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ABSTRACT
As robots become more advanced and capable, developing trust is
an important factor of human-robot interaction and cooperation.
However, as multiple environmental and social factors can influ-
ence trust, it is important to develop more elaborate scenarios and
methods to measure human-robot trust. A widely used measure-
ment of trust in social science is the investment game. In this study,
we propose a scaled-up, immersive, science fiction Human-Robot
Interaction (HRI) scenario for intrinsic motivation on human-robot
collaboration, built upon the investment game and aimed at adapt-
ing the investment game for human-robot trust. For this purpose,
we utilise two Neuro-Inspired Companion (NICO) - robots and a
projected scenery. We investigate the applicability of our space
mission experiment design to measure trust and the impact of non-
verbal communication. We observe a correlation of 0.43 (p = 0.02)
between self-assessed trust and trust measured from the game and a
positive impact of non-verbal communication on trust (p = 0.0008)
and robot perception for anthropomorphism (p = 0.007) and ani-
macy (p = 0.00002). We conclude that our scenario is an appropriate
method to measure trust in human-robot interaction and also to
study how non-verbal communication influences a human’s trust
in robots.
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1 INTRODUCTION
As robot capabilities become more and more sophisticated, we not
only want them to solve increasingly complex tasks independently
but ultimately aid humans in their day-to-day life. Moreover, such
social robots should act in a way that is reliable, transparent, and
builds trust in their capabilities as well as their intentions [17]. As
soon as humans and robots autonomously work in a team on col-
laborative tasks, trust becomes essential for effective human-robot
interaction [11]. This shows the need for a deeper understanding
of what makes us willing to cooperate with robots and which fac-
tors enhance or destroy trust during interactions. We approach
this topic by adopting the investment game [5], a widely used ex-
periment to measure trust in human-human collaboration. In the
investment game, trust is measured as the amount of money a per-
son is willing to give to an anonymous counterpart, in the prospect
of a future profit. While others have used it in an HRI setting, some
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report limitations and differences when applying it to human-robot
collaboration (which we elaborate on in Section 2). We therefore
adapt the original investment game towards a persuasive HRI co-
operative scenario by scaling up both the robotic agent as well
as the environment. With scaling up we allude to the progression
towards a human-like interaction: a realistic cooperative scenario
as opposed to an abstract exchange of money. We do this by re-
moving the ability of the participant to make choices based on
domain knowledge and introducing a plausible currency for both
humans as well as robotic agents, along with a weighted choice
between two trustees. The result is an HRI scenario, concealed as
a futuristic, immersive space ship adventure containing multiple
rounds of the investment game for participants to develop intrin-
sic motivation to collaborate with the robots. In this scenario, we
utilise two fully autonomous Neuro-Inspired Companion (NICO)
[26] humanoid robots that advise the participant (who acts as the
ship’s commander), a voice-controlled ship AI that guides the ex-
periment, and a large curved projector screen that simulates the
inside of the ship’s cockpit with an interactive video feed (see Fig-
ure 1). During the experiment, participants encounter four different
challenges (e.g., engine failures, impending asteroids) where they
can question the two robots, that always provide two diverging
solutions. Subsequently, the participants are asked to make a choice
by distributing the ship’s resources between the two robots and
themselves, which we evaluate as a quantitative measurement for
trust. The immersive setup allows us to control the emergence,
destruction, and reconstruction of trust in the robotic companions
throughout the game. To improve how the robot is perceived by
the participant and to ensure an experience which results in a more
human-like interaction, we add non-verbal cues to our robots such
as eye gaze towards the participants, facial expressions and gestures
(see Section 3.2.3 for details). Such features of non-verbal communi-
cation (NVC), generally defined as ’unspoken dialogue’ [10], have
previously been shown to account for over 60% of the meaning
in communication for human interactions [46], as they allow us
to communicate mental states such as thoughts and feelings [1].
They are also thought to play an important role in human-robot
interaction, as the implicit, robotic, non-verbal communication im-
proves the efficiency and transparency of the interaction, leading
to better cooperation between human subjects and robots [8]. As
non-verbal communication is essential to both human-human and
human-robot trust [10, 14], we strive to measure the effect of NVCs
in our HRI scenario to assess how well it simulates a natural inter-
action. Therefore, we utilise our novel investment game scenario to
investigate two research questions related to both evaluating trust
as well as the impact of NVCs on trust:

(1) Does our variant of the investment game provide a reliable
measurement for human-robot trust?

(2) Does non-verbal Communication (NVC) affect human-robot
trust positively?

After surveying the latest research on measuring trust in human-
robot interaction and its shortcomings (Chapter 2) we describe our
approach (Chapter 3) and introduce an empirical study to evaluate
our hypotheses (Chapter 4). We discuss the results as well as the
limitations of this study (Chapter 5) and conclude our findings
(Chapter 6) with an outlook on further research.

Figure 1: The experimental setup. On the table there are
three compartments, with the one in the front (closest to the
participant) containing the total amount of 7 energy cells to
distribute.

2 TRUST AND THE INVESTMENT GAME
One of the biggest challenges in human-robot interaction is to de-
velop a more natural relationship with robots. Previous research
shows that people refrain from accepting, tolerating, and using
robotic agents in everyday tasks, mainly because robots still ap-
pear like intruders [53]. A survey by the institute DemoSCOPE
(N = 1007) has found that while 50% would accept information
from a robot, only 16% would be willing to work in a team with
one [2]. A considerable portion of the general population still fears
robots and artificial intelligence, caused by a range of concerns
about the negative impact on interpersonal relationships and poten-
tial job displacement [19, 31]. This begs the question of what could
aid in easing humans into collaboration with a robot. As robots
become more advanced and take greater responsibility in social
jobs such as in the education sector [22, 28, 38] or in the healthcare
industry [32, 37], this requires humans to be able to trust them.
Whereas human-human trust has been extensively studied, human-
robot trust poses new and complex research challenges. Prominent
factors that influence trust in a robot are robot performance and
characteristics [6, 23], and the timing and magnitude of robot errors
[42, 43]. When it comes to trust, the prediction and predictability of
behaviour are fundamental [52]. Constructs such as emotional em-
pathy, shared attention, and mental perspective-taking are essential
to understand, recognise, and predict human behaviour, as well
as adhere to people’s expectations of appropriate behaviour given
circumstances [9]. This behavioural prediction is also transferred
to human-robot trust [52], as humans require building a mental
model, thus anthropomorphising the machine. During the first en-
counter, humans tend to apply social norms to robots just as they
do to humans [41]. In contrast to this however stands the "uncanny
valley" phenomenon: when a robot exhibits aesthetic characteris-
tics too similar to a human, this can subtly alter trusting behaviour
negatively [33]. To quantitatively measure human-human trust, pre-
vious work relies heavily on the investment game (also referred to



as the trust game) [5], an economic experiment derived from game
theory. Berg et al. introduced the investment game in 1995, where
a subject (trustor) invests money in a counterpart. They can decide
which fraction p of their monetary resource will be sent, that is then
multiplied by a predetermined factor of three. The receiving person
(trustee) is free to keep the whole of the tripled amount or can opt
to send a fraction q of the received sum back to the trustor. The
trust is quantitatively measured as the amount of money invested
by the trustor in the trustee. As trust games have been established
to measure trust between humans, some researchers have also used
these games to empirically measure trust between humans and
robots, to varying degrees of success. The amount invested by the
trustor turns out to reflect a mixture of the generalised trust (a stable
individual characteristic) and the specific trust towards the trustee
[21]. So while most studies kept the original setup, some extended
the environment towards a virtual reality setup [21], settings with
multiple robots [18, 54] or switched the roles so that the human
becomes the trustee dependant on the robot’s willingness to invest
[47]. Other variants such as the Give-Some Game slightly change
the rules towards an economic analogue of the prisoner’s dilemma
[13, 14]. A different approach [20] specifically fosters participants
to get to know each other before the experiment, instead of the
double-blind procedure originally proposed, thereby opening up
possibilities to study the influence of social interaction on trust [24].
As previously mentioned, in every social interaction involving trust,
predictability is essential. This is where non-verbal communication
(NVC) plays a major role [14]. Various studies show supportive
evidence that implicit robotic non-verbal communication improves
the efficiency and transparency of interaction [8] and report in-
creased measures of trustworthiness when displaying non-verbal
cues [13]. Robotic arm gestures have been shown to reinforce an-
thropomorphism, liveliness and sympathy [44, 45] — regardless of
gesture congruency [46]. In fact, a lack of social cues of a robot may
cause the participant to employ unwanted testing behaviour where
they try to outwit the machine [36]. A lot of research has gone
into the study of non-verbal communication via the investment
game in human-agent interaction [16, 21, 24, 36, 53, 54]. However,
only a few of them have used robots that can be considered an-
thropomorphic and humanoid, which leaves doubt to whether the
trust measured is comparable to human-human trust. As a matter
of fact, to the best of our knowledge, there has not yet been any
research definitively confirming whether the investment game is
indeed suitable for measuring human-robot trust. While it is a valid,
established trust measuring experiment, the original version lacks
certain features to make it suitable for a human-robot interaction
scenario: a plausible currency for both humans as well as robotic
agents and a human-like interaction without the possibility to make
choices based on domain knowledge. The current work addresses
this gap and aims to create a scenario that provides these features
under which trust in robots can be built and destroyed, in order to
clearly measure the correlation between the trust experienced by a
human, and the trust that is displayed in the trust game.

Figure 2: The Neuro-Inspired COmpanion (NICO)

3 HRI SCENARIO DESIGN
3.1 An Immersive Extension of the Investment

Game
We base our study design around a variant of the investment game,
in which two robotic counsellors compete for investments from the
human participant. However, in contrast to previous competitive
variants [21], our design allows the human subject to allocate their
investment proportionally between the two robots and themselves.
Motivated by the goal to avoid prior experience in the game as an
influence for player investments, we deliberately exaggerate the
design of our game scenario: in our space mission, the participants
impersonate the commander of a space ship with the task to de-
liver important cargo to a distant planet. For this mission, they
are accompanied by two robotic officers. Throughout their journey
through outer space, they encounter challenges such as asteroid
fields and ship malfunctions that require immediate intervention
and collaborative solutions. The robotic officers counsel the partici-
pant by proposing actions to take, and the participant decides by
allocating energy resources towards the actions. The robotic officers
however provide contrary solutions to solve the challenge. Further
more, their advice is designed to be incomprehensible technical jar-
gon, leaving the participant with no other choice than basing their
decision on the impression of the officer’s persona. The scenario
involves four different instances of such events which represent
different scenes of the experiment. By design, their first investment
(regardless of how it is distributed) is unsuccessful and on each of
the following investments they receive positive feedback instead.
This enables us to observe the effects of building and destroying
trust. Our scenario setup entails two important requirements: i)
making the participant reliant on the robots’ expertise to foster
cooperation, and ii) ensuring that the invested currency has an
inherent value to both the participant and the robots. We achieve
the former by designing a challenging scenario setting of a space
journey: all participants have negligible expertise regarding space
travel – the robotic officers, however, are introduced as specifically
designed to advise in interstellar travel, thus should be perceived



as more knowledgeable in the subject matter. This allows us to
circumvent participants making decisions based on their previous
experiences, leaving the participant primarily reliant on the robots’
advice. Our second requirement is to employ a currency that is
considered valuable for both the trustor and the trustee. As we
anticipate that participants do not perceive money as valuable cur-
rency for robotic agents, we adapt the currency with fictional energy
cells, represented by cubes. These energy cells have a value to the
player as they function as a resource that can provide the ship’s en-
gine with the extra power to reach the destination planet faster. On
the other hand, the robotic officers require such energy to execute
their solutions, ensuring safety on the journey. We thereby create
a currency that is perceived as valuable to both trustor and trustee.
Lastly, the participants can proportionally choose how much they
invest, i.e., they can arbitrarily distribute their energy cells between
both robots and themselves. However, as 7 cells are provided in total,
participants are unable to distribute all energy cells evenly among
the 3 options (officer A, officer B, ship engine), effectively forcing
them to voice a preference. These three aspects - the inability of
the participants to make choices based on domain knowledge, a
shared currency between human trustor and robot trustee, and the
weighted choice between two agents - allow us to meet the above-
mentioned requirements for a suitable human-robot interaction
scenario.

3.2 Experimental Setup
An overview of the experimental setup can be seen in Figure 1. The
participant is seated in the cockpit of the ship (depicted by the inter-
active video feed), containing the two robots and a table where they
can distribute the energy cells. One of the main goals of our design
is to achieve an immersive and enjoyable experience for the partici-
pants. Besides concealing our research question, our scenario needs
to establish enough involvement to allow trust-building towards
the robots. For this purpose, we developed a fully autonomous sys-
tem that only requires the experimenter’s intervention in case of
larger failures such as speech recognition errors. Through a state
machine implemented in ROS [50], the following components are
interconnected and synchronised:

3.2.1 The environment. The environment mainly consists of four
projectors aimed at a curved canvas in front of the participant [4].
This provides the scenery for the science fiction scenario by dis-
playing images and video, simulating the inside view of a space
ship cockpit. The canvas shows the journey through the galaxy
with transition videos between scenes and provides visual feed-
back as a warning for the problems which the participant faces
during the mission. Loudspeakers behind the canvas are used for
the ship’s voice and special sound effects such as engine noise and
alarm sounds. Turquoise ambient lighting and dry ice fog create an
atmospheric environment throughout the game, while red lights
are used occasionally to indicate potentially dangerous encounters.

3.2.2 The robots. The two robot officers, non-descriptively named
732-A and 732-B, are located at a maximum angular distance to
each other and the participant. We chose their names to be as
neutral and unrelated to any prior experience of participants as
possible. We utilise NICO (Neuro-Inspired COmpanion) [26, 27],

an open-source social robotics platform for humanoid robots (see
Figure 2) designed by the Knowledge Technology group at the Uni-
versity of Hamburg. NICO is a child-sized humanoid robot that has a
range of programmable capabilities, accessible and customise-able
through the Robot Operating System (ROS) [40]. It has 10 degrees-
of-freedom in the torso (head and arms) and 22 degrees-of-freedom
in the hands (under-actuated, 8 motors) with additional joints for
fingers, which allows for fine-grained gestures and body language.
It is also capable of displaying a range of facial expressions through
LED matrices in its eyebrows and mouth. Both of these robots were
further integrated with loudspeakers in their torsos to produce
enhanced speech.

3.2.3 Non-verbal communication. We equipped one of the robots
with a set of non-verbal cues that show evidence to improve the
transparency of the interaction and reinforce the spoken word
[9]. These cues are: gaze direction via head movements towards
the participant and the other robot, 4 different facial expressions
(happiness, sadness, surprise, anger), as well as gestures towards
the participant such as pointing, saluting or beat gestures. The other
robot adheres to a minimal set of neutral, alternating head and arm
movements to keep the illusion of life [36], such as looking down
at the allocated energy cells and turning their head towards the
speaker. We alternate the condition between participants in order
to control for potential biases.

3.2.4 The vision system. An RGB-camera is placed behind the par-
ticipant to track the movements of the robots and the participant.
Another RGB-camera is placed on top of the canvas to track par-
ticipant expressions and movements. These cameras are used by
the experimenter to observe the participant and to monitor the
experiment. On the table, in front of the players, there are three
heptagonal-shaped compartments holding the energy cells. All
compartments have seven quadratic markers on which the energy
cells must be placed for successful allocation. At the beginning of
the game, all seven energy cells are placed in the commander’s
compartment. An additional RGB-camera is mounted on top of the
commanding table near the ceiling to count and track energy cubes
allocation and de-allocation from the robot compartments. A pic-
ture of the commanding table taken by this camera can be seen in
Figure 3. Object detection is used to handle the energy cell counting
during allocation as well as to confirm when the robot’s compart-
ments are empty before proceeding to the scene. After a request
from the state machine, the object detection algorithm processes
an image (taken from the RGB-camera mounted on top of the com-
manding table) using the OpenCV library [7], to detect the number
of energy cells allocated to each heptagon-shaped compartment.

3.2.5 The speech systems. Interactive dialogue via spoken words
is a cornerstone to enable natural human-like human-robot interac-
tion [29, 49]. We therefore built the space ship AI namedWendigo as
a closed dialogue manager utilising the SMACH1 state management
library, the Automatic Speech Recognition system DOCKS2 devel-
oped by Twiefel andMöller [51], and theAmazon Polly2 Speech Syn-
thesis system. The participants can directly interact withWendigo
and the robotic officers via a microphone located in the middle

1http://wiki.ros.org/smach (accessed 19/06/2020)
2https://aws.amazon.com/polly/ (accessed 19/06/2020)
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Figure 3: Top view of the commanding table. One energy cell
is assigned to each robot and the participant kept five.

of the commanding table. The dialogue is restricted in allowing
the participants to only pick questions from a predefined list and
confirming that they are ready to go on with the experiment. Both
NICO robot officers exhibit the same voice persona represented
by embodied loudspeakers, allowing for a natural sound-source
localisation.

3.3 Protocol & Game Scenes
As formulated in Chapter 3.2, we strive to automate the experi-
ment procedure as much as possible. In the remaining human in-
terventions, we follow a written protocol to diminish experimenter
bias. The participants are welcomed and brought to the anteroom,
where they are asked to fill out a consent form along with a pre-
experiment questionnaire regarding their age, sex, personality (Big
Five Inventory-2 Short [48]), former experience with robots and
computers, risk propensity [35], and trust propensity [34]. They
are then introduced to the space mission task, their role as the
commander, and the two robotic officers who accompany them
on their journey. The experimenter then guides the participant
towards the experiment room and lets them familiarise themselves
with the cockpit environment, the energy cells, the allocation com-
partments and a list of possible questions that can be asked to the
robots throughout the game. The experimenter steps back out of
the cockpit, and both the space ship AI Wendigo and the robotic
officers introduce themselves.Wendigo conducts an introductory
round of the cube allocation concealed as a system check, to ac-
quaint the participant with the experiment procedure and reveal
possible misunderstandings. The experimenter then enters again
to answer any remaining questions before the start of the main
experiment. In the actual experiment, the ship AI Wendigo guides

the participant through four consecutive scenes, each of which
repeats the following structure:

(1) Wendigo draws attention to a challenge (Scene 1: malfunc-
tioning navigation system, Scene 2: interfering asteroids,
Scene 3: inactive autopilot, Scene 4: leaking cooling system).

(2) Both robotic officers advertise their solution for which they
require energy cells.

(3) The participant asks a question from the list of predefined
options, to which the robotic officers reply one after another
and in a randomised order.

(4) The participant is asked to distribute the energy cells as they
see fit, and say ‘Wendigo, I am done! ’when they are done.
Wendigo then provides feedback on the decision outcome
(Scene 1: negative, Scene 2 - 4: positive).

(5) The participant places all energy cells back in their own
compartment. After which the state machine autonomously
transitions to the next scene.

During the experiment, the experimenter takes free-form observa-
tion notes about the body-language cues and speech of the partici-
pant, as well as any noteworthy occurrence during the experiment
that could influence the participant’s data. Following the experi-
ment, the participant is provided with the post-study questionnaire
that asks the participants to evaluate each robot regarding their
persona. For this purpose, we use the Godspeed questionnaire [3]
except for the Perceived Safety category since the participant did not
have to physically interact with the robots and kept their distance
throughout the experiment. The post-study questionnaire also asks
the participant to rate the trustworthiness [6] and performance of
each robot and choose which robot they preferred as an assistant,
as well as provide feedback about shortcomings, immersion, and
their overall experience during the experiment.

4 RESULTS
The study was conducted with 53 participants, of whom 45 finished
the experiment successfully without any technical issue or lan-
guage barrier. In the following sections, we will discuss the general
population statistics, the results of the trust game and the effect of
non-verbal communication (NVC) on trust and evaluate the general
perception of the robots.

4.1 Population Statistics
The following population statistics apply to the 45 participants who
completed the experiment without complications. The experiment
was mainly advertised in a computer science department to peo-
ple with at least some experience and familiarity with computers
and robots, who are comfortable with participating in a science-
fiction game and could understand and speak English fairly well.
While 29% of the participants had worked with robots previously
as developer, 42% had never interacted with a robot prior to the
experiment. Our participants’ mean age (M = 26.8, SD = 7.0) lies
in the range of young adults and 38% of them identify as female.
All of the participants were familiar with computers and 51% of
them have programming experience. The population of participants
were compared to the population of the general population with
results obtained from other studies with a Welch’s t-test for inde-
pendent samples on descriptive statistics with significance level



Figure 4: Correlation of relative trust and allocation metric for the two participant groups.

0.01. Based on the personality questionnaire (Section 3) results,
the participants had average scores for extroversion (M = 4.68,
SD = 1.30), agreeableness (M = 5.22, SD = 1.03) and neuroticism
(M = 3.62, SD = 1.78). However they scored below-average in
conscientiousness (M = 4.79, SD = 0.99) and above-average in
openness (M = 5.50, SD = 1.04) compared to the general German
population of a similar age group [30]. The trust and risk propensity
questionnaires showed that our participants were less prone to take
risks (M = 4.05, SD = 1.32) than the general population [35] yet
more prone to trust [34] (M = 2.93, SD = 0.61).

4.2 Metrics and Grouping Criteria
We introduce two metrics specific to our scenario that allow us to
quantify the differences in the trust placed between the robots.

4.2.1 Allocation Metric: Measures the investment displayed via
energy cells allocated to each single robot. The allocation metric
is calculated as A(R) = cubes(R2)−cubes(R1)

cubes(R2)+cubes(R1)
where cubes(R) stands

for the energy cells allocated to one of the robots R ∈ {R1,R2}.
A(R) < 0 indicates a preference for R1, A(R) > 0 a preference for
R2, while the magnitude in the differences is indicated by |A(R)|.

4.2.2 Relative Trust Metric: Measures the trust expressed in each
robot according to the post-questionnaire. Relative trust is calcu-
lated as T (R) = trust(R2) − trust(R1) where trust(R) is the value
obtained from the different trustworthiness Likert items in the
post-interaction questionnaire, normalised to lie within [0, 1]. As
before, T (R) > 0 indicates a preference for R2 or a preference for
R1 otherwise, and the magnitude in the differences is indicated by
|T (R)|.

Inspecting both the Allocation Metric and the Relative Trust metric
over consecutive scenes, we can segment the participants into two
groups:

4.2.3 The Alternating-Minimum Investment Group (N = 16): Dur-
ing the exploratory data analysis, two outstanding gameplay pat-
terns were observed. These two patterns are defined by specific

behaviour throughout the game, participants that showed either
one or both of these behaviours were grouped together:

• Minimum Investment Behaviour: This behaviour resembles a
lack of engagement in the game. Three of the participants
investing less than one-third of the available cubes were con-
sidered disengaged. A threshold of fewer than 10 energy cells
allocated in total throughout the four scenes was considered
as a criterion for this group.

• Alternating Investment Behaviour: The energy cell allocation
results indicated that some participants changed their minds
about the robot they trusted more throughout the game. A
group of 14 participants changed their mind at every scene
as they would alternate between either allocating more en-
ergy cells to one robot or the other, or allocating an equal
amount to both robots. These alternating participants did
not particularly trust or prefer one robot over another to
invest in throughout the game.

Further analysis of the alternating-minimum investment group
showed that there is no link between these patterns and one specific
robot, nor the NVC variable. As such, this behaviour did not depend
on the content of speech or appearance of either of the robots.

4.2.4 The Main Group (N = 29): This is the group of participants
that did not show either of the two aforementioned behaviours: the
majority of the participants. With a Mann-Whitney U test for inde-
pendent samples we found that these participants had no notable
differences to the alternating-minimum investment group with re-
gards to risk and trust propensity. They, however, obtained a lower
score in Neuroticism (p = 0.024) in the personality questionnaire
than the alternating-minimum investment group.



4.3 Transferability of the Investment Game
The aim of our study is to verify that our scaled-up version of
the investment game can be used to measure trust in HRI. The
results were evaluated separately on the main group (N = 29)
and the alternating-minimum investment group (N = 16). For this
the coherence between measured trust and self-assessed trust was
evaluated by means of the Spearman test for correlation on the
previously introduced metrics: the allocation metric represents
the measured trust and the relative trust metric represents the self-
assessed trust. A statistically significant correlation can be observed
for the main group (correlation = 0.43, p = 0.02), however not for
the alternating-minimum investment group (correlation = −0.24,
p = 0.37). A comparison between both groups can be seen in Figure
4. In the standard human-human investment game, the amount of
money invested by the trustor represents the trust in the trustee.
As such, the observed correlation supports the hypothesis that our
variation of the investment game between human and robot works
much like the investment game between two humans. The fact that
alternating-minimum investment behaviour was found also in a
simple setting [36] and that there was no relation between the alter-
nating behaviour of the participants and the robot characteristics
show that the setting had no impact on the effectiveness of the trust
game. This supports our hypothesis, that our scaled-up version of
the investment game can indeed be used as a measure of trust.

4.4 Impact of Non-verbal communication
(NVC) on the Perception of the Robot

After ensuring that it is indeed possible to measure trust in human-
robot interaction with our investment game, as shown by the cor-
relation, we further look into the impact of NVC on trust in the
robot but also on other characteristics of the robot. As has been
mentioned previously, NVC plays a significant role in human inter-
action but also in the efficiency and transparency of the interaction
between humans and robots [11]. In our case, we find that these
non-verbal cues have indeed made an impact on the trust in the ro-
bot as well as on its perceived anthropomorphism and animacy. We
analyse the main group which didn’t show alternating-minimum
investment behaviour (N = 29) where it has been established that
the game does measure trust. For this main group, the non-verbal
communication of the robot had an impact on the number of energy
cells received. This impact was observed in the first scene, the only
scene where the participant had no previous disappointment re-
lated to any of the robots, but had already gotten to know the robot.
In this scene, the robot that showed non-verbal communication
obtained a significantly higher amount of energy cells compared
to the other. The one-sided Wilcoxon test for independent sam-
ples between the distribution of the energy cells for the robot with
NVCs and the robot with minimal NVC (MNVC) confirmed this
(p = 0.0008). Independent of the gameplay choices, for all partici-
pants (N = 45) the robot showing NVC seemed more human-like
and animated. As can be seen in Figure 5, the Godspeed values
for anthropomorphism (p = 0.008) and animacy (p = 0.00001) are
significantly distinct when comparing the NVC / MNVC conditions
with a Mann-Whitney U test, whereas this is not the case for like-
ability (p = 0.23) and intelligence (p = 0.24). The observed values
for anthropomorphism support our hypothesis that the NVC robot

Figure 5: Effect of non-verbal communication (NVC) and
minimal non-verbal communication (MNVC) on Godspeed
items

invokes more trust, which is consistent with findings of similar stud-
ies. Mortham et al. [52] state that the perceived anthropomorphism
of the robot increases the trust in the robot, especially for non-
specialist humans, as the human needs to create a mental model
for the robot to trust it. Furthermore, an increase in NVC leads to
an increase in motion which subsequently leads to more perceived
animacy [39]. However, likeability seems to not be affected by the
use of NVC, potentially because the quantity and type of gestures
used for non-verbal communication vary with culture [15]. Thus
the degree to which a robot moves does not necessarily influence
the likeability of the robot, as this is a personal preference that can
vary across participants. Consistent with previous research [12],
there are no perceived differences in intelligence either.

Our results show a correlation between trust measured by the
investment game and the self-reported trust from the questionnaire.
This gives us evidence that the scaled-up investment game can be
used as a tool for measuring human-robot trust and therefore it
can have practical applications in future experiments to study the
impact of different variables (such as NVCs) between robots on
how trustworthy the human perceives them. We anticipate that
this serves as a positive example of extending socioeconomic exper-
iments to a human-robot social interaction setting. Our experiment
revolves around three main characteristics: the weighted choice be-
tween two agents, the inability of the participants to make choices
based on domain knowledge, and the additional incentive for in-
teraction between the trustor and the trustee. Maintaining these
characteristics our scaled-up investment game can be adapted to a
variety of situations and environments where trust but also NVCs
play a big role in people’s well being and productivity. Such envi-
ronments comprise, but are not limited to, a work environment or
a public service environment. In our study a futuristic environment
was chosen as the majority of people know robots from media and
science fiction stories [25]. We hypothesise that this is not a limit-
ing factor for the replication of our study, although this should be
subject to further research.



5 DISCUSSION AND FUTUREWORK
Overall, our results provide evidence that our variant of the in-
vestment game provides a reliable measure for human-robot trust
and that non-verbal communication affects human-robot trust posi-
tively. However, there are some drawbacks whichwe discuss further
in the next section.

5.1 Gameplay Behaviour
In our study, we found different game play behaviours that identify
the two groups on which results were compared. The alternating-
minimum investment group, as the name suggests, either alternated
their investment of invested little in the robots which shows no
engagement in the game. We were not able to measure a significant
trust correlation for this group of participants, whereas the main
group showed a significant result for this correlation. We hypothe-
sise that the participants in the alternating-minimum investment
group could have been alternating their strategies to infer the ex-
periment research question or to simply test the system, this could
be due to the fact of the experiment being advertised in a computer
science department. Some participants might also not like the exper-
imental setup or not feel immersed enough to participate. This type
of behaviour indicates an insufficient foundation to establish trust
for some of the participants, though further research is necessary
to study their particular motivations. Mota et al. [36] observed that
when a human needs to judge the trustworthiness of a robot, they
draw on past social experiences with humans or try to build social
experience with the robot. Due to insufficient shared social cues
between humans and robots, humans are mostly incapable of deter-
mining the trustworthiness of a robot based on past experiences. In
our experiment, almost half of the participants had never interacted
with a robot previously. Also, building social experience with the
robot was enforced by making the participant ask them one ques-
tion before each round of cube allocation. Since only one question
could be asked per round, and there were only 4 rounds, alternating
behaviour could be a consequence of a failed attempt to build social
experience. From this perspective, adding more rounds to the game
could potentially lead to the behaviour regularising over time. For
the small number of participants who showed non-engaging be-
haviour, this could be a result of misunderstanding the rules of the
game, the relative worth of the energy cubes, or a general aversion
to decision-making or to the presented scenario. This could also be
considered as an attempt to delay decision-making until enough
social experience has been built between the participant and the
robots. It is worth mentioning that the Alternating-Minimum In-
vestment group in the personality test showed higher scores for
neuroticism compared to the main group.

5.2 Limitations
While we were able to observe and measure trust through the
player’s investments, a number of limitations could be improved on
in future studies. Since our robots functioned fully autonomously,
the natural language interface sometimes malfunctioned due to the
user or machine errors, potentially failing the objective to promote
user engagement. The participants who had to repeat themselves,
some even multiple times, must have at least experienced a break in
the immersion or, more severe, a sense of frustration thatmight have

biased their results. Future experiments could investigate the effect
of simplified design choices on our measurements, for example
by employing a wizard-of-oz setup rather than an autonomous
one. The processing time of the many parts of the experimental
setup sometimes leads to slight delays between user action and
robot reaction, which similarly could have lead to a break of the
immersion and frustration. Our study is limited to the NICO robots
and we have encountered some technical limitations including the
lack of a larger range of different facial expressions and a wider
range of human-like movements. Moreover, NICO has a childlike
appearance and it is unclear as to how the perceived robot age can
affect human perception of honesty and reliability, even though
we introduced the NICOs as specialists in the complex field of
space exploration. It is important to note that we compared the use
of non-verbal communication (NVC) against the use of minimal
non-verbal communication (MNVC). There is currently no widely
established baseline or notion ofminimal NVC and the impact of our
interpretation and subsequent design choices on the participants
is an open question. Our study showed that the mere presence
of NVC has a positive impact on both the trust in the robot and
the perceived characteristics of it. Future studies could investigate
how different gestures affect trust, as there is no clear consensus
of which social cues translate to "reliable" or "unreliable", and no
obvious way to categorise these cues.

6 CONCLUSION
We provided an elaborate HRI scenario to model the building of
trust more closely to human relationships than in the original in-
vestment game. Our experimental setup includes social interaction,
non-verbal communication, a shared goal, and intrinsic motivation,
thereby allowing participants to collaborate with robots more re-
alistically than in the original investment game, measuring trust
reliably. The environmental variables that our scenario (and its
life-like agents) add to the data are a natural reflection of the many
factors, internal and external, that influence human trust and how
different levels of trust affect human behaviour in different contexts,
modelling aspects of human-robot trust that the original trust game
does not cover. We found a correlation between the self-assessed
trust and the trust measured from the game for the majority of
participants (main group). These same participants allocated more
energy cells to the robot with non-verbal communication (NVC) in
the first scene of the game. We were therefore able to replicate the
positive effect of non-verbal communication on trust and robot per-
ception. The Godspeed values for anthropomorphism and animacy
were increased by NVC for all participants. Future research should
comprise an investigation of the gameplay behaviours observed and
could explore the effects of the use of different robots in this setup.
Moreover, a similar setup can be used in future studies as a platform
for studying trust and other potential factors that influence trust.
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