: (a) Visually grounded human-robot conversational scenario. The user is
talking to the NICO robot about objects on the table. (b) Hybrid neural architec-
ture. White boxes: Object Detection (OD) and Dialog State Tracker (DST) are
both trained components. Yellow boxes: Automatic Speech Recognition (ASR),
Text to Speech (TTS) and Robotic Arm Planner (RAP) are pre-trained com-
ponents. Blue boxes represent Human-Robot Interaction Policy (HRIP). The
dashed arrows denote conditional input.

that requires disambiguation remains a scientific challenge in visually grounded
human-robot interaction.

The development of visually grounded dialog requires suitable multimodal
datasets. Related areas like Visual Question Answering [10], Visual Dialog [6],
Visual Dialog Generation [7], Image-Grounded Conversations [25], and CLEVR-~
dialog [18] are mainly focussed on understanding the image information, not the
interaction within an environment. A seller-buyer interaction in a virtual shop
is covered in the Situated and Interactive MultiModal Conversations (SIMMC)
dataset [24], where the focus is however on fashion and furniture, but not HRI.

To address this gap, we designed the conversational scenario shown in Fig-
ure la, presenting a new task and dataset in the area of robotic manipulation
research. The robot, Neuro-Inspired COmpanion (NICO) [16], sits at a table on
which there are some common household objects. The user uses natural language
to instruct NICO to pick or point to one of those objects. We assume there are
always three different objects on the table and the robot cannot point to two
objects at once. Sometimes, the user’s command may be ambiguous. For exam-
ple, the user instruction could contain two targets (e.g. Show me the lemon and
apple). NICO can understand that this is an ambiguous instruction and give
feedback. Another situation is that the user gives an unambiguous instruction
(e.g. Point to the red object), but multiple objects have the same color. In
such situations, the robot needs to use visual information to understand the
ambiguity of the command and request the user for additional input. Once, the
user and NICO reach a consensus, NICO will execute the appropriate action.

To solve this task, our agent needs to recognize the objects and relate the vi-
sual information to the objects’ names, colors, and positions as communicated by
language. Our contributions in the HRI domain are: 1) we propose a new task of
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intermediate complexity for visually grounded human-robot conversation, which
deals with the ambiguity between human instructions and the environment. 2)
We provide a multimodal dataset including images and dialog instances related
to the images. 3) We propose a new architecture, a hybrid neural model that
tracks the dialog state for the visually grounded human-robot conversation and
evaluates the model’s performance.

2 Background and related work

The Situated and Interactive Multimodal Conversations (SIMMC) incorporates
multimodal inputs (e.g., vision, memories of previous interactions, and users’
utterances) for multimodal actions (e.g., representing the search results while
generating the agent’s next utterance) [24]. The next generation of SIMMC
2.0 is still focussed on a shopping scenario [17], which is devised of four main
benchmark tasks: Multimodal Disambiguation, Multimodal Coreference Reso-
lution, Multimodal Dialog State Tracking, and Response Generation [17]. The
primary task of SIMMC is dialog state tracking. To solve this task, many stud-
ies focus on transformer architecture, such as Bidirectional Encoder Representa-
tions from Transformers (BERT) [8], Bidirectional Auto Regressive Transformers
(BART) [19] and Generative Pre-trained Transformer (GPT) [29] to solve this
task recently [13,14, 28].

Visual Question Answering (VQA) [10] and Visual Dialog (VisDial) [6] are
used for common-sense learning of visual-language representations, which are
both based on Microsoft Common Objects datasets [21]. In contrast, Guess-
What? [7] is a two-player guessing game, which aims to find an unknown object
in a rich image scene by question-answering strategies based on reinforcement
learning. The CLEVR-dialog [18] dataset focuses on multi-round reasoning learn-
ing in visual dialog, which constructs a dialog grammar that is grounded in the
scene graphs of the images from the CLEVR dataset. Lu et al. [22] present Vision-
and-Language BERT (VilBERT) which extends BERT [8] to process visual and
linguistic input. Murahari et al. [26] pretrained the ViIBERT on the VQA [10]
dataset and fine-tuned it on the VisDial dataset, then created the VisDial-BERT
for multi-turn visually grounded conversations. The augmented extended train
robots dataset [15], which expands the extended train robots dataset [1], offers
tasks for a robotic agent to reach for objects in three-dimensional space based
on augmented reality and a simulation environment. However, in all above ap-
proaches, no dialog studies focus on the visually grounded human-robot interac-
tion domain.

A traditional dialog pipeline usually contains natural language understand-
ing, a dialog manager, and natural language generation. The core part of a
dialog system is the dialog manager, including a dialog state tracker and dialog
policy [4,27]. Recurrent neural networks (RNNs) are usually trained in an end-
to-end fashion to match an observable dialog history to output sentences [11].
A hybrid approach is also attractive for task-oriented dialog modelling, since
it can combinine multiple approaches, such as rule-based and data-driven [9)].
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Table 1: List of instruction utterances. The parts left and right of the slash
can be substituted for each other. An ambiguous instruction refers to multiple
objects. An unambiguous instruction refers to one specific object.

Show me: SM, Where is: WI, Point to: PT, Where are: WA.

Unambiguous|SM/ WI/ PT the [name].

instructions [SM/ WI/ PT the [color] object/ [name].

SM/ PT the [position] object/ [name].

SM/ PT the [color] object/ [name] on the [position].
Ambiguous [SM/ PT the object on the table.

instructions [SM/ WA the [colorl] and [color2] objects.

SM/ WA the [namel] and [name2].

Hybrid-code networks combine an RNN with domain-specific knowledge, which
perform well on the bAbI dataset [3], and are applied to a real customer support
domain [31].

Inspired by the lack of robotic visually grounded datasets, we generated an
artificial multimodal dataset for our HRI domain, which mainly focuses on hu-
man use of language, including naturally occurring ambiguities, to instruct the
humanoid robot to point to an object in the environment. Learning from the
principle of the Hybrid-code networks, we train an RNN for dialog state track-
ing and define an HRI policy for our scenario.

3 Multimodal dataset for human-robot interaction

We propose a dataset consisting of two modalities, visual scenes and conver-
sations in text form. The visual scenes were generated with Blender! and Cop-
peliaSim?. The user and NICO use language to talk about objects’ characteristics
in the scene, such as an object’s position, color, and name.

3.1 Human-robot conversation task definition

The task is set in the context of robot manipulation with human instruction,
which requires understanding user utterances, using symbols and recognizing
objects, and using the acquired knowledge. The subtasks are:

Subtask 1: Opening greetings. The greeting is the start of the conversation.

Subtask 2: Receiving user requests. We assume that the user request is always
related to the objects on the table. Nevertheless, there are still two types of ambi-
guities: ambiguous instructions from user utterances and ambiguous scenes that

! https://www.blender.org/
2 https:/ /www.coppeliarobotics.com/
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Table 2: List of dialog actions.

Tasks No. Content
Subtask 1| a1 ~ a4 |[Greeting], what can I do for you.
Subtask 2| as, (UOI) [Please give me a specific target instruction.
as, (AIR) |I cannot point to multiple things at once.
a7, (UIR) |0k, let me check.

ag, (IC) |image_call
Subtask 3| ag, (NC) |Do you mean the [name]?

a10, (PC) |Do you mean the one on the [position]?
a1, (OI) |0k, let me show you the [name].
@12, (SAR)|There is more than one object you ask for.
a13, (VRF)|I cannot see anything.

Subtask 4 a14 arm_action_call
ais Am I wrong, or do you want to change your mind?
aie It is fine, You can try again by saying hello.
aiy Sorry, I am still learning.
ais Here it is.
alg Do you want to try again, start by saying hello.
a20 You are welcome, See you.

contain multiple objects with the same characteristic (e.g. color). In this sub-
task, the agent clarifies ambiguous instructions from the user. If an instruction
does not contain enough information to identify any object on the table. NICO
will, therefore, ask the user to specify and include more detailed information,
which we call Unspecified Object Instruction (UOI, as). If the user’s instructions
contain multiple names or colors, NICO will announce his inability to point to
multiple objects at once. We term this action Ambiguous Instruction Recogni-
tion (AIR, ag). When the robot receives unambiguous instructions, it will confirm
the valid instruction. We term this action Unambiguous Instruction Recognition
(UIR, a7). After this, NICO will detect the relevant objects using the camera
command Image Call (IC, ag). Table 1 shows all ambiguous and unambiguous
instructions in this subtask.

Subtask 3: Confirming user requests. Upon receiving results from OD, the robot
confirms the user’s request. The main challenge of this subtask is matching an
unambiguous instruction with the environment, so the model can find a corre-
sponding dialog action (refer to Table 2 for a list of all dialog actions). NICO
tackles this matching problem with one of the following approaches. If the user
asks for the position, he replies with the name. We term this action Name Con-
firmation (NC, ag). If the user’s instructions contain a name and/or a color,
NICO replies with the position. We term this action Position Confirmation (PC,
a19). If the user requests an object by its color, name, and position, NICO replies
with the name. We term this action Object Identification (OI, a;1). If the user’s
request contains ambiguous information in relation to the environment, so that
the matching task cannot be fulfilled, the robot should recognize this ambigu-
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ity. An action we term Scene Ambiguity Recognition (SAR, ai2). The robot can
also automatically detect if an image capture failure within the camera occurred,
henceforth called Visual Recognition Failure (VRF, a13).

Subtask 4: Issuing Arm_action_calls. After getting the confirmed information, the
user either gives a negative or an affirmative answer. For the negative response,
the robot will ask for the reason and guide the user to restart the conversation.
When receiving an affirmative response, the robot will call for the arm motor to
execute the specific action.

3.2 Visual scenes

We selected a subset of objects from the Yale-CMU-Berkeley (YCB) objects [5],
representing objects that often occur in everyday situations.We use 28 objects
each for both, the training and test set, where each set contains 9 colors (red (8
objects), blue (3 objects), yellow (5 objects), brown (2 objects), green (1 objects),
orange (3 objects), black (2 objects), white (3 objects), purple (1 objects)). We
selected three different objects out of 28 objects for every scene. Following the
combination formula, we generate 3276 scenes for every set. An ambiguous scene
means objects have the same color. An unambiguous scene means the objects
have three different colors. For each set there are 1136 ambiguous scenes and
2140 unambiguous scenes. The test and training set contain the same number
of objects and the same color balance to let the percentage of ambiguous scenes
be the same (34.7%).

3.3 Conversations

Based on the task that we define in Section 3.1 and the visual scenes, we generate
a dialog instance dataset, which is inspired by Bordes and Weston’s work [3,
30]. We use 15 unambiguous instruction utterances (see Table 1) and create 15
templates for every visual scene. Every template also includes some ambiguous
instructions. Overall, we have 147420 dialog instances for both, the training and
test set. For the training set, there are 117936 dialog instances for training and
29484 dialog instances for validation.

4 Approach

An overview of our hybrid neural architecture is shown in Fig. 1b. Its six compo-
nents are Automatic Speech Recognition (ASR), Text-to-Speech (TTS), Object
Detection (OD), Robotic Arm Planner (RAP), Human-robot interaction policy
(HRIP), and Dialog State Tracker (DST). The cycle begins when the user starts
with a greeting. The very first action of the architecture is to process the user
input with its ASR. The ASR result is then fed into the DST, which classifies the
dialog action (Table 2 states all the dialog actions used in this study). In addi-
tion to the user’s utterance, the DST potentially has two other input modalities,
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Fig. 2: Dialog State Tracker (DST). We use bag of words (BOW) or utterance
embeddings (UE) to represent utterances and image information. These are fed
as input v; at time step t into the network. The output a; at time step ¢ denote
the predicted dialog action. n is the number of the conversational turns of the
person as well as of the agent.

depending on the situation. One is from the OD containing the scene’s visual in-
formation. The other is its previous dialog action. Based on the classified action,
the HRIP determines NICO’s behavior. The behavior entails detecting the object
with its camera (OD), pointing to a target (RAP) or forming appropriate verbal
responses and using T'TS to generate a vocal response. The main contribution of
this work is that the DST can handle the ambiguity in a user’s language input
and in the environment the input pertains to. The OD and DST are both neural
models trained on our datasets. In this paper, the focus is mainly on OD, DST,
and HRIP. Inspired by [31], we call our combination of learning-based DST and
a code-based HRIP a hybrid-code dialog manager.

4.1 Object detection (OD)

Our object detection is realized with the single-stage object-detector RetinaNet
[20]. The neural architecture backbone of RetinaNet is formed by a Feature
Pyramid Network (FPN) and a connected deep residual network. In essence, it
constructs a semantic feature map at different scales and thus compensates for
the CNN’s low resolution on high-level feature maps. The FPN regression and
classification subnetworks perform the actual object detection. In this work, the
RetinaNet is trained on a corpus of one thousand images like the one shown in
Fig. 2. The images are generated using Blender and automatically annotated
with bounding boxes. During the dialog, the OD is invoked by the robot and
supplied with an image of the scene. The RetinaNet subsequently detects the
objects and returns the object names, positions and colors. These attributes can
then be used to formulate appropriate responses through the DST.

4.2 Dialog state tracker (DST)

Multimodal feature representation As shown in Fig. 1b, the whole visu-
ally grounded human-robot dialog is based on multimodal, audio-visual input,
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being the user’s utterance and an image of the environment. However, the DST
receives pure text input (see Fig. 2, image I and utterances U = [uq, ..., u,]).
The two modalities, therefore, have to be processed into text format, so that the
DST can make use of it. Representing natural language can be done in manifold
ways. We decided to use the bag of words (BOW) for its simplicity and utter-
ance embeddings (UE) for its successful applications in other natural language
tasks. In order to create a vector of inputs, we build a vocabulary dictionary
for the training set. For the BOW, we create a vector from the sum of the in-
dividual one-hot vectors of this dictionary. For the UE, we employ a word2vec
model [23] that has been pre-trained on the Google News corpus to obtain word
vector representations, and then, we calculate the mean vector of these rep-
resentations. These representations are applied to both, utterances and image
descriptions. Moreover, each dialog instance d; combines user utterances, image

information and labeled dialog actions (d; = [(u1,a1),...,(I,a:), ..., (un,an)], %
is the position of an image reading within a dialog instance, n is the number of
conversational turns). There is a total of m dialog instances (D = [dy, ..., dy]).

LSTM + FCL Besides the user’s utterances U and image I, which both are
represented by BOW or UE, the previous action (PA) is an additional input
to the DST. Every utterance u; of the dialog instance, its image information I
and its previous action a;_1 are concatenated to form a feature vector. They are
fed into an RNN, specifically, a long short-term memory (LSTM) network [12].
The output of the LSTM is passed to a fully connected layer (FCL), after which
the softmax function is applied. The output of the model are predicted dialog
actions (ai,...,an).

4.3 Human-robot interaction policy (HRIP)

A dialog manager usually contains a dialog state tracker and a dialog policy.
Here, we train a neural network for the state tracking. Additionally, rules for
knowledge extraction and decision-making are needed. When the DST recognizes
that the user gives a specific instruction, HRIP extracts the user’s target and
matches it with the output of the OD. With the matched information, a decision
will be made. Based on the predicted dialog action of the DST, rules determine
the robot’s behavior. Possible robot behavior includes calling for the camera to
get image information, calling for the robot’s arm to execute the specific action
(e.g. point to the object), using the OD result to formulate correct verbal answers
and generating speech to respond to the user.

5 Experiments

During training, each dialog instance constituted its own minibatch, and updates
were computed on full rollouts (i.e., non-truncated backpropagation through
time). Because it is a multi-class classification task, categorical cross-entropy
(CCE) was used to calculate the error terms. We selected the AdaDelta optimizer
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Table 3: Average test accuracy of labeled actions in subtask 2 and subtask 3. Un-
specified Object Instruction (UOI), Ambiguous Instruction Recognition (AIR),
Unambiguous Instruction Recognition (UIR), Image Call (IC), Name Confir-
mation (NC), Position Confirmation (PC), Object Identification (OI), Scene
Ambiguity Recognition (SAR), Visual Recognition Failure (VRF).

Labeled Average accuracy(%)+Standard deviation

actions| BOW (BOW, PA) UE (UE, PA) (BOW, UE) (BOW, UE, PA)
UOI 100+0 100+0 100+0 100+0 100+0 10040
AIR 100+0 100+0 73.984+12.19 77.504+10.45 100+0 100+0
UIR 10040 100+0 98.3340.85 99.5840.63 100+0 10040
1C 100+0 100+0 98.7241.94 99.9140.26 100+0 100+0
NC [78.2445.84 78.96+6.08 98.09+2.18 99.99+0.02 95.51+3.93 97.96+3.29
PC 100+0 99.9440.18 97.764+1.54 99.48+1.52 100+0 96.6449.44
OI 199.56+0.75 100+0 89.24412.99 98.154+2.64 99.814+0.55 97.63+4.40
SAR |91.65+6.3 90.98+7.84 55.79422.32 42.70+15.85 74.17+7.47 67.40+9.97
VRF 100+0 100+0 97.3846.32 99.8340.48 100+0 100+0

[32] to minimize the loss function. We evaluate six different variants of inputs to
the RNN of the DST: bag of words only BOW, utterance embeddings UE only,
bag of words and utterance embeddings (BOW, UE) together, and the previous
action added to all those combinations. Each combination was trained 9 times
with different sampling order for 30 epochs to reduce noise and avoid biases.

5.1 Results

Subtask 1 (Opening greetings) and subtask 4 (Issuing Arm_action_calls) are both
essential parts of our visual grounded human-robot dialog. Since they are not the
focus of our research, we define them in a simple fashion, using the same data in
training and test sets. The DST successfully predicts the correct dialog action
with an accuracy of 100% for all action classes belonging to these subtasks.
Table 3 only shows the results for subtask 2 (Issuing user requests) and subtask
3 (confirming user requests). Mean and standard deviation of the accuracy are
computed from 9 runs. The challenge of subtask 2 is to deal with an ambiguous
instruction from the user, and the challenge of subtask 3 is to correctly combine
the user’s instruction and image input.

Action AIR responds to a type of ambiguous instructions (see table 1). Com-
pared with variants BOW and (BOW, UE) that can predict the dialog action
with 100% of accuracy, variants UE cannot properly react to a user’s unspecific
instruction, achieving only accuracy of 73.98%. Action SAR responds to an am-
biguous scene. The variant BOW performs better than UE and (BOW, UE) in
situations when SAR is the expected dialog action. In unambiguous situations
when action NC is expected, utterance embedding cannot help the model han-
dle ambiguous situations, but it helps the model perform well in unambiguous
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situations. Comparing variant BOW with (BOW, UE), a striking difference is
that the addition of UE helps in NC but has a negative effect in SAR.

5.2 Discussion

The results indicate that using BOW to represent the inputs for the DST model
can be a worthwhile option to tackle visually grounded human-robot dialog state
tracking. For the BOW, we found that one problem is the multiple meanings of
the word orange, which can be either a color or an object name, but is represented
the same via BOW. For the UE in subtask 2, DST may predict a wrong dialog
action, e.g. for Show me the [namel] and [name2], it incorrectly predicts UIR.
The reason is that the UE uses word2vec that does not have a representation
of stop words like and. Furthermore, the pretraining of the UE on a non-related
corpus could explain some issues. For the action SAR in subtask 3, the predicted
dialog action is NC, which means the model misunderstood the user’s instruction
for a position. These limitations of our model are related to the simple utterance
representations, which might be remedied in future work by more sophisticated
sentence embeddings.

6 Conclusion and future work

Integrating visual information into a dialog is an essential necessity for robots to
interact and cooperate with humans naturally. To this end, we propose a visually
grounded human-robot dialog task along with a dataset. Moreover, we designed
a novel hybrid neural architecture to solve this task, entailing a neural model
to track the dialog state and a knowledge-based policy for the robot behavior.
The hybrid nature of the architecture allows integrating state-of-the-art neural
modules for vision and language processing with symbolic reasoning mechanisms.
We explored how to represent user utterance and visual scene inputs to let the
dialog model learn interaction skills. The results show that the simple bag of
words (BOW) method can solve this task better than utterance embeddings
(UE) based on a pre-trained word2vec model. Notably, the model generalizes
to objects in the test set that were never shown in training, indicating that the
model can generalize to any unseen object, provided the OD can recognize it.
Moreover, although the number of dialog actions are fixed, they are dependent
on the scenario and not on the model architecture, thereby allowing adaptation
and application to a multitude of different scenarios and domains.

In future work, we plan to use ill-formed utterances where the user language
does not strictly follow a correct grammar, to train the model and to improve
the model’s robustness. Also, we plan to deploy the model on the real NICO
robot, making the model cooperate with its camera and robot arm (RAP), and
to evaluate our architecture in the real world, including ASR and TTS. Further-
more, more variations in the table scene, like a random number of objects, might
increase the robustness and applicability of the model in the real world.



Learning Visually Grounded Human-Robot Dialog 11

Acknowledgment

The authors gratefully acknowledge support from the China Scholarship Council
(CSC) and the German Research Foundation DFG under project CML (TRR
169). We thank Alexander Sutherland for his advice on the experimental design.

References

10.

11.

12.

13.

14.

15.

Alomari, M., Dukes, K.: Extended train robots. (2016). https://doi.org/10.5518/32
Bagaskara, A., Naufal, A.R., Dhojopatmo, [.E., Abdurrab, A., Budiharto, W.: De-
velopment of smart restaurant application for dine-in. In: Conference on Computer
Science and Artificial Intelligence. vol. 1, pp. 230-235 (2021)

Bordes, A., Boureau, Y.L., Weston, J.: Learning end-to-end goal-oriented dialog.
Preprint arXiv:1605.07683 (2016)

Brabra, H., Bdez, M., Benatallah, B., Gaaloul, W., Bouguelia, S., Zamanirad, S.:
Dialogue management in conversational systems: A review of approaches, chal-
lenges, and opportunities. IEEE Transactions on Cognitive and Developmental
Systems (2021)

Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Bench-
marking in manipulation research: The YCB object and model set and benchmark-
ing protocols. Preprint arXiv:1502.03143 (2015)

Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J.M., Parikh, D.,
Batra, D.: Visual Dialog. In: IEEE Conference on Computer Vision and Pattern
Recognition (2017)

De Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., Courville, A.:
GuessWhat?! Visual object discovery through multi-modal dialogue. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (2017)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep
Bidirectional Transformers for language understanding. arXiv:1810.04805 (2018)
Goel, R., Paul, S., Hakkani-Tiir, D.: HyST: A hybrid approach for flexible and
accurate dialogue state tracking. Preprint arXiv:1907.00883 (2019)

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in
VQA matter: Elevating the role of image understanding in Visual Question An-
swering. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Henderson, M., Thomson, B., Young, S.: Word-based dialog state tracking with
recurrent neural networks. In: 15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. pp. 292-299 (2014)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation.
9(8), 1735-1780 (1997)

Huang, X., Tan, C.S.; Ng, Y.B., Shi, W., Yeo, K.H., Jiang, R., Kim, J.j.: Joint
generation and Bi-Encoder for situated interactive multimodal conversations. In:
AAAT 2021 DSTC9 Workshop (2021)

Jeong, Y., Lee, S.J., Ko, Y., Seo, J.: TOM: End-to-end task-oriented multimodal
dialog system with GPT-2. In: AAAT 2021 DSTC9 Workshop (2021)

Kerzel, M., Abawi, F., Eppe, M., Wermter, S.: Enhancing a neurocognitive shared
visuomotor model for object identification, localization, and grasping with learning
from auxiliary tasks. IEEE Transactions on Cognitive and Developmental Systems
pp- 1-13 (2020)



12

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

X. Sun et al.

Kerzel, M., Strahl, E., Magg, S., Navarro-Guerrero, N., Heinrich, S., Wermter, S.:
NICO—Neuro-Inspired COmpanion: A developmental humanoid robot platform
for multimodal interaction. In: IEEE International Symposium on Robot and Hu-
man Interactive Communication. pp. 113-120 (2017)

Kottur, S., Moon, S., Geramifard, A., Damavandi, B.: SIMMC 2.0: A task-oriented
dialog dataset for immersive multimodal conversations. arXiv:2104.08667 (2021)
Kottur, S., Moura, J.M., Parikh, D., Batra, D., Rohrbach, M.: CLEVR-
dialog: A diagnostic dataset for multi-round reasoning in visual dialog. Preprint
arXiv:1903.03166 (2019)

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O.,
Stoyanov, V., Zettlemoyer, L.: BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. Preprint
arXiv:1910.13461 (2019)

Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollar, P.: Focal loss for dense object
detection. IEEE International Conference on Computer Vision (2017)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollér,
P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: European
conference on computer vision. pp. 740-755. Springer (2014)

Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language tasks. In: Advances in Neural
Information Processing Systems. vol. 32 (2019)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013)

Moon, S., Kottur, S., Crook, P.A., De, A., Poddar, S., Levin, T., Whitney, D.,
Difranco, D., Beirami, A., Cho, E., et al.: Situated and interactive multimodal
conversations. Preprint arXiv:2006.01460 (2020)

Mostafazadeh, N., Brockett, C., Dolan, B., Galley, M., Gao, J., Spithourakis, G.P.,
Vanderwende, L.: Image-Grounded Conversations: Multimodal context for natural
question and response generation. Preprint arXiv:1701.08251 (2017)

Murahari, V., Batra, D., Parikh, D., Das, A.: Large-scale pretraining for visual
dialog: A simple state-of-the-art baseline. In: European Conference on Computer
Vision. pp. 336-352. Springer (2020)

Ni, J., Young, T., Pandelea, V., Xue, F., Adiga, V., Cambria, E.: Recent ad-
vances in deep learning based dialogue systems: A systematic survey. Preprint
arXiv:2105.04387 (2021)

Qian, K., Beirami, A., Kottur, S., Shayandeh, S., Crook, P., Geramifard, A., Yu,
Z., Sankar, C.: Database search results disambiguation for task-oriented dialog
systems. Preprint arXiv:2112.08351 (2021)

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language un-
derstanding by generative pre-training (2018)

Weston, J., Bordes, A., Chopra, S., Rush, A.M., Van Merriénboer, B., Joulin, A.,
Mikolov, T.: Towards Al-complete question answering: A set of prerequisite toy
tasks. Preprint arXiv:1502.05698 (2015)

Williams, J.D., Asadi, K., Zweig, G.: Hybrid Code Networks: practical and efficient
end-to-end dialog control with supervised and reinforcement learning. Preprint
arXiv:1702.03274 (2017)

Zeiler, M.D.. ADADELTA: An adaptive learning rate method. Preprint
arXiv:1212.5701 (2012)



