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ABSTRACT

Lifelong learning is a long-standing aim for artificial agents that act in dynamic environments in which an
agent needs to accumulate knowledge incrementally without forgetting previously learned representa-
tions. Contemporary methods for incremental learning from images are predominantly based on
frame-based data recorded by conventional shutter cameras. We investigate methods for learning from
data produced by event cameras and compare techniques to mitigate forgetting while learning incremen-
tally. We propose a model that is composed of both, feature extraction and incremental learning. The fea-
ture extractor is utilized as a self-supervised sparse convolutional neural network that processes event-
based data. The incremental learner uses a habituation-based method that works in tandem with other
existing techniques. Our experimental results show that the combination of different existing techniques
with our proposed habituation-based method can help avoid catastrophic forgetting even more, while

learning incrementally from the features provided by the extraction module.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The human brain possesses an extraordinary ability to learn and
accumulate relevant knowledge from a vast amount of informa-
tion. Due to synaptic plasticity, the brain can learn new represen-
tations or even eradicate previously learned information [1].
Synaptic plasticity is a basis for shaping memory and learning. This
leads to the notion known as lifelong learning [2], which is a long-
standing challenge for artificial agents [3].

Bio-psychological views on the process of learning inspired us
to investigate the applicability and transfer of human learning to
the area of artificial intelligence. Experiments on the primary
visual cortex (V1) in macaques showed limited ability for reorgani-
zation after lesions. Moreover, visual cortex plasticity is very high
during an early period of development and decreases with brain
development [4,5]. Though a direct transfer of these experimental
results is not always reasonable, they provide a solid foundation
for the development of new methods [6].

For our experiments, we base our research on the data produced
by event cameras. Event cameras are biologically inspired dynamic
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sensors, asynchronously capturing brightness changes per pixel
location for a minuscule time step. Compared to conventional
shutter cameras, event sensors have a higher dynamic range and
lower power consumption. Event cameras encode not only space
but also time at a very high resolution. This encoding leads to
the application of event cameras to challenging scenarios, in which
fast responses and a high temporal resolution play a prevalent role.

However, the processing of event-based data requires new
methods or adaptability to current approaches in deep learning
to reveal the true potential of the event cameras. The use of event
cameras for challenging environments requires rethinking the
appropriate methodology. Thus, learning systems that can learn
in harsh environments with power limitations in a continuous
way are needed. Self-supervised learning [7,8] and continuous
learning through experience replay [9-11] provide the foundation
for the construction of such systems. Many of the state-of-the-art
methods for lifelong learning rely on the feature extractor that is
learned in a supervised way [11,9]. However, unsupervised learn-
ing is more appropriate, since it does not require labelled data
and it circumvents the bias-variance tradeoff. Some methods pro-
pose to use powerful extractors like GPT-2 that are trained without
any supervision, but they are applied to the context of language
processing [12]. However, none of these methods were used in sce-
narios in which an agent accumulates information from event-
based data incrementally. Therefore, we propose to use a feature
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extractor for event-based data that is trained without any
supervision.

Hereby we follow a two-staged approach: firstly, we train a fea-
ture extractor, inspired by learning in the visual cortex, from the
event-based data without any labels; secondly, the lifelong learn-
ing component is trained on the data provided by the feature
extractor. The first stage attempts learning the same way infants
do, not using any labels to train a feature extractor. The learning
process merely relies on self-supervision, which has been getting
a lot of attention recently in the research community [13,8]. The
second stage operates on the features provided by the model in
the first stage. These features are extracted representations from
the input data.

We use a sparse convolutional neural network (SCNN) [14,15]
trained in a self-supervised way as a feature extractor for the con-
tinuous learning module. The learned and extracted representa-
tions from SCNN are used then by the continuous learning
module to enable learning in dynamic and novel environments.
For the design of the continuous learning module, we follow the
methodology presented by Ven et al. [9] and introduce the habitu-
ation method [16,11] as an additional technique to mitigate catas-
trophic forgetting. Habituation regulates the adjustability of the
model’s parameters to novel information, thus restricting changes
to previously learned knowledge.

Although we use SCNN trained in a self-supervised way as a fea-
ture extractor, we evaluate additionally Phased LSTM [17] that can
alternatively be used to extract features from the event-based data.
Respectively, we train the Phased LSTM in a supervised way. How-
ever, based on the results presented in Section 4.2, impermissibil-
ity of Phased LSTM for long event-based sequences (Section 5.1),
and biological plausibility of self-supervised learning for feature
representation, we focus on the SCNN.

The main goal of this paper is to develop an approach for life-
long learning from event-based data. We consider object classifica-
tion tasks as the evaluation routine. Thus, the main research
question is defined as:

What methodology is suitable for lifelong learning from event-
based data?.

The main contribution is:

e A habituation-based technique to mitigate catastrophic forget-
ting in neural networks which are trained with the backpropa-
gation method. The proposed habituation-based method
controls the rate of change to the neuronal weights, which
encode information for the previous experiences, with each
newly learned task.

e A modular system for lifelong learning from event-based data
that uses sparse convolutional neural networks and that combi-
nes the habituation mechanism with the already existing tech-
niques to mitigate catastrophic forgetting.

This paper is organized as follows. Section 2 provides the back-
ground information that is needed to follow our approach. Our
method is introduced and explained in Section 3. Section 4 outlines
the experiments we use and their results. Finally, in Section 5 and
Section 6, we discuss the implications of achieved results and sum-
marize our work respectively.

2. Background

In this section, we first describe two alternative methods for
processing data from event cameras: Phased LSTM and histogram
representations. Then we describe methods to mitigate catas-
trophic forgetting, which are to be used in combination.
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2.1. Processing of Events

An event camera is a vision sensor that captures changes in
brightness intensity per pixel location. This change is called an
event. An event from a vision sensor is a tuple (x, y, t, p), where
(x, y) are pixel coordinates, t is a time step, and p is a polarity value,
which indicates an increase or decrease of brightness. The bright-
ness sensitivity of an event camera is determined by a threshold,
and if the brightness change is larger than the threshold, a
p € {—1,+1} will be recorded.

Phased LSTM: Since each pixel in an event camera responds
independently to brightness change, the generated asynchronous
output carries challenges for the processing of such data. The
event-based sequences can be processed by event-by-event meth-
ods or methods that group events [18]. The event-by-event meth-
ods process events sequentially. As an example of such a method,
Phased LSTM [17] extends LSTM [19] by introducing a new time
gate, which allows the updates to cell and hidden states only dur-
ing its open periods. A time gate is a rhythmic oscillator and it is
controlled by three parameters: a period i, the phase shift s of
the period, and the ratio r of the duration of the phase within .
The parameter r controls the open states of a time gate.

Histogram representations: Another approach is to group events
to image-like data. A histogram is one of the possibilities to convert
events to frame representations of events [20]. To convert events to
a histogram, the occurrences of brightness changes at any pixel
location over a particular period of time are counted. Specifically,
the events at pixel locations (x,y) that refer to a brightness increase
are stored in one histogram (h"), and the events that capture
brightness decrease are saved to another histogram (h™) [20]:

hxy)= Y sx—xy-y), (1a)
t;eT pi=+1
Wy = Y sx-xy-y) (1b)
t;eT pi=—1
where
0 if k#j,
- : 5
% {1 if k=]j. @)

Two histograms act then as two input channels to a convolu-
tional neural network (CNN). Since an event camera reacts only
to brightness change, a lot of pixel locations in a histogram can
contain no values. Thus, a histogram represents the salient events
in a scene captured by an event camera. However, a conventional
convolutional operation causes dilation when the input is sparse.
Therefore, a Sparse CNN, which preserves sparseness, is a more
reasonable choice [15].

2.2. Lifelong Learning

Methods that are successfully used to mitigate catastrophic for-
getting rely on regularization-based techniques [21], growing
architectures [11] or wuse replay mechanisms [11,9].
Regularization-based methods restrict the updates to the model’s
parameters that are important for encoding previous knowledge.
One of these methods that estimates this importance is synaptic
intelligence [21] which introduces a regularization term that is
added to the total loss to penalize changes to important parame-
ters while learning a new task. We will present and evaluate a sim-
pler method using a neuron habituation mechanism. The methods
that utilize replay mechanisms store either some previous samples
or learn the representations of previously learned data. A genera-
tive model, in particular a variational autoencoder, can be used
to learn latent representations of data [9].
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The approach for continual learning proposed by Ven et al. [9]
incorporates different techniques. In the following, we describe
the main methods that they apply:

Replay through feedback: Generative replay is one of the meth-
ods to mitigate catastrophic forgetting [22]. Furthermore, a replay
of memories is evident in the brain, where the representations
learned by the hippocampus are replayed to the cortex [23,24].
Generative replay is modelled as a variational autoencoder (VAE)
that has an explicit density estimation [25]. Thus, a latent repre-
sentation in the VAE acts as a generator for previous experiences.
However, another model would be necessary to classify samples.
Instead of using two separate models, the encoder part of the
VAE is shared with a classifier, and a softmax layer is added as a
separate head after the last layer in the encoder. Feedback of a gen-
erative component alters not only the VAE’s parameters but also
that of a classifier. During replay generated samples are labelled
by the classifier not only with the most likely predicted class but
with the predicted probabilities for all possible classes, which is
known as distillation. The final loss for N learned episodes is calcu-
lated as follows:

_l)(gD

R
N replayed +&

C R
gcurrent “(fcurrent replayed

Lo = 3 (Lo + L) + (1 E)

where Zcymrene is the loss for the data of the current episode, Zrepiayed
is the loss for the replayed data of previous episodes, #¢ is the
cross-entropy classification loss, #® is the reconstruction loss of

the VAE, and " is the distillation loss for the generated data with
the predicted probabilities for all possible classes and defined as:

C
9P = T3 ylogpy (Y = clx), (4)
c=1

where c is the class index, T is the temperature parameter that is
used to scale logits in a softmax layer, p! is the probability distribu-
tion of an output layer defined by 6 and T,y. is the predicted dis-
tilled probability, and x is input data. Thus, all learning episodes
are equally weighted, and the model considers the errors of a clas-
sifier and a generator. Sampled data from a generator are used as a
training set together with data of the current task to mitigate for-
getting of a generator. During the first task, a classifier and a gener-
ator are trained on the actual input data. During the second task and
afterwards, a model is trained additionally with the generated sam-
ples from a generator. A classifier is used to predict classes for the
actual and generated samples. These labelled samples are used then
as training data for a generator.

Conditional replay: The prior over the latent representation of a
VAE, often marked as z, is primarily modelled as a normal Gaussian
distribution. Complex representations profit though from the
richer density estimates. The Gaussian mixture is utilized for z,
where each mode represents a class. Though an explicit number
of learnable classes in real-life scenarios is not available, it provides
nevertheless the ability to replay specific data conditioned on
classes, as it happens in the brain too.

Internal gating: A subset of neurons are gated in the decoder
part of a network [26]. The gating is conditioned on the classes that
are being replayed. The gating operation resets all activation values
of the selected neurons to zero. Gating resembles inhibition in the
brain, where some neurons can reduce the responses of the other
neurons, thus forcing selective attention [27,28]. Yet, the inhibitory
process in the brain is much more complicated resulting in com-
plex brain states [29]. Nevertheless, just simple gating conditioned
on internal context can deliver better results.

Internal replay: Two replay routines are possible: replaying
directly input data or just hidden learned representations. The lat-
ter approach is more biologically inspired [24]. Moreover, experi-
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mental studies in neuroscience suggest that lower levels of the
visual cortex reveal less plasticity [30].

In our approach, we incorporate the techniques proposed by
Ven et al. [9] and show that our architecture for lifelong learning
from event-based data can utilize the same methods that are
applied to frame-based images.

3. Modular Lifelong Learning

We propose an architecture that consists of a feature extractor
and a component for continuous learning, visualized in Fig. 1. To
the best of our knowledge, there are no approaches for direct com-
parison. Lungu et al. use a memory-based method for incremental
learning of hand gestures [10]. However, they evaluated their
approach on much simpler event-based data than we do. Sec-
tion 5.1 compares more in detail the application of our approach
and theirs to real-life scenarios.

3.1. Feature Extraction

The feature extraction module serves as a feature provider for
the supervised continuous learning module. It is an independent
module that can be represented with any model that processes
event-based data and provides representative features. Since
event-based data are sequence data encoding visual information,
recurrent neural networks and convolutional neural networks are
the most appropriate current methods for learning from such data.
Thus, to design a feature extraction module, we compare Phased
LSTM and Sparse CNN as possible models to extract features from
events. We train Phased LSTM in a supervised way and Sparse CNN
in a self-supervised way following the batch learning strategy. On
the one hand, we use Phased LSTM as the event-by-event method,
and on the other hand, we utilize Sparse CNN that learns from his-
tograms as grouped events. The comparison of both models should
give a future perspective on their practical use, rather than a direct
comparison and validation, which is not the aim of our research.
Therefore, based on the results provided in Section 4 and our goal
to learn the feature extractor without any provided labels, we
select only the self-supervised approach using Sparse CNN for
the feature extraction module. Self-supervised learning is a subset
of unsupervised learning, where no labels are provided during
training. We follow the same strategy for self-supervised learning
proposed by Chen et al. [8], however, instead of frame-based input,
we provide events as histograms. The model applies random aug-
mentations directly to histograms, thus learning in a contrastive
way by maximizing the agreement between two augmented repre-
sentations of the same object (Fig. 1, bottom).

3.2. Continuous Learning

The module for continuous learning operates on the features
provided by the feature extraction module. The learning process
follows the incremental strategy, where a model has access only
to some object categories during a learning episode. Thus, a learn-
ing episode contains only a subset of non-repeating objects that
belong to the same class or classes. We base our model (Fig. 1,
top) on the architecture proposed by Ven et al. called brain-
inspired replay [9].

Methods for incremental learning usually contain different
techniques to mitigate catastrophic forgetting [11,9]. We extend
the network presented in [9] by introducing habituation [16]. Thus,
we add and combine the habituation method with the techniques
presented and evaluated by Ven et al. [9] to boost the performance
of the model while learning incrementally. Habituation is a
decrease of response to repeated stimuli, found in neurons [16].
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Fig. 1. Illustration of the proposed architecture. Sparse CNN trained in a self-supervised way extracts features from the events represented as histograms (for better
visualization purposes the histograms are converted here to grayscale images). The continuous learning component learns incrementally from the extracted features by
utilizing internal replay through variational autoencoder, synaptic intelligence, and habituation.

Habituation was successfully applied to self-organizing networks
[31,11]. All neurons are initialized at the beginning with a habitu-
ation value of 1. When a neuron responds to input, its habituation
value (also called habituation counter [11]) is reduced. The more a
neuron responds, the lower its counter value becomes. During
training, the calculated updates to the weights are then scaled by
the habituation counter. Thus, a habituation counter suspends a
neuron’s plasticity by not allowing large updates to its weights.
We modify slightly the habituation update rule presented in [11]
and define it as:

Ahi=1-(1-h) -1, )

where h; is the habituation counter of a neuron i, and 7 is the decay
rate that controls the steepness of decay. The larger the decay rate
is, the faster the habituation counters drop.

In contrary to self-organizing networks, where a weight update
rule is defined as the difference between input and neuron
weights, scaled by a learning rate and a habituation rate, we apply
habituation counters to gradients. Updates to the parameters in a
neural network are performed through a backpropagation algo-
rithm [32]. The gradients of the error function with respect to
parameters are collected and the parameters are adjusted by these
gradients. It means that all intermediate gradients for all opera-
tions are stored. We introduce a habituation counter only for the
neurons in the last dense layer of the encoder, since the encoder
represents a sensory information processing unit. Thus, the gradi-
ent of a neuron r; in the last encoder layer [ is scaled by the habit-
uation counter and computed as:

0¥ 0¥

= = . h
l l 1y
or; ar;

(6)
where 9 is a partial derivative, .# is the loss function defined in Eq.

3, and gﬁ is defined as:
i

qu

where s; is a neuron in the layer [+ 1, wj; are the weights between
neurons s; and r;, ¢ is the activation function of a neuron that
defines an output given an input, and ¢ is the derivative of ¢.

ff
81" W}l (7)
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The calculated and downscaled gradient in layer [ is propagated to
all lower layers.

We compare different combinations of brain-inspired replay,
synaptic intelligence and habituation to investigate the effect of
the habituation-based approach on the mitigation of catastrophic
forgetting while learning incrementally.

4. Experimental Results

In this section, we perform experimental studies to evaluate our
proposed system for lifelong learning. Firstly, we describe the data-
sets we use. Secondly, we evaluate the feature extraction module
by providing classification accuracy and visualizing feature maps.
Finally, we investigate the increase of the model’s performance in
terms of classification accuracy during incremental learning when
using the proposed habituation method in tandem with the inves-
tigated techniques proposed by Ven et al.[9].

4.1. Datasets

We train and evaluate the proposed model on the N-Caltech101
and N-MNIST datasets [33].

The N-Caltech101 dataset is based on the Caltech101 dataset
[34] with 101 object categories and contains event-based repre-
sentations recorded by an event camera from static images. While
an image was shown on a screen, an event camera made three sac-
cadic movements to record events. The range of values for x and y
coordinates are [0, 239] and [0, 179] respectively. We use the same
training and test sets as used in [35]". It should be noted that the
whole dataset has an unbalanced number of samples per class, thus
classification accuracy as a metric has a biased interpretation. How-
ever, our aim is to compare different strategies for lifelong learning
and show the possible benefit of the habituation-based method.

The N-MNIST? dataset is converted from the MNIST dataset [36]
which contains 70,000 grayscale images of digits. N-MNIST is created
in the same way as the N-Caltech101 dataset. The resulting event-

1 N-Caltech101 is available at http://rpg.ifi.uzh.ch/datasets/gehrig_et_al_iccv19/N-
Caltech101.zip
2 N-MNIST is available athttps://www.garrickorchard.com/datasets/n-mnist
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based data contain the values in the range [0, 33] as indices for both
x and y coordinates. Thus, a recorded sample in the N-MNIST dataset
contains much fewer events than a sample from N-Caltech101.

4.2. Feature Extraction Module

To first evaluate the feature extraction module under optimal
conditions, the whole training set is utilized to learn a feature
extraction module following the batch learning strategy. A sample
can contain thousands of events, thus the training time of Phased
LSTM becomes intractable since Phased LSTM processes events
sequentially. We address this issue in Section 5.1. Therefore, we
randomly select only 5% of the events, but at least 5000 of them,
when processing a sample from the N-Caltech101 dataset and at
most 2000 events from the N-MNIST sample. A histogram for a
sample from N-Caltech101 is created from at most 50,000 consec-
utive events; this interval of events is randomly placed over the
whole sequence of events. For a sample from N-MNIST, all events
are used to create a histogram.

The Phased LSTM receives the pixel locations (x,y) with the cor-
responding polarity values as input. Table 1 lists the hyper-
parameters that were used. We select randomly a subset of events
from each sample in all datasets and train a model for 20 epochs.
Period v of each neuron is initialized uniformly from exponential
space and is learnable. The number of features in the hidden state
of the Phased LSTM is 128.

We use the same Sparse CNN model proposed in [35], which is
composed of 12 convolutional layers, and of which the first 11 per-
form submanifold convolutional operation. Each convolutional
layer is followed by a batch normalization layer. Additionally, a
max-pooling layer is introduced before the third, fifth, seventh,
and ninth submanifold convolutional layers. The last layer of the
Sparse CNN model is a transformation function that converts the
sparse output to a dense convolutional layer containing 256 kernel
filters of the size 2 x 3. The model is trained for 100 epochs using a
batch size of 128 samples.

Table 2 shows the classification accuracy of the Phased LSTM
and the classification accuracy of a linear classifier trained on top
of the Sparse CNN. Phased LSTM achieves worse results on N-
Caltech101, however, it operates on a portion of events, which
can lead to a drop in performance. Yet, using even 5% of events
for the samples from the N-Calthech101 dataset requires at least
6 times as much training time as the Sparse CNN without consid-
ering the GPU memory consumption. Furthermore, a feature
extractor that is trained in a supervised way on the same training
set that is used for the continuous learning module can provide a
biased judgement. Thus, either a feature extractor that is trained
without labels or a feature extractor that is used to extract features
from different data is a more reasonable approach. In the following

Table 1
Hyper-parameters used to train Phased LSTM.

Neurocomputing 500 (2022) 1063-1074

experiments, we use Sparse CNN as a feature extractor for the con-
tinuous learning module. The same training set that is used to train
the feature extractor is used to train the model of a continuous
learning module.

For a better understanding of what features are learned, we pass
histograms of a sample through each convolutional layer of the
Sparse CNN and save the output produced by the feature maps of
the last convolutional layer. Fig. 2 visualizes feature maps after
the last convolutional layer containing 256 kernel filters. The his-
tograms in Fig. 2 contain noisy data (black squares) since some
pixel locations have a very high number of recorded brightness
changes contrary to other pixel loactions. However, feature maps
provide distinctive features, such as the contours of objects, which
some kernel filters have learned. Thus, kernel filters learned to
focus on the contours of the objects. Feature maps of each object
show a pattern, where background colours are repeated (from left
to right). Such behaviour can be explained by the saccadic move-
ments of an event camera and the random placement of a sliding
window over events. Thus, in addition to the learned holistic fea-
tures, the model learned to represent brightness changes in gen-
eral. Due to the planar movements of the recorded data, non-
monotonic complex backgrounds have a great impact on the
extracted features, as can be seen in Fig. 2 (b).

4.3. Continuous Learning Module

To evaluate the proposed habituation-based method, we com-
bine habituation (H) with the brain-inspired replay (BIR) [9] and
synaptic intelligence (SI) [21] methods. All common hyper-
parameters are the same for all methods to provide a fair compar-
ison. The extracted features provided by the Sparse CNN have a
dimension of 1536 features per sample. The encoder and decoder
are composed of two fully connected layers each, having 2000
units per layer. The latent representation layer is of size 4096.
We train the continuous learning module for 200 and 3000 itera-
tions per learning episode when using N-Caltech101 and N-
MNIST datasets respectively. Based on a different mask for each
class, the activations of 60% of the randomly selected neurons in
the decoder part of the model are set to zero during training.

4.3.1. Comparison of Methods

We use the class-incremental learning strategy, during which a
model has access only to the data of the current learning episode.
During each episode, a model learns to classify objects belonging to
specific object categories which are randomly selected and never
shown in the following episodes again. The accuracy is measured
always on learned object classes so far from the current and previ-
ous episodes.

Batch size Max./Min. events Learning rate Min./Max. period Open gate ratio
N-MNIST 32 2000/- 0.003 In(1)/In(1e6) 0.05
N-Caltech101 30 5%/5000 0.003 In(1)/In(1e6) 0.05

Table 2

Evaluation of the feature extraction module on the N-Caltech101 and N-MNIST datasets. Phased LSTM is trained in a supervised way. Sparse CNN is evaluated by adding and
training a linear classifier on top of frozen features. tUnbalanced training and test sets. ; Balanced training and test sets.

Phased LSTM (supervised)

Sparse CNN (self-supervised)

Training Test Training Test Top-1 Test Top-5
N-Caltech101+ 35.35 30.90 51.49 42.38 62.60
N-MNIST} 94.78 94.07 92.75 92.51 99.65
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Fig. 2. Visualization of feature maps produced by the last convolutional layer containing 256 kernel filters. Only each consecutive 32nd feature map is visualized (from left to
right).

Number of episodes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

) —»— Batch —=— BIR + SI
06§ —— BIR BIR + SI + H
0.5 —e— BIR +H —— Chance

Test accuracy

00 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100

Number of classes learned
Fig. 3. Class-incremental learning on N-Caltech101 over 20 learning episodes. The proposed habituation method combined with synaptic intelligence and brain-inspired
replay achieves the best performance. Batch: all data are used up to the current episode during training, BIR: brain-inspired replay, H: habituation, SI: synaptic intelligence.
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Fig. 3 illustrates class-incremental learning on N-Caltech101.
The number of learning episodes is set to 20. Each learning episode
contains samples from 5 different non-repeating object categories.
The shaded areas show the standard error of the mean (SEM). The
experiment was executed for five trials, and each trial, a new seed
and the random order of classes were used. The Batch method, in
contrary to other approaches, considers all data up to the current
learning episode and could be considered as an upper bound. Dur-
ing the first learning episodes, the test accuracy drops drastically
for the incremental learning and batch strategies. This rapid
decrease is caused by the low representational power of features
provided by the feature extractor. Afterwards, the accuracy gradu-
ally drops down together with the batch learning accuracy. The
BIR + H and BIR + SI methods achieve, after learning data of all epi-
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sodes, on average a classification accuracy of 11.42 + 0.50 SEM and
13.12 £ 0.53 SEM, respectively. The combination of synaptic intel-
ligence and habituation in BIR + SI + H provides a slight but signif-
icant increase in the test accuracy: 15.94 & 0.54 SEM. Though the
test accuracy is low at the end, this is not a primary interest of
our investigation. The methods that can reduce the gap between
the Batch and incremental learning strategies constitute one of
the main objectives of this work.

The habituation-based method (H) has two hyper-parameters:
a decay rate 7 and the fraction y of neurons with the highest acti-
vation values that are allowed to be habituated during each learn-
ing episode. Synaptic intelligence (SI) has a strength parameter ¢
that regulates a tradeoff between past and new experiences. Larger
values for c restrict more the updates to the weights that are

Number of episodes

11 12 13 14 15 16 17 18 19 20
0.22
—*— 7=0.3 and y=0.2 —— 7=0.03 and y=0.2
0.20 —+— 7=03and y=0.02  —%— 7=0.03 and v=0.02
2:0.18
<
5 0.16
z
0.14
+o
)
= 0.12
0.10
0.08
55 60 65 70 75 80 85 90 95 100
Number of classes learned
(a) BIR+ H
Number of episodes
11 12 13 14 15 16 17 18 19 20
0.22 .
—— =105 —e— c=108
0.20 —— c=10°
2:0.18
s
5 0.16
z
0.14
+
)
= 0.12
0.10
0.08
55 60 65 70 75 80 85 90 95 100

Number of classes learned

(b) BIR + SI

Fig. 4. Comparision of hyper-parameters used for habituation and synaptic intelligence during class-incremental learning on N-Caltech101 over 20 learning episodes. For
better visualization purposes only results starting from the 11th learning episode are shown. (a) Classification accuracy for the strategy BIR + H using various values for the
decay rate 7 and the fraction y of neurons that are allowed to be habituated. (b) Classification accuracy for the strategy BIR + SI using three different values for the strength

parameter c. BIR: brain-inspired replay, H: habituation, SI: synaptic intelligence.
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important for previously learned experiences. Fig. 4 compares dif-
ferent values for the hyper-parameters used in the strategies
BIR + H ((a)) and BIR + SI ((b)). Consequently, the strength param-

eter c was set to 107, and the y and 7 values were set to 0.3 and 0.2
respectively for all our experiments, unless indicated otherwise.

4.3.2. Short Learning Horizon

It is obvious that the classification accuracy of the continuous
learning component depends also on the representative power of
the extracted features. While other recent approaches can provide
more representative features from event-based data [37,38], in this
paper, we concentrate on the techniques that can be used to miti-
gate catastrophic forgetting. To show the benefit of well-learned
features by the extraction module on the classification accuracy,
we evaluate our proposed method on the N-MNIST dataset. Fig. 5
illustrates class-incremental learning on N-MNIST, which contains

Neurocomputing 500 (2022) 1063-1074

10 classes. The number of learning episodes is set to 5, thus each
episode contains samples from 2 different non-repeating digit cat-
egories. The BIR + SI + H learning strategy yields the best perfor-
mance: 83.57 + 0.55 SEM.

4.3.3. Long Learning Horizon

Since real-life scenarios are not fully comparable with experi-
mental settings containing a small number of learning episodes,
we try to mimic such conditions by setting the number of learning
episodes to 50. Fig. 6 shows that the combination of synaptic intel-
ligence and habituation in BIR + SI + H preserves the best perfor-
mance by yielding a test accuracy of 12.20 4+ 0.29 SEM, while
BIR + SI achieves 10.49 + 0.36 SEM. The standard error of the mean
over 5 learning trials is lower in comparison to the results achieved
over 20 learning episodes (Fig. 3). This could be explained by the

SEM.
Number of episodes
1 2 3 4 5
1.0
0.9 —
> —
2038
0.7
4+
€06
= —»— PBatch —=— BIR + SI
05 —*+ BIR BIR + SI + H
—e— BIR + H
0.4
2 4 6 8 10

Number of classes learned

Fig. 5. Class-incremental learning on N-MNIST over 5 learning episodes. The proposed habituation method combined with synaptic intelligence and brain-inspired replay
achieves the best performance. Batch: all data are used up to the current episode during training, BIR: brain-inspired replay, H: habituation, SI: synaptic intelligence.
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12 22 32 42

26 31 36 41 46

Ut

—— BIR + SI
BIR + SI + H
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—=— Batch
—— BIR
—— BIR + H

52 62 72 82 92 100

Number of classes learned

Fig. 6. Class-incremental learning on N-Caltech101 over 50 learning episodes. The proposed habituation method combined with synaptic intelligence and brain-inspired
replay achieves the best performance. Batch: all data are used up to the current episode during training, BIR: brain-inspired replay, H: habituation, SI: synaptic intelligence.

1070



V. Gryshchuk, C. Weber, Chu Kiong Loo et al.

lesser complexity of tasks since each added task contains samples
from only 2 different classes.

5. Discussion
5.1. Learning from Event-based Sequences

Event-based sequences impose a substantial restriction on the
selection of methods that can be used for learning from events.
Due to the asynchronous nature of events and their sparsity in
the time domain, more effective methods are required. Two
approaches are possible: model-driven and data-driven methods.
Phased LSTM is an example of a model-driven approach, in which
a new time gate is introduced to learn representations from asyn-
chronous event-based data. Thus, events are processed directly
with no or little modifications. Though Phased LSTM is a conceptu-
ally simple method for processing time-based data, it cannot deal
with event-based sequences that can have millions of time steps,
as computation time becomes intractable.

Yet, Phased LSTM is a rational choice for sequential processing
of asynchronous data, the training time of Phased LSTM becomes
intractable since event cameras have a microsecond temporal
resolution.

Thus, event data impels researchers in machine learning to cre-
ate better approaches for the representation of events. In this work,
we converted events into a histogram. A histogram neglects the
time domain and uses only a part of events by applying a sliding
window. If a window is too large, then detailed temporal informa-
tion gets lost; if a too small window size is used, then many bins
remain empty, particularly for sparse event data, and learning of
features becomes more difficult. We have set the window size to
50,000 for the N-Caltech101 dataset, which is the same value that
was used in [35].

As our experiments show, Phased LSTM is not a practical
method for event-based data that can have thousands of events.
To better understand the scaling properties of Phased LSTM and
Sparse CNN with respect to input, we need to look at data pro-
cessed by these two methods. We discard the internal complexity
of Phased LSTM and Sparse CNN and consider only the size of input
data. Table 3 shows the length of sequences in both datasets aver-
aged over all samples. Since Phased LSTM processes data sequen-
tially, it scales with ¢(N), where N is the number of events per
sample. Scaling of Sparse CNN depends on the distribution of N
events across the input resolution P for each discretization interval.
Thus, Sparse CNN scales with ¢(2P), where the factor of 2 is due to
having one histogram for brightness increase and another one for
brightness decrease. The input size of samples from NMNIST is
34 x 34 and of N-Calctech101 is 180 x 240, which results in
(0(34-34-2) and 0(180 - 240 - 2), respectively. Since the time com-
plexity of Phased LSTM depends extensively on the number of
events, and event-based data contains a large number of events,
as provided in Table 3, Phased LSTM becomes impermissible for
long sequences. Yet, we hypothesize that Phased LSTM can achieve
better results than Sparse CNN if more events per sample can be
considered, as shown in Table 2 for the NMNIST dataset.

In this paper, we consider complex input data with many learn-
ing episodes for incremental learning from events. The most clo-
sely related work, which studies incremental learning from
event-based data, was done by Lungu et al. [10]. They use the iCaRL

Table 3
Length of event sequences averaged over all
training samples.

NMNIST
4,171

N-Caltech101

116,515
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incremental learning algorithm, which stores the selected samples
of previously learned classes [39]. However, the methods and the
datasets used in their work differ substantially from ours. In our
experiments, we use samples with different backgrounds, while
their dataset of hand symbols has a simple and not moving back-
ground. Since the datasets we use for our experiments are con-
verted from frame-based images, the background has the same
rate of motion as an object of interest. This setting is not always
true for real-life scenarios, but sometimes even more evident. For
example, if the object of interest is a person standing on a shore
and a ship is passing in the background, an event camera will cap-
ture mostly the ship but not the person. This can be a limitation of
event cameras for object recognition. Nonetheless, the methods
applied to object recognition build a basis for online object recog-
nition and tracking.

5.2. Habituation

We compare the proposed habituation method in tandem with
the already existing techniques investigated by Ven et al.[9]. The
conducted experiments show that the addition of a simple habitu-
ation mechanism can increase the model’s performance in terms of
classification accuracy while learning incrementally, as shown in
Fig. 3. The achieved results depend on the decay rate t and the
fraction y of neurons that are allowed to be habituated, which reg-
ulate the rigidity and plasticity of the model (Fig. 4 (a)). Yet, the y
and 7 values set to 0.3 and 0.2 respectively show an appropriate
setting for short (Fig. 5) and and long (Fig. 6) learning horizons.
The fixed y and t values can provide a constraint for real-life sce-
narios with an unknown learning horizon.

Habituation counters can be used to investigate the capacity of
a model to learn new information. The habituation counters that
are close to zero for most of the neurons indicate the saturation
of a model. Thus, these neurons cannot learn fully novel informa-
tion due to the restriction imposed by habituation counters. On
the other hand, when most of the habituation counters are close
to one, a model can learn new experiences without highly imposed
restrictions. Fig. 7 shows the distribution of habituation counters in
the last layer of the encoder after incremental learning of all 20
episodes on N-Caltech101. Lower values for t or 7, or both, pre-
serve a model’s capacity to acquire new representations over many
learning episodes (Fig. 7 (b)), while higher values are more suitable
for the scenarios with a small number of learning episodes (Fig. 7
(a)). Neurons with habituated counters close to zero will not be
able to learn new information anymore since the gradients of the
neuron’s weights will be scaled to a minuscule number. In Fig. 4
(a), we show the influence of the 7 and y parameters on the test
accuracy. Higher values for 7 and y represent a low-plasticity set-
ting (red curve), while lower values let the model forget previous
experiences quicker (green curve), thus representing a high-
plasticity setting.

Thus, different values for T and y will affect the model’s perfor-
mance in terms of its ability to preserve previous knowledge and
learn new information. Though the equilibrium between plasticity
and rigidity are exclusive in this sense, a preference has to be
defined beforehand.

5.3. Limitations

The following limitations are worth mentioning that are com-
mon for devising systems for real-life scenarios:

Data: The used datasets are created in artificial conditions,
where an event camera performs saccadic movements to record
motion. Thus, the recorded events represent planar movements
rather than smooth event flow that is found in natural conditions.
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Fig. 7. Distribution of habituation counters for the neurons of the last dense layer in the encoder after incremental learning of all 20 episodes on N-Caltech101 following the
strategy BIR + SI + H that combines brain-inspired replay (BIR), synaptic intelligence (SI), and habituation (H). Vertical axes are scaled to log,. (a) Larger values for the decay
rate 7 and the fraction 7y of habituating neurons let habituation counters decrease faster towards 0, thus restricting further plasticity of a model. (b) Smaller values of T and y

preserve the plasticity.

Consequently, systems that can operate on events in real-time are
of high interest.

Feature extraction module: The features provided by the feature
extraction module for the continuous learning module need to be
universal and generalizable. In our experimental settings, we train
Sparse CNN on the data that is also used for incremental learning.
This setting requires a dataset for feature detector pretraining, and
may not be suitable for novel data from an unknown distribution.

5.4. Future Research

The performance of the proposed method depends on the qual-
ity of extracted features. Thus, a model that can learn meaningful
representations plays an important role. Moreover, a feature
extractor should be a universal representational module for all
kinds of input data. We view the extraction module as an indepen-
dent learning component, which can be swapped with any tech-
nique that achieves best results.

The introduction of habituation to the continuous learning
module showed a positive effect on test accuracy. However, a sce-
nario with many learning episodes can bring the model to its lim-
its. Thus, further investigation and research on methods that can
provide better results for incremental learning are needed. We
contemplate that an additional plasticity modulation will create
better representations inside a network. Specifically, separate inhi-
bitory and excitatory neurons have the potential to create a trade-
off between a controlled forgetting and acquisition of novel infor-
mation [40]. The use of a larger and more sophisticated encoder-
decoder architecture could provide better results and be more
applicable for complex tasks.

6. Conclusion

We presented an architecture for lifelong learning, consisting of
a feature extractor and a module for continuous learning. We
showed that the Phased LSTM is not a favourable method for learn-
ing long event-based sequences for large data. The Sparse CNN
trained in a self-supervised way achieves better results although
histograms discard short time-scale information. To mitigate
catastrophic forgetting, a combination of brain-inspired replay
and synaptic intelligence with a simple habituation method, which
was previously applied to self-organizing neural networks, yields
the best performance over a class-incremental learning of 100
classes. We highlighted the main challenges of the presented sys-
tem for real-life scenarios, in which powerful feature extractors
operating on event flow data are required. The use of event-
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based data recorded in natural conditions and optimal methods
for learning from events are yet to be investigated. With this pre-
sented approach, we provide not only an additional technique to
mitigate catastrophic forgetting while learning incrementally, but
also insights into the application of event cameras for scenarios
in which incremental accumulation of knowledge is crucial.
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