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Disentangling Prosody Representations
with Unsupervised Speech Reconstruction
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Fuji Ren, Senior Member, IEEE and Stefan Wermter, Member, IEEE

Abstract—Human speech can be characterized by different
components, including semantic content, speaker identity and
prosodic information. Significant progress has been made in
disentangling representations for semantic content and speaker
identity in Automatic Speech Recognition (ASR) and speaker ver-
ification tasks respectively. However, it is still an open challenging
research question to extract prosodic information because of the
intrinsic association of different attributes, such as timbre and
rhythm, and because of the need for supervised training schemes
to achieve robust large-scale and speaker-independent ASR. The
aim of this paper is to address the disentanglement of emotional
prosody from speech based on unsupervised reconstruction.
Specifically, we identify, design, implement and integrate three
crucial components in our proposed speech reconstruction model
Prosody2Vec: (1) a unit encoder that transforms speech signals
into discrete units for semantic content, (2) a pretrained speaker
verification model to generate speaker identity embeddings, and
(3) a trainable prosody encoder to learn prosody representations.
We first pretrain the Prosody2Vec representations on unlabelled
emotional speech corpora, then fine-tune the model on specific
datasets to perform Speech Emotion Recognition (SER) and Emo-
tional Voice Conversion (EVC) tasks. Both objective (weighted
and unweighted accuracies) and subjective (mean opinion score)
evaluations on the EVC task suggest that Prosody2Vec effec-
tively captures general prosodic features that can be smoothly
transferred to other emotional speech. In addition, our SER
experiments on the IEMOCAP dataset reveal that the prosody
features learned by Prosody2Vec are complementary and ben-
eficial for the performance of widely used speech pretraining
models and surpass the state-of-the-art methods when combining
Prosody2Vec with HuBERT representations. Some audio samples
can be found on our demo website1.

Index Terms—Prosody disentanglement, speech emotion recog-
nition, emotional voice conversion.

I. INTRODUCTION

HUMAN speech contains rich information, which in-
cludes semantic content (what is spoken), speaker iden-

tity (who is speaking), and prosodic information (how is it
spoken). Among them, prosody plays an important role in
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characterizing speaking styles, emotional states, and social
intentions. Most importantly, humans express and perceive
emotions via various prosodic cues, for instance, sad speech
often comes along with a low speaking rate, and angry emotion
is usually accompanied by a raised pitch. According to Charles
Darwin [1], emotions are instinctive and present not only
in humans in similar forms but also in many other species.
Human infants can understand adults’ emotions even without
language skills [2]. Therefore, enabling machines to capably
recognize, understand and convey emotions is one of the
crucial steps to achieving true artificial intelligence.

Learning meaningful prosodic representations has gained
attention in recent years. Attention-enhanced Connectionist
Temporal Classification (CTC) [3] and attention pooling [4]
are utilized to dynamically capture useful temporal informa-
tion for Speech Emotion Recognition (SER). Additionally,
deep belief networks [5] and continuous wavelet transform [6]
are utilized to learn prosodic features for Emotional Voice
Conversion (EVC). However, model performance is greatly
limited due to the lack of large-scale and high-quality emo-
tional speech corpora.

Hence, disentangling prosodic information with unsuper-
vised learning has been a promising direction, which includes
Text-to-Speech (TTS) based style learning, such as automati-
cally discovering expressive styles with global style tokens [7].
Moreover, an information bottleneck is used to control the
information flow by careful design, such as in SpeechFlow [8].
In addition, mutual information loss is adopted to purify
prosody representations, such as in a mutual information
neural estimator [9]. However, unsupervised methods usually
require a well-trained Automatic Speech Recognition (ASR)
system to decompose semantic content from speech. It is chal-
lenging to train a qualified ASR model with good performance,
especially on emotional speech, since creating massive labeled
corpora is time- and cost-consuming.

Another method is based on self-supervised learning by
leveraging a large amount of unlabeled speech data. Chen
et al. [10] propose WavLM and achieve state-of-the-art per-
formance by fine-tuning the pretrained model on SER tasks.
Nevertheless, the self-supervised learning models are mostly
trained with mask prediction, similar to BERT [11], which
leads the model to focus more on semantic content and
local variations but neglect non-verbal and global information.
Psychologists [12] found that the superior temporal gyrus—the
site of the auditory association cortex—is more activated by
longer audio, which reveals that humans tend to perceive
emotions with long-term cues. Hence, it is critical to capture
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global or long-term prosodic changes.
The recent self-supervised model HuBERT [13] integrates

quantization into pretraining, where, instead of directly pre-
dicting the masked low-level acoustic features, HuBERT treats
clustered Mel-Frequency Cepstral Coefficient (MFCC) fea-
tures or clustered intermediate layer outputs by k-means as
training targets. It has been proven that the quantization pro-
cedure can successfully filter non-verbal information, such as
prosodic information [14] and speaker identity [15]. Inspired
by the above findings, we propose Prosody2Vec which does
not require any human annotations and reconstructs emotional
speech in an unsupervised fashion by conditioning on three
information flows: (1) a unit encoder which is based on the
pretrained HuBERT model to filter paralinguistic information
and preserve only semantic content, (2) a pretrained Speaker
Recognition (SR) model to generate speaker identity embed-
dings, and (3) a trainable prosody encoder to learn prosody
representations.

Previous works, for instance, NANSY [16] and Speech-
Flow [8], perform controllable or fine-grained speech synthesis
by factorizing detailed prosodic attributes, such as pitch and
rhythm. Instead of disentangling individual attributes, we aim
to learn prosodic representations that reflect the combined
effect of different prosodic attributes. Additionally, current
speech representation models, e.g. HuBERT, focus more on
local semantics modeling on a millisecond time scale, which
results in an incapacity to represent long-term information.
However, the production and perception of emotion usually
require a relatively long, second-level time scale [17].

In addition, previous supervised work using Variational
Autoencoder (VAE) [18] and Vector-Quantize VAE (VQ-
VAE) [19] requires human annotations (text transcriptions)
to provide semantic content. The lack of large-scale labeled
emotional or expressive datasets significantly restricts model
performance. In comparison, the proposed Prosody2Vec model
leverages self-supervised pretraining, quantization, and refine-
ment schemes to represent semantics without text annotations,
which enables Prosody2Vec to train with large-scale datasets
containing variant speaker styles.

Comparing with unsupervised methods, like AutoVC [20]
and SpeechFlow [8], which control information flows by
several carefully designed bottleneck autoencoder modules.
It is complicated and time-consuming to balance different
information flows and determine a suitable dimension through
trial and error. However, we explicitly provide semantic and
speaker information by pretrained models in Prosody2Vec.
Only the prosody encoder needs to be controlled and tuned.

In this paper, our goal is to capture global or utterance-
level variations, which are complementary to the semantic
representations learned by speech representation models. The
main contributions of this paper are:

1) We propose a novel model, Prosody2Vec, to learn
prosody information from speech, which requires neither
emotion labels nor transcribed speech for robust ASR
system building.

2) The SER results on the IEMOCAP dataset reveal
that, after pretraining with large-scale unlabelled data,
Prosody2Vec can successfully capture prosody vari-

ations, which is complementary to the widely used
speech pretraining models, such as Wav2Vec2 [21] and
HuBERT. We surpass the state-of-the-art method when
combining Prosody2Vec with HuBERT.

3) We conduct subjective and objective evaluations on
EVC tasks. The experimental results demonstrate that
Prosody2Vec can effectively convert a given emotional
reference into any speech utterance.

The rest of the paper is organized as follows. Section II
reviews some related work on prosody disentanglement, SER
and EVC. Section III details the proposed Prosody2Vec ar-
chitecture. We introduce the used datasets, Prosody2Vec pre-
training, and evaluate our proposed method on SER, and EVC
tasks in Section IV. We conduct a series of ablation studies to
deelp understand the Prosody2Vec model in Section V. Some
potential applications, such as, zero-shot emotional, speaking,
and singing style transfer, are presented in Section VI. We con-
clude and summarize the results of this paper in Section VII.

II. EXISTING RESEARCH METHODS

In this section, we briefly review related work on prosody
disentanglement, speech emotion recognition, and emotional
voice conversion.

A. Prosody Disentanglement

Prosody disentanglement aims to decompose different
acoustic or phonetic speech attributes, such as pitch, timbre,
rhythm, intonation, loudness, and tempo. Current approaches
can be mainly divided into three parts: (1) TTS-based style
learning, (2) information bottleneck [22], and (3) mutual
information loss.

TTS-based methods force additional attribute encoders to
provide prosodic information when transforming text se-
quences into speech signals. Skerry-Ryan et al. [23] integrate
an encoder module into the Tacotron [23] TTS system to
capture meaningful variations of prosody and successfully per-
form speaking style transfer. Subsequently, Wang et al. [7] in-
troduce “global style tokens” to automatically discover expres-
sive styles. In addition, Variational Autoencoder (VAE) [18]
and Vector-Quantize VAE (VQ-VAE) [19] are adopted to
learn continual and discretized prosody representations from
a reference audio respectively.

The basic idea of information bottleneck approaches is to
control the information flow by carefully designing appropriate
bottlenecks. AutoVC [20] adopts a properly tuned autoen-
coder as the information bottleneck to force the model to
disentangle linguistic content and speaker identity with self-
reconstruction. SpeechFlow [8] extends the AutoVC model
by constraining the dimension of representations and adding
randomly sampled noise to blindly split content, pitch, timbre,
and rhythm from speech. However, bottlenecks need to be
carefully designed and are sensitive to the dimension of latent
space.

The use of mutual information loss is minimizing informa-
tion redundancy between different attributes. To allow more
precise control over different speech attributes, Kumar et al.
[24] formulate a modified Variational Auto-Encoder (VAE)
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Fig. 1. The architecture of Prosody2Vec. During training, the weights in U2V, prosody encoder, attention module and the decoder are updated, while the
HuBERT representations and the k-means algorithm in the unit encoder are performed beforehand, and the speaker encoder is frozen. The model receives
two different mel-spectrograms as inputs and aims to reconstruct a mel-spectrogram similar to the one fed into the unit encoder.

loss function to penalize the similarity between different
attribute representations. Weston et al. [25] introduce a self-
supervised contrastive model that adopts product quantization
to disentangle non-timbral prosodic information from raw
audio.

Different from the aforementioned approach, in this paper,
we aim to disentangle a global prosody representation from
speech instead of factorizing detailed attributes for control-
lable or fine-grained speech synthesis. Different from speech
synthesis, emotion recognition, and conversion tasks rely more
on prosody representations that reflect the combined effect of
different prosodic attributes.

B. Speech Emotion Recognition

In this paper, we only review the recent work on cate-
gorical emotion classification. Advanced models and methods
are proposed to overcome the bottleneck caused by limited
emotional speech corpora. Lakomkin et al. [26] utilize fine-
tuning methods and progressive networks [27] to transfer ASR
representations to emotion classification. In addition, attention-
enhanced Connectionist Temporal Classification (CTC) [3] and
attention pooling [4] are utilized to dynamically weigh the
contribution of temporal changes in an utterance. Furthermore,
different multi-task architectures are designed to learn more
generalized features. For instance, building SER models with
both discrete and continual labels [28], integrating naturalness
prediction as an auxiliary task [29], and exploiting secondary
emotion labels by the perceptual evaluation of annotators after
aggregating them [30].

Inspired by the success of self-supervised pretraining in
ASR tasks, researchers directly utilize pretrained speech rep-
resentations for SER, such as attempting different fine-tuning
strategies [31]. However, modern speech representation models
focus more on local variations or semantic information but
rarely take emotional or prosodic cues into account. In this
paper, we propose to adopt unsupervised pretraining to cap-
ture global prosodic information at an utterance level, which
is complementary to the widely used speech representation
models, such as Wav2Vec2 and HuBERT.

C. Emotional Voice Conversion

The EVC task aims to convert a speaker’s speech from
one emotion to another while preserving semantic contents
and speaker identities. Typically, parallel data is required to
perform frame-to-frame mapping. Şişman et al. [32] utilize
continuous wavelet transforms to map source and target audios
on the side of F0, energy contour, and duration. Subsequently,
deep belief networks and deep neural networks are used
to build mel-cepstral coefficients and F0 mappings respec-
tively [5]. Frame-to-frame methods assume the same utterance
length between input and generated speech. However, different
emotions are conveyed with various segments or syllable
duration, and it is unreasonable to restrict different emotional
speech utterances to have the same duration. In addition,
collecting parallel emotional datasets is expensive and time
demanding.

To tackle the above issues, different models using nonparal-
lel data are thereby proposed. For instance, Cycle Generative
Adversarial Networks (GANs) [33] and StarGANs [34] are
used to predict spectrum and prosody mappings. Besides,
Zhou et al. [35] propose a sequence-to-sequence framework, in
which TTS and SER tasks are jointly trained with EVC. Zhou
et al. [36] propose Emovox to control fine-grained emotional
intensity by integrating intensity and emotion classification
into EVC training. Inspired by the mechanism of speech
production, Luo et al. [37] design a source-filter network
to learn speaker-independent emotional features. Nonetheless,
these systems usually rely on additional annotations, such
as emotion labels, text transcriptions, and speech intensities.
Different from the current EVC methods, we conduct EVC ex-
periments with unsupervised emotional speech reconstruction,
which requires neither paired speech nor additional labels.

III. PROSODY2VEC ARCHITECTURE

To leverage disentangled semantic content by the quanti-
zation procedure in HuBERT, we propose Prosody2Vec, as
shown in Fig. 1, which consists of four crucial modules: a unit
encoder, a speaker encoder, a prosody encoder, and a decoder.
We detail each module in the following subsections.
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A. Unit Encoder

As shown in Fig. 1, the unit encoder firstly extracts latent
representations from original speech signals with pretrained
HuBERT. Then, the k-means algorithm and deduplication
process are used for vector quantization and semantics refine-
ment respectively. The process of quantization and refinement
can effectively remove the speaker and prosody information
from the original speech, which is discussed in Section V.
Lastly, a Unit2Vec (U2V) module transforms the deduplicated
discrete units into latent space for model training. We detail
the quantization and refinement procedures as follows.

1) Quantization: The backbone of the unit encoder is based
on the recent self-supervised model HuBERT which learns
speech representations by predicting masked parts, similar to
BERT [11]. HuBERT2 is pretrained on the LibriSpeech [38]
dataset with 960 hours data. We first extract dense represen-
tations at the frame level for each utterance from waveform
signals.

We denote a sequence of waveform signals as x =
(x1, ..., xT ), where T is the length of an audio waveform. The
audio sample x is transformed into a sequence of continuous
vectors by the pretrained HuBERT:

y = HuBERT (x) (1)

with y = (y1, ..., yL), where L < T . The dense representation
y is often used for downstream tasks, e.g. ASR and SER.

Different from previous work, we quantize continuous vec-
tors into discrete units to filter speaker information and refine
semantic content. The quantization procedure can be per-
formed by the k-means algorithm on the dense representations:

u = k-means(y) (2)

with u = (u1, ..., uL) and ui ∈ {1, N}, where N is the number
of clusters. The dense representations embedded by HuBERT
are quantized into discrete units (cluster labels) u frame by
frame, e.g. ”23, 23, 23, 2, 2, ..., 57”.

2) Refinement: Subsequently, to refine the quantized se-
quences, we perform a refinement procedure since the adjacent
repetitions may carry duration and rhythm information. Specif-
ically, we deduplicate the unit sequence u to ũ by merging and
removing repetitions, e.g. ”23, 23, 23, 2, 2, ..., 57” → ”23, 2,
..., 57”, which purifies the speech units and avoids the leak of
prosody information. As a consequence, Prosody2Vec can only
capture rhythm and duration information from the prosody
encoder. We hereafter use speech units to represent the
deduplicated discrete units and refer to N as vocabulary size.
The purified speech units are utilized to represent semantic
content. Table I shows the discrete speech units of a random
utterance with a vocabulary size of 50, 100, and 200 units.

3) Unit2Vec: The Unit2Vec (U2V) module maps the dis-
crete speech units to a continuous latent space with an em-
bedding layer, followed by three 1D-CNN layers and one
bi-directional Long Short-Term Memory (LSTM) layer. The
detailed configurations are listed in Table II.

2https://huggingface.co/facebook/hubert-base-ls960

TABLE I
SPEECH UNITS FOR THE UTTERANCE OF “I’M DAMN GOOD AT MY

JOB”, WHERE VS IS SHORT FOR VOCABULARY SIZE.

VS Units
50 0 2 15 20 18 0 8 3 27 28 7 46 7 37 20 49 47 45 4 43 31 3

28 27 28 46 37 49 45 41 19 0 31 26 47 35 44 27 40 43 4 7
44 49 25 47 45 0 8 3 46 20

100 71 39 67 54 57 86 68 16 18 66 27 57 31 45 64 53 38 16 50
18 66 78 90 69 90 35 53 9 85 53 73 74 2 50 24 58 32 64 1
66 27 21 98 87 24 17 24 61 24 61 43 16 20

200 14 131 161 42 11 117 110 145 5 155 53 93 156 13 30 156
89 86 144 50 28 113 25 53 93 66 156 146 178 91 58 187
69 127 163 70 177 106 145 108 184 13 156 195 171 98 28
16 26 97 83 155 79 92

B. Speaker Encoder and Prosody Encoder

The speaker encoder is based on the ECAPA-TDNN [39]
speaker verification model [39], which is pretrained on the
VoxCeleb2 [40] dataset and achieves state-of-the-art results
with a 0.87% equal error rate. We show the ECAPA-
TDNN [39] details in Fig. 2, which begins with a Time Delay
Neural Network (TDNN) [41] layer, followed by three SE-
Res2Blocks. Each SE-Res2Block consists of 2 1D-CNN lay-
ers, a dilated Res2Net [42] and a Squeeze-Excitation (SE) [43]
block. Then a 1D-CNN combines outputs from the three pre-
vious SE-Res2Blocks, followed by attentive statistics pooling
and a Fully Connected (FC) layer. The dilation factors used
in the first three SE-Res2Blocks are 2, 3, and 4 respectively.
The channel size used in the above three blocks is 1024 with
a kernel size of 3.

The output vectors with 192 dimensions from the last FC
layer of a model pretrained on the Voxceleb2 dataset are
used as the speaker embeddings. In case the decoder directly
learns prosodic information from speaker embeddings, we
input a different audio belonging to the same speaker to the
speaker encoder during training. The HuBERT representations
and k-means algorithm in the unit encoder are performed
beforehand. During training, the weights in U2V, prosody
encoder, attention module and the decoder are updated, while
the speaker encoder are frozen. The dense representations
of speech signals are extracted by pretrained HuBERT be-
forehand and speech units quantized with k-means are saved
locally. We freeze the pretrained speaker encoder to maintain
the knowledge learned on the big Voxceleb2 dataset and ensure
only speaker-related information is delivered.

The architecture of the prosody encoder is also based on
ECAPA-TDNN, which is the same as the speaker encoder, but
with random initialization. The weights of prosody encoder are
updated by minimizing the mean square error (MSE) between
the generated and original mel-spectrograms. The prosody
encoder is fed with the same mel-spectrograms as the one
used in the unit encoder.

C. Decoder

Our decoder is similar to the one used in Tacotron2 [44].
The decoder reconstructs mel-spectrograms utilizing the out-
puts from the aforementioned three encoders. A location-aware
attention mechanism [45] is used to bridge the encoders and
the decoder. The decoder consists of one unidirectional LSTM



5

TDNN Block

SE-Res2Block 1

Feature Aggregation

Attentive Statistic Pooling

Linear Transformation

SE-Res2Block 2

SE-Res2Block 3

Conv1D+ReLU+BN 

Conv1D+ReLU+BN 

Res2 Dilated Conv1D
+ ReLU+BN 

Conv1D+ReLU+BN 

SE-Block 

Conv1D+Tanh+ 
Conv1D+Softmax 

Conv1D+ReLU 

FC+BN 

Fig. 2. Architecture of ECAPA-TDNN, where SE is short for squeeze
excitation.

layer followed by one linear projection layer to map the
intermediate representations to the dimension of the mel-scale
filter bank. In addition, two FC layers (PreNet) are used to
embed the ground-truth mel-spectrograms into a latent space.

Table II shows the configuration of U2V, attention module,
and decoder. More details about the location-aware attention
mechanism can be found in the approach by Chorowski et al.
[45] and LipSound2 [46].

TABLE II
CONFIGURATION OF U2V, ATTENTION AND DECODER OF PROSODY2VEC.

Layer Kernel Stride Padding Channels/Nodes

U2V
Conv1D 1 5 1 2 512
Conv1D 2 5 1 2 512
Conv1D 3 5 1 2 512
BiLSTM - - - 256

Attention
Attention LSTM - - - 1408

Query FC - - - 128
Memory FC - - - 128

Location Conv1D 31 1 15 32
Location FC - - - 128
Weight FC - - - 1

Decoder
PreNet FC 1 - - - 256
PreNet FC 2 - - - 256

Decoder LSTM - - - 1024
Linear Projection FC - - - 80

IV. EXPERIMENTS

In this section, we describe the setup and datasets used
for the pretraining Prosody2Vec. We conduct comprehensive
assessments and report results for SER and EVC experiments.

A. Datasets

We use spontaneous and emotional speech datasets, i.e.
LRS3-TED [47], MSP-PODCAST [48], MSP-IMPROV [49]

and, OMG [50] datasets, to pretrain the proposed model, then
fine-tune it on IEMOCAP [51] and ESD [52] datasets to
perform SER and EVC experiments respectively. The statistics
of all datasets used in this paper are shown in Table III.

• LRS3-TED [47]: an audio-visual dataset collected from
TED and TEDx talks with spontaneous speech and var-
ious speaking styles and emotions. It is comprised of
over 400 hours of video by more than 5000 speakers
and contains an extensive vocabulary.

• MSP-PODCAST [48]: a large real-scenario dataset in-
cluding extensive emotional speech from podcast record-
ings. It contains speech about various topics, such as
movies, politics, and sports.

• MSP-IMPROV [49]: a multimodal dataset recorded in
spontaneous dyadic interactions in which the emotions
are evoked by an elicitation scheme.

• OMG [50]: an audio-visual dataset collected from
YouTube with restricted keywords, for instance, “mono-
logue”. The dataset allows the exploration of the long-
term emotional behavior categorization by using contex-
tual information.

• IEMOCAP [51]: a multimodal dataset recorded with
elicited emotions by 10 actors in a fictitious scenario.
The dataset provides audio and visual modalities, and
motion information on the head, face, and hands during
communication.

• ESD [52]: an audio dataset with parallel emotional
speech, in which actors are required to act 5 different
emotions with the same text content.

TABLE III
OVERVIEW OF ALL CORPORA USED IN THIS PAPER. SPK: SPEAKERS. UTT:

UTTERANCES.

Dataset #Spk. #Utt. #hours Usage
LRS3-TED 5090 151k 437

Prosody2Vec
pretraining

MSP-PODCAST 1285 62k 100
MSP-IMPROV 12 8k 9.5

OMG ∼500 ∼7.4k 15
IEMOCAP 10 10k 12.5 SER

ESD 20 35k 29 EVC

B. Prosody2Vec Pretraining
We merge the LRS3-TED, MSP-PODCAST, MSP-

IMPROV, and OMG datasets for pretraining. 500 randomly
selected samples from the above datasets are utilized for vali-
dation. We augment training data by perturbing speed with the
factors of 0.9, 1.0, and 1.1. Furthermore, SpecAugment [53]
with two frequency masks (maximum width of 50) is utilized
on the fly during training. In addition, gradient clipping with a
threshold of 1.0, early stopping, and scheduled sampling [54]
are adopted to avoid overfitting. The Prosody2Vec model is
pretrained with a batch size of 30 and 3000 warm-up steps.
We use the Adam optimizer [55] and the cosine Learning
Rate (LR) decay strategy with an initial value of 1e-3. The
experiments are conducted on two 32G memory NVIDIA
Tesla V100 GPUs in parallel. We pretrain three models with a
vocabulary size of 50, 100, and 200 units to explore the effect
of quantization. The entire pretraining procedure takes around
three weeks for each model.
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TABLE IV
WEIGHTED ACCURACY (WA↑) OF SPEECH EMOTION RECOGNITION WITH LEAVE-ONE-SESSION-OUT SETTINGS. NOTE: RESULTS OF

PROSODY2VEC, WAV2VEC2, AND HUBERT LISTED IN THE TABLE ARE FINE-TUNED ON THE IEMOCAP DATASET, WHERE THE
DIFFERENCE BETWEEN SINGLE AND FUSION IS WHETHER IT IS COMBINED WITH PROSODY2VEC. MODEL FUSION IS PERFORMED BY

VECTOR CONCATENATION BEFORE USE FOR CLASSIFICATION BY THE LAST FC LAYER.

Vocabulary Size FBANK Prosody2Vec
Wav2Vec2 Base Wav2Vec2 Large HuBERT Base HuBERT Large
Single Fusion Single Fusion Single Fusion Single Fusion

50
55.67

63.24
66.62

67.12
69.24

70.27
66.88

67.10
70.44

70.88
100 63.40 67.56 70.57 69.03 71.54
200 64.10 69.14 71.21 69.40 72.42

We extract the magnitude using the Short Time Fourier
Transform (STFT) with 1024 frequency bins and a 64ms
window size with a 16ms stride. The mel-scale spectrograms
are obtained by applying an 80-channel mel filter bank to the
magnitude. The model is optimized with Mean Squared Error
(MSE) loss to minimize the distance between the generated
and original mel-spectrograms.

C. Experiments of Speech Emotion Recognition

1) Experimental Setups: The SER experiments are con-
ducted on the widely used IEMOCAP dataset. We merge
“happy” and “excited” into the category of “happy” to balance
each class. Finally, 5531 utterances are used for training and
testing, which include four emotions, i.e. angry, sad, happy,
and neutral. The dataset is comprised of five sessions with
two speakers in each session. We conduct SER experiments
with the following two settings to provide a comprehensive
comparison with previous work [56]:

• Leave-one-session-out is performed with 5-fold cross-
validation. In each round, one session is used for testing
and another random session is used as a validation set.
The remaining three sessions are treated as the training
set.

• Leave-one-speaker-out means using one speaker for
testing in one session and the other speaker in the same
session is utilized for validation. Therefore, 10-fold cross-
validation is performed.

We fine-tune the pretrained prosody encoder with one
additional FC layer to perform emotion classification, in which
LRs of 1e-4 and 5e-4 are used for the pretrained prosody
encoder and for the last FC layer respectively. The fusion
experiments are conducted by concatenating the representa-
tions generated by the prosody encoder with the outputs of
Wav2Vec2 or HuBERT. Then the concatenated vectors are fed
into one FC layer for classification.

2) Evaluation Metrics: We utilize the following two met-
rics to assess the Prosody2Vec performance on SER tasks.

• Weighted Accuracy (WA): the accuracy of all utterances
in the test set.

WA =

∑M
i=1 Ui

N
(3)

• Unweighted Accuracy (UA): the average accuracy of
each emotion class.

UA =

∑M
i=1 Ui/Ti

M
(4)

where M and N represent the number of emotion classes and
the total number of utterances in the test set respectively. Ui

denotes the number of utterances with a correct prediction of
the emotion class i and Ti is the total number of utterances
of emotion class i.

3) Experimental Results of Speech Emotion Recognition:
We compare the performance of using only acoustic FBANK
features, only our pretrained Prosody2Vec, and only pretrained
speech representation models, i.e. Wav2Vec2 and HuBERT,
where the base and large models are trained on 960h Lib-
riSpeech and 60kh Libri-light [57] respectively. In addition,
we also report the results of combining Prosody2Vec with
Wav2Vec2 or HuBERT. As shown in Table IV, Prosody2Vec
surpasses the baseline model using FBANK features but is
not as good as Wav2Vec2 or HuBERT. One reason is that
Wav2Vec2 and HuBERT are trained with larger datasets, 960h
or 60kh, whereas our model is trained on only 460h of
speech data. Another potential reason is that the representa-
tions captured by the prosody encoder are more related to
prosodic variations. In comparison to prosody information,
semantic content learned by Wav2Vec2 or HuBERT is im-
portant for emotion recognition as well, which is also found
in psychology [58]. Further improvement can be obtained
when combining Prosody2Vec with Wav2Vec2 or HuBERT.
Moreover, it seems that a bigger vocabulary size equals better
performance. Hence, we only report the results of vocabulary
size 200 in the rest of the paper.

We compare our model performance with supervised
methods, i.e. CNN-ELM+STC attention, Auido25 [59],
co-attention-based fusion [60], IS09-classification [61],
TCN+self-attention w/AT [62] and self-supervised methods,
i.e. Wav2Vec [63], modified-CPC [64], DeCoAR [65],
Data2Vec [66] and WavLM [10]. We present the leave-
one-session-out results in Table V. Prosody2Vec achieves
competitive results with some supervised models and is
superior to the state-of-the-art model Wav2LM when fused
with HuBERT-Large, since Prosody2Vec captures more
efficient long-term variances on prosody.

For a fair comparison, we retrain SpeechFlow [8] and
SpeechSplit2.0 [67] on the datasets used for Prosody2Vec
pretraining. We then fine-tune the rhythm and pitch encoders
for SER tasks. As shown in Table. V, the results using
the disentangled prosody representations from SpeechFlow
and SpeechSplit2.0 are not good as Prosody2Vec, since only
rhythm and pitch information are decoupled.

As shown in Table VI, we compare our model with pre-
vious supervised and self-supervised work using leave-one-
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Fig. 3. Subjective evaluation on emotion similarity, where X is the original audio or the audio generated by the EVC models listed in the x-axis.
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Fig. 4. Subjective evaluation on target and generated audio naturalness.

TABLE V
RESULTS OF SER ON THE IEMOCAP DATASET WITH 5-FOLD

CROSS-VALIDATION AND LEAVE-ONE-SESSION-OUT SETTINGS.

Methods WA UA
Supervised Methods

Audio25 [59] 60.64 61.32
IS09-classification [61] 68.10 63.80

Co-attention-based fusion [60] 69.80 71.05
TCN+self-attention w/AT [62] 65.00 66.10

MTL [68] 68.29 70.82
SpeechFormer++ [69] 70.50 71.50

Unsupervised/Self-supervised Methods
Wav2Vec [63] 59.79 -

DeCoAR 2.0 [65] 62.47 -
Data2Vec Large [66] 66.31 -
WavLM Large [10] 70.62 -

SpeechFlow [8] 60.43 61.27
SpeechSplit2.0 [67] 62.03 62.96

Our Methods
Prosody2Vec 64.10 65.32

Prosody2Vec + HuBERT Large 72.42 73.25

speaker-out settings. The self-supervised models (Wav2Vec
2.0 and HuBERT large) are first pretrained on a 60k hours
speech dataset, then perform SER on IEMOCAP by partially
fine-tuned. The results of WA and UA further verify that
Prosody2Vec is complementary and beneficial for the perfor-
mance in widely used speech pretraining models.

D. Experiments of Emotional Voice Conversion

1) Experimental Setups: We follow the setups used in
Emovox [36] and conduct emotion conversion with the fol-
lowing three conditions, neutral to angry, neutral to happy,

TABLE VI
RESULTS OF SER ON THE IEMOCAP DATASET WITH 10-FOLD
CROSS-VALIDATION AND LEAVE-ONE-SPEAKER-OUT SETTINGS.

Methods WA UA
Supervised Methods

Attention-BLSTM-CTC [3] 69.00 67.00
HNSD [70] 70.50 72.50

Attention pooling [4] 71.75 68.06
TFCNN+DenseCap+ELM [71] 70.34 70.78

CNN+GRU+SeqCap [72] 72.73 59.71
LIGHT-SERNET [73] 70.23 70.76

Self-supervised Methods
Wav2Vec large [31] 70.99 -
HuBERT large [31] 73.01 -

SpeechFlow [8] 61.51 63.25
SpeechSplit2.0 [67] 63.11 63.88

Our Methods
Prosody2Vec 66.03 66.57

Prosody2Vec + HuBERT Large 73.74 73.93

and neutral to sad. The official split of the dataset is utilized.
It is worth noting that, in contrast to previous work that trains
the model only on one male speaker (003), e.g. Emovox, we
perform multi-speaker EVC in one model. After fine-tuning on
the ESD dataset with a fixed LR of 1e-5, emotion conversion
can be performed by directly replacing the input audio with
expected emotions for the prosody encoder.

2) Evaluation Metrics: The Mean Opinion Score (MOS)
is utilized to subjectively evaluate the similarity between the
generated and original audio. In addition, we use two objective
metrics to measure the converted speech quality, i.e. Mel-
cepstral distortion (MCD) and Root Mean Squared Error for
F0 (F0-RMSE).

• sMOS is similarity MOS that is a subjective metric
evaluated by the human auditory sense. For a fair com-
parison, the audio selection is according to the samples
provided by Emovox3. The sMOS results are evaluated
by 14 subjects consisting of 6 females and 8 males with
ages ranging from 23 to 34 years. During testing, all
14 subjects are assigned to listen to the original audio
first, followed again by the original or a generated one.
Then the subjects rate the emotional similarity of the two
audios with an opinion score in the range of −2 to +2
(−2: absolutely different, −1: different, 0: cannot tell,
+1: similar, +2: absolutely similar).

3https://kunzhou9646.github.io/Emovox demo/
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Fig. 5. The confusion matrices of human recognition on the converted audio by different methods. X-axis: classified labels. Y-axis: actual labels.

TABLE VII
OBJECTIVE EVALUATION OF EMOTIONAL VOICE CONVERSION WITH THE METRIC OF MCD AND F0-RMSE

Model CycleGAN-EVC [33] StarGAN-EVC [34] Seq2Seq-EVC [35] Emovox [36] Prosody2Vec (Ours)
MCD (dB) ↓ 7.67 8.06 7.89 6.38 6.81

F0-RMSE (Hz) ↓ 52.54 56.22 55.51 52.23 53.31

• nMOS is naturalness MOS which is judged on a scale
of 1 (bad) to 5 (excellent).

• MCD is adopted to quantify the distortion between two
mel-scale cepstral features objectively, and smaller values
equal better performance.

MCD = (10/ ln 10)

√√√√2

24∑
i=1

(M t
i −M c

i )
2 (5)

where M t
i is the mel-cepstral of target emotion and M c

i

is the mel-cepstral of converted audio by Prosody2Vec.
• F0-RMSE is utilized to evaluate the distortion of fre-

quency contour objectively.

F0-RMSE =

√√√√ 1

n

N∑
i=1

(F t
i − F c

i )
2 (6)

where F t
i and F t

c represent the F0 of target emotions
and converted audio respectively. It is worth noting that
we calculate the F0 values of the entire utterance, which
includes both voiced and unvoiced regions since unvoiced
segments can convey emotions as well.

3) Subjective Results of EVC: We compare our method
with four baseline models, i.e. CycleGAN-EVC [33],
StarGAN-EVC [34], Seq2Seq-EVC [35], and Emovox. Fig. 3
shows the results of sMOS regarding emotion similarity. The
subjects can obviously discriminate the original emotional
speech and neutral emotion with a minus score of around −1,
as shown in the first bar in each subfigure. In addition, it is also
easy to recognize the original emotional pairs with a score of
around 2, as shown in the last bars. Moreover, Prosody2Vec
obtains higher scores than baselines, which reveals that our
method can smoothly transfer emotional prosody into source
audio. In addition, the naturalness of generated audio by
different methods is reported in Fig. 4. Our method achieves
competitive naturalness compared with previous work. How-
ever, it is still not so good as the target audio.

To further assess the model performance, we also ask the
subjects to recognize the emotion type from a given set
(neural, happy, sad, and angry) during subjective testing. Fig. 5
presents the confusion matrices for each method, the darker

the color, the higher the accuracy. Prosody2Vec outperforms
the four baseline models with a higher accuracy in all three
conversion cases.

4) Objective Results of EVC: As shown in Table VII,
Emovox achieves the best results in both metrics. Prosody2Vec
performs slightly worse than Emovox. By comparing the
converted audio with the target audio, we found that the
audio generated by our model sounds more emotional and
more expressive with different intonations or stresses. Most
importantly, the rhythm and syllable duration are changed
significantly. The phenomenon can be observed in the Fig. 5,
where the duration of generated audio is obviously shorter than
the original one. However, both MCD and F0-RMSE metrics
are calculated frame-by-frame, the changes on duration have
an important influence on the results, which leads to a slightly
worse objective result by our method.

We visualize one sample for each emotion class with mel-
spectrograms and F0 contours, where we transfer the expected
emotional prosody from the reference prosody, as shown in
Fig. 6. Our method generates rich variations in formants and
F0 contours in comparison to the baselines.

V. ABLATION STUDY

In this section, we conduct a series of ablation studies to
deeply understand the model architecture.

A. Ablation Study on Speech Units

We conduct ablation studies to verify the effectiveness of
the deduplication process on prosody information filter with
a vocabulary size of 200 units. Specifically, we train several
models based on the ECAPA-TDNN architecture but with
different input features. The models are evaluated on the
speech emotion recognition task.

As shown in Table VIII, the model trained with audio inputs
achieves better performance than the one trained with the text
modality, since audio modality contains not only semantic
content but also prosody information that is crucial for emo-
tion recognition. The “Duplicated Units” and “Deduplicated
Units” represent the unit sequence with and without repetitions
respectively. The model trained with duplicated units obtains
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Fig. 6. Comparison of Mel-spectrograms and F0 contours generated by different methods for angry, happy and sad emotion conversion. Red dotted ellipses
highlight F0 changes to showcase the similarity between the mel-spectrograms generated by our method and the ground truth.

TABLE VIII
COMPARISON OF SER RESULTS USING DIFFERENT INPUTS.

Inputs WA↑
Audio 55.7
Text 45.8

Duplicated Units 51.3
Deduplicated Units 46.2

higher WA than using text. However, the deduplication units
after removing repetitions achieve similar results to the one
using text (45.8% VS 46.2%), which reveals that the dedupli-
cation process can effectively eliminate prosodic information
from speech.

B. Ablation Study on U2V

We conduct ablation studies to examine the effect of BiL-
STM in the U2V module. Model performance is evaluated on
the SER task by adding one additional FC layer on top of
the prosody encoder for classification. For a fair comparison,
only the weights in the FC layer are updated while the prosody
encoders are frozen. As shown in Table IX, the WA grows with
the dimension of the BiLSTM layer. We finally choose 256
dimensions for BiLSTM to trade off the model performance
and computational costs.

TABLE IX
ABLATION STUDY OF THE U2V MODULE ON SER EXPERIMENTS.

Module Dimension WA↑

BiLSTM
128 57.5
256 59.8
512 60.0

C. Ablation Study on Prosody Encoder

To examine to what extent the semantics and speaker infor-
mation leak from the prosody encoder, we conduct semantics
and speaker probing experiments.

1) Semantics Probing: the semantics probing experiments
are conducted on the RAVDESS [74] dataset which is an
emotional speech dataset recorded by 24 actors and contains
1440 utterances. RAVDESS consists of two kinds of semantic
contents, i.e. A-“Kids are talking by the door” and B-“Dogs
are sitting by the door”.

We first generate speech samples by controlling the inputs
of the unit and prosody encoders with different combinations,
for example, AB means feeding utterances with semantics
A into the unit encoder of a pretrained Prosody2Vec model
while feeding inputs B into the prosody encoder. We then
use the Whisper [75] ASR system to transcribe the generated
speech signals into text transcriptions. Finally, The sentence-
level accuracy of being recognized as A, B, or X is calculated.
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X is neither A nor B, which is caused by word errors in the
results of the Whisper system.

As shown in Table X, the transcribed texts are consistent
with the prosody encoder input with high accuracy (98.8% and
99.2%), which suggests that the semantics of the generated
speech is controlled by the unit encoder and no linguistic
content is leaked from the prosody encoder.

TABLE X
SEMANTICS PROBING ON THE UNIT AND PROSODY ENCODER INPUTS.

Input pair Acc.↑
Unit Prosody A B X

A B 98.8 0.0 1.2
B A 0.0 99.2 0.8

2) Speaker Probing: we found that the decoder may learn
speaker information from the prosody encoder even if speaker
embeddings are provided. Therefore, we force the prosody
encoder to learn only prosody-related information by con-
straining the dimension of prosody representations. We train
Prosody2Vec with different dimensions of the prosody and
the unit encoder, as shown in Table XI. We conduct speaker
verification and SER experiments to examine the residual
speaker information in prosody and unit representations.

• Speaker Verification. Speaker verification is conducted
on the LibriSpeech subset train-clean-100 [38]
which is randomly split into training and testing sets
with the ratio of 9 : 1 from 251 speakers. The prosody
encoder is frozen and one FC layer is added on top of it to
perform classification and maintain the learned prosodic
knowledge. As shown in Table XI, when the dimension
of prosody representation is set to 64, we obtain the
lowest speaker verification accuracy (28.0%). However,
the accuracy increases to 66.7% when the dimension
grows to 320, which reveals that constraining the dimen-
sion of prosody representations can effectively mitigate
speaker information leak from the prosody encoder. In
comparison, the vector dimension has a minor impact on
the unit encoder.

TABLE XI
ABLATION STUDY ON THE DIMENSION OF PROSODY AND UNIT

REPRESENTATIONS.

SV (Acc.) SER (WA)
Dimension prosody unit prosody unit

64 28.0 18.3 63.2 57.3
128 30.1 18.1 63.6 57.5
192 34.5 18.7 64.1 59.3
256 56.1 18.7 63.4 59.8
320 66.7 19.2 61.1 59.4

• Speech Emotion Recognition. In addition, we also
examine the effect of unit and prosody dimensions on
emotion recognition. The SER experiments are conducted
with the leave-one-session settings on the IEMOCAP
dataset. Similar to the speaker verification experiments,
one additional FC layer is added on top of the frozen
prosody encoder. As shown in Table XI, the WA goes
up and then down as the dimension of prosody repre-
sentations increases. The speaker verification experiments

reveal that high dimensions cause speaker information
leaks, which leads to the poor generalization of prosody
representations and degrades the SER performance. As
the unit dimension increases, the SER accuracy also
experiences a slight rise. We finally report the SER and
EVC results with 192-dimensional prosody and 256-
dimensional unit representations respectively in Section
IV. EXPERIMENT to trade-off the performance of SER
and speaker verification.

D. Embedding visualization

To further straightforwardly understand Prosody2Vec, we
visualize the prosody, speaker, and unit embeddings learned
by the three encoders with t-SNE [76]. We choose the audio
samples in the first session of IEMOCAP uttered by two
speakers with 4 emotions, i.e. angry, happy, sad, and neural.
The sentence-level unit embeddings are obtained by averaging
on the time domain. It is noteworthy that all embeddings are
extracted with the pretrained Prosody2Vec without fine-tuning
on the IEMOCAP dataset. As we can observe in Fig. 7, we
color the embeddings in the emotion and speaker dimensions
to explore their representation ability on emotion and speaker
classifications.

For a fair comparison, the representations presented in Fig. 7
come from the pretrained Prosody2Vec which is not fine-tuned
on emotional datasets, since the unit and speaker encoders
will not be fine-tuned on downstream tasks. This is the reason
why Fig. 7 does not show separated clusters on the emotion
domains. We found the same phenomenon in the HuBERT
model. As shown in Fig. 8, the first row is the visualization
of the representations from the pretrained models, and the
second row shows the model outputs after fine-tuning on
emotion classification tasks. We can conclude that although
the representations extracted from the pretrained models can-
not distinguish emotions, they demonstrate great potential
when fine-tuning on domain-specific datasets. Moreover, the
visualizations also reveal that Prosody2Vec synergistically
integrates with the semantic representation model HuBERT.
This harmonious integration results in a noticeably enhanced
performance.

Furthermore, to facilitate an intuitive comparison, we em-
ploy Principal Component Analysis (PCA) to reduce the
frame-level HuBERT representations (1024 dimensions) and
the outputs from the attentive pooling layer in Prosody2Vec
(3072 dimensions) into a single dimension, as shown in
Fig. 9. The audio sample is spoken with breath and laughter,
conveying a sense of happy emotion. Compared with HuBERT,
Prosody2Vec can better represent the timing information, such
as short pauses between words and the durations of segments.
In addition, Prosody2Vec has a different activation on non-
verbal areas, for instance breath and laughter (highlighted with
red circles).

VI. POTENTIAL APPLICATIONS AND DISCUSSION

We have shown that our proposed Prosody2Vec can cap-
ture utterance-level prosody information, which significantly
boosts the performance of SER and EVC tasks. As shown in
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Fig. 9. Visualization of HuBERT and Prosody2Vec representations after
dimension reduction with PCA in the time domain, where sp is short for
short pause. The red dotted ellipses highlight different activation.

Fig. 10, we discuss some potential applications of our model
on cross-lingual EVC and speaking, emotional, and singing
style transfer. Cross-lingual EVC transfers an emotional style
from a different language to the source language. Singing
style transfer refers to transforming speaking prosody into

a given melody. Speaking style transfer intends to change
prosodic attributes, for instance, stress position and intensity
level in the generated audio, while keeping the emotion type
unchanged. Emotional style transfer aims to convert one emo-
tion to a different one, for example, angry to happy. We only
present cross-lingual EVC and singing style transfer in this
section. Speaking and emotional style transfer are discussed
in Appendix A and B respectively. It is worth noting that all
potential applications are conducted without any fine-tuning
with task-related datasets. Lastly, we conclude by discussing
the benefits and limitations of Prosody2Vec.

A. Cross-lingual Emotional Voice Conversion

We found that Prosody2Vec can perform zero-shot cross-
lingual emotional style transfer. As shown in Fig. 11, we
convert an English neutral utterance into another emotion (an-
gry) by transferring the prosodic information from a German
reference. We only use English data for pretraining and the
model never sees any German speech.

Compared to the original English neutral audio, the given
German reference is uttered with a relatively fast tempo. As
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the length of the original audio.

we can see in the second picture of Fig. 11, Prosody2Vec
successfully transfers the tight rhythm in an unseen German
reference into the English utterance but keeps semantic content
invariant. The middle short pause in the original audio is even
removed to perform a rapid tempo.

B. Singing Style Transfer

We visualize the pitch with Parselmouth4 in each mel-
spectrogram since the spoken intonation and the musical
melody are highly related to pitch variance. From Fig. 12
we can see when feeding a singing voice to the prosody
encoder, Prosody2Vec can successfully transfer the melody in
the given reference into the source utterance, which suggests
that Prosody2Vec can be used for music synthesis or style
conversion.

C. Discussion

The style transfer tasks shown above further reveal that our
proposed model successfully disentangles prosodic informa-
tion which is independent of semantic content and robust to
unseen styles and languages. We highly recommend listening
to the audio samples on our demo website5.

4https://parselmouth.readthedocs.io/en/stable/
5https://leyuanqu.github.io/Prosody2Vec
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Fig. 12. Transferring the melody from a singing voice to a spoken utterance,
where pitch is marked in white color.

However, we found that the speech quality for emotion
conversion is damaged sometimes. For example, the distortions
around 2000Hz in the second picture of Fig. 12. The generated
distortions will have a noticeable effect during listening. This
is mainly because, during training, the model always receives
inputs belonging to the same speaker. It is difficult for the
model to only focus on prosodic information when directly
replacing the prosody encoder input with a different speaker
since the model has never seen such combinations during
training.

Moreover, a surprising finding is that when we randomly
replace a few unit values with random numbers or remove
a few k-means clustering units in the input sequences, the
quality or semantics of the generated audio are only slightly
influenced, which reveals that the discrete units are very
robust compared to the text sequences transcribed by ASR
systems. Hence, it is worth further exploring our system under
more challenging conditions, such as speech with noise or
reverberation.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we propose Prosody2Vec to learn emotional
prosody representations from speech, which consists of three
encoders: a unit encoder to transform speech signals into
discrete units, a speaker encoder to provide speaker iden-
tity information, a prosody encoder to extract utterance-level
representations, and a TTS-based decoder to reconstruct mel-
spectrograms by relying on the aforementioned three informa-
tion flows. Only the weights of the prosody encoder and the
decoder are trainable in order to force the prosody encoder
to capture prosodic changes when minimizing the distance
between generated and original speech signals. Prosody2Vec
relies neither on paired audio nor on any emotion or prosody
labels. The experimental results on SER and EVC reveal that
the Prosody2Vec structure learns efficient prosodic features
which achieve considerable improvements compared to the
state-of-the-art models for emotion classification and emotion
transfer.

The current model is trained only for English which is a
non-tonal language. It is worth verifying our methods on some
tonal languages, e.g. Mandarin and Thai. Furthermore, since
emotional expressions are highly influenced by languages and
cultures, it would be interesting to investigate the prosodic
patterns and mechanisms across languages. One major reason
limiting the performance of modern SER systems is the lack
of large-scale and high-quality emotional corpora. Augmenting
emotional speech data using Prosody2Vec with EVC would be
a promising approach.
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[32] B. Şişman, H. Li, and K. C. Tan, “Transformation of prosody in
voice conversion,” in 2017 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference, 2017,
pp. 1537–1546.

[33] K. Zhou, B. Sisman, and H. Li, “Transforming spectrum and
prosody for emotional voice conversion with non-parallel train-
ing data,” in Proc. of The Speaker and Language Recognition
Workshop, 2020, p. 230–237.

[34] G. Rizos, A. Baird, M. Elliott, and B. Schüller, “StarGAN for
emotional speech conversion: Validated by data augmentation
of end-to-end emotion recognition,” in International Conference
on Acoustics, Speech and Signal Processing, 2020, pp. 3502–
3506.

[35] K. Zhou, B. Sisman, and H. Li, “Limited data emotional voice
conversion leveraging text-to-speech: Two-stage sequence-to-
sequence training,” in Proc. INTERSPEECH. ISCA, 2021,
p. 811–815.

[36] K. Zhou, B. Sisman, R. Rana, B. W. Schüller, and H. Li, “Emo-
tion intensity and its control for emotional voice conversion,”
arXiv preprint arXiv:2201.03967, 2022.

[37] Z. Luo, S. Lin, R. Liu, J. Baba, Y. Yoshikawa, and H. Ishiguro,
“Decoupling speaker-independent emotions for voice conver-
sion via source-filter networks,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 31, pp. 11–24,
2022.

[38] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
riSpeech: an ASR corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing, 2015, pp. 5206–5210.

[39] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-
TDNN: emphasized channel attention, propagation and aggre-
gation in TDNN based speaker verification,” in Proc. INTER-
SPEECH. ISCA, 2020, pp. 3830–3834.

[40] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep
speaker recognition,” in Proc. INTERSPEECH, 2018, pp. 1086–
–1090.

[41] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal
contexts,” in Proc. INTERSPEECH. ISCA, 2015, pp. 3214–
3218.

[42] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang,
and P. Torr, “Res2Net: A new multi-scale backbone architec-
ture,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 43, no. 2, pp. 652–662, 2019.

[43] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 7132–7141.

[44] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural
TTS synthesis by conditioning WaveNet on mel spectrogram
predictions,” in International Conference on Acoustics, Speech
and Signal Processing, 2018, pp. 4779–4783.

[45] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and

Y. Bengio, “Attention-based models for speech recognition,”
Advances in Neural Information Processing Systems, vol. 28,
pp. 577–585, 2015.

[46] L. Qu, C. Weber, and S. Wermter, “Lipsound2: Self-supervised
pre-training for lip-to-speech reconstruction and lip reading,”
IEEE Transactions on Neural Networks and Learning Systems,
Aug 2022.

[47] T. Afouras, J. S. Chung, and A. Zisserman, “LRS3-TED: a
large-scale dataset for visual speech recognition,” arXiv preprint
arXiv:1809.00496, 2018.

[48] R. Lotfian and C. Busso, “Building naturalistic emotionally
balanced speech corpus by retrieving emotional speech from
existing podcast recordings,” IEEE Transactions on Affective
Computing, vol. 10, no. 4, pp. 471–483, 2019.

[49] C. Busso, S. Parthasarathy, A. Burmania, M. AbdelWahab,
N. Sadoughi, and E. M. Provost, “Msp-improv: An acted corpus
of dyadic interactions to study emotion perception,” IEEE
Transactions on Affective Computing, vol. 8, no. 1, pp. 67–80,
2016.

[50] P. Barros, N. Churamani, E. Lakomkin, H. Siqueira, A. Suther-
land, and S. Wermter, “The omg-emotion behavior dataset,” in
International Joint Conference on Neural Networks (IJCNN),
2018, pp. 1–7.

[51] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower,
S. Kim, J. N. Chang, S. Lee, and S. S. Narayanan, “IEMO-
CAP: Interactive emotional dyadic motion capture database,”
Language Resources and Evaluation, vol. 42, no. 4, pp. 335–
359, 2008.

[52] K. Zhou, B. Sisman, R. Liu, and H. Li, “Emotional voice con-
version: Theory, databases and ESD,” Speech Communication,
vol. 137, pp. 1–18, 2022.

[53] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data aug-
mentation method for automatic speech recognition,” in Proc.
INTERSPEECH, 2019, p. 1613–1617.

[54] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled
sampling for sequence prediction with recurrent neural net-
works,” in Advances in Neural Information Processing Systems,
2015, pp. 1171–1179.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in The International Conference on Learning
Representations, 2015.

[56] S. Yang, P. Chi, Y. Chuang, C. J. Lai, K. Lakhotia, Y. Y. Lin,
A. T. Liu, J. Shi, X. Chang, G. Lin, T. Huang, W. Tseng, K. Lee,
D. Liu, Z. Huang, S. Dong, S. Li, S. Watanabe, A. Mohamed,
and H. Lee, “SUPERB: speech processing universal perfor-
mance benchmark,” in Proc. INTERSPEECH. ISCA, 2021,
pp. 1194–1198.

[57] J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P.-E.
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APPENDIX

In addition to cross-lingual EVC and sing style transfer, we show
more applications of Prosody2Vec in the Appendix.

A. Speaking Style Transfer
When feeding a reference with a given emotion type into the

prosody encoder, we found that the model generates emotional
audio with different stress positions or intonations. In addition,
a different emotional intensity can arise through conversion. We
compare the original and generated mel-spectrograms in Fig. 13,
in which some differences on stress to demonstrate the transferred
styles are highlighted with red boxes. This application can be used
to augment emotional speech to mitigate class imbalance and data
scarcity problems in the SER task.
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Fig. 13. Speaking style transfer for the utterance of “You know, it’s a pity
you didn’t have any more brandy. It would have made you just a little less
disagreeable”.

B. Emotional Style Transfer
Inspired by the fact that humans can easily manipulate emotion

expressions while not altering the semantic content [77], here we
show that emotion expressions are independent of semantics from
a signal processing perspective. As shown in Fig. 14, the original
utterance “Why is this egg not broken?” is uttered with angry
emotion. We can smoothly convert the source audio to happy or sad
emotions while retaining semantic information.
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