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Abstract
Lip reading, also known as visual speech recognition, has re-
cently received considerable attention. Although advanced fea-
ture engineering and powerful deep neural network architec-
tures have been proposed for this task, the performance still can-
not be competitive with speech recognition tasks using the audio
modality as input. This is mainly because compared with audio,
visual features carry less information relevant to word recogni-
tion. For example, the voiced sound made while the vocal cords
vibrate can be represented by audio but is not reflected by mouth
or lip movement. In this paper, we map the sequence of mouth
movement images directly to mel-spectrogram to reconstruct
the speech relevant information. Our proposed architecture
consists of two components: (a) the mel-spectrogram recon-
struction front-end which includes an encoder-decoder architec-
ture with attention mechanism to predict mel-spectrogram from
videos; (b) the lip reading back-end consisting of convolutional
layers, bi-directional gated recurrent units, and connectionist
temporal classification loss, which consumes the generated mel-
spectrogram representation to predict text transcriptions. The
speaker-dependent evaluation results demonstrate that our pro-
posed model not only generates quality mel-spectrograms but
also outperforms state-of-the-art models on the GRID bench-
mark lip reading dataset, with 0.843% character error rate and
2.525% word error rate.
Index Terms: Mel-spectrogram reconstruction, lip reading, vi-
sual speech recognition

1. Introduction
Recently, automatic speech recognition (ASR) has accom-
plished a quantum leap, and advanced models are pro-
posed achieving improved performance on a variety of bench-
marks [1–4], reaching human parity on some tasks [5]. How-
ever, in realistic environments, the performance of ASR systems
suffers from significant degradation because of environmental
noise or ambient reverberation [6–9].

Inspired by human bimodal perception [10] in which both
visual and auditory information are used to improve the compre-
hension of speech, a lot of effort has been spent on lip reading to
predict text transcriptions directly from visual cues and improve
the robustness of ASR [11–16]. The visual signal is invariant
to acoustic noise and complementary to auditory representation
[17, 18], and the visual contribution becomes more important as
the acoustic speech-to-noise ratio is decreased [19].

Approaches to lip reading generally fall into two categories:
(a) handcrafted visual feature extraction, in which many meth-
ods have been proposed based on visual signal processing algo-
rithms. For instance, Discrete Cosine Transform [20], Discrete
Wavelet Transform [21], Active Appearance Models [22]; (b)
automatic feature extraction using neural networks. This has

become the dominant technique in this task, for example, using
convolutional auto-encoder [23], spatio-temporal convolutional
neural networks [14], long short-term memory [24], and resid-
ual networks [12].

Although advanced feature engineering and powerful deep
neural network architectures have been proposed, lip reading
still cannot be competitive with speech recognition from au-
dio. It is mainly because the visual modality carries less rele-
vant information for recognition than audio. Furthermore, some
phonemes are visually identical but different and discriminative
in audio. For example, in English the minimal pairs /b/ and
/p/, where /b/ is a voiced sound and /p/ is an unvoiced sound.
They are different in audio-based speech representation, while
the two phonemes are modeled as the same unit in traditional lip
reading systems, since /b/ and /p/ are produced with the same
visually apparent lip and tongue movement.

Inspired by the success of the Tacotron2 [25] which only
requires text as input to predict the mel-spectrogram for speech
synthesis, in this paper we propose to map the image sequences
of the mouth region directly to mel-spectrogram to reconstruct
the relevant acoustic information.

Our proposed model architecture consists of two main com-
ponents, as shown in Figure 1: (i) a recurrent encoder and
decoder with an attention mechanism front-end that generates
mel-scale spectrograms from image sequences of video. Unlike
end-to-end lip reading models, this component can be trained
with large amounts of non-annotated video data. (ii) a lip read-
ing back-end that maps the generated mel-spectrogram to text
directly. We conduct the evaluation of the overall model on the
lip reading benchmark GRID dataset.

During training, instead of consuming the predicted output
from previous time steps, we use teacher-forcing training strat-
egy [26] to utilize the ground truth speech spectrogram as in-
put, which is different from the traditional lip reading architec-
tures that map the sequence of images directly to text transcrip-
tions. Besides, the temporal dependencies between consecutive
acoustic frames enable the front-end model not only to recon-
struct the segmental features, for example formants, but also
the supra-segmental information, for instance speaking styles.
The reconstructed speech-relevant information significantly im-
proves the performance of the lip-reading back-end.

2. Dataset and Preprocessing
GRID [27] is a current benchmark and biggest open source lip
reading dataset, which consists of in total 34000 videos from
34 speakers (16 female and 18 male) on sentence-level. The
sentences have a fixed 6-word structure and are generated by
a restricted grammar: command(4) + color(4) + preposition(4)

+ letter(25) + digit(10) + adverb(4), where the superscript means
the number of candidate words, for example ”Set red by Z two
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Figure 1: LipSound model architecture. The front-end (left) is used for mel-spectrogram reconstruction and the back-end (right) is used
for character recognition. Together, they perform lip reading.

now”. The category details are listed in Table 1.

Table 1: GRID dataset word categories

Categories Candidate Words

Command bin, lay, place, set
Color blue, green, red, white
Preposition at, by, in, with
Letter A, . . . , Z (W excluded)
Digit zero, . . . , nine
Adverb again, now, please, soon

GRID consists of 34 speakers, but there are only 33 speak-
ers’ videos available with a total of 32669 sentences. We ran-
domly select 255 sentences from each speaker used for evalu-
ation. The remaining sentences are divided into training and
development sets with a ratio of 9:1. Both training and test sets
contain samples of all speakers, leading to speaker-dependent
results.

All videos are 3 seconds long and with a frame rate of
25fps (total 75 frames). All frames are converted to gray im-
ages from original RGB color. To collect training data for the
mel-spectrogram generator, we use FFmpeg to extract audio and
downsample to 16kHz. We use Dlibs Python bindings [28] to
detect 68 facial landmarks which are used to crop an area of
100x50 pixels around the mouth from each frame. Then we reg-
ularize the pixel value to [-1, 1] and normalize the mean value
and standard deviation of all images to 0 and 1 respectively. The
input shape of the mel-spectrogram generator is 75x512, where
75 (3x25) is the number of frames extracted from videos and
512 is the dimension of each mouth area compressed by PCA.

3. Model Architecture
3.1. Front-end: mel-spectrogram generator

The mel-spectrogram generator is inspired by the Tacotron2
which only uses character embedding and corresponding speech
waveform as input for training, without requiring any linguis-
tic, handcrafted features or domain expertise knowledge. When
combining it with the Wavenet vocoder [29], the Tacotron2
achieves high-quality sounds which can be comparable to hu-
man natural speech. In the mel-spectrogram generator, we re-

place the character sequences with video representation as the
model’s inputs and remove the word embedding layer since it is
unnecessary in our case.

As shown in Figure 1 left rectangle, our mel-spectrogram
generator consists of an encoder, a decoder and an attention
mechanism, which is similar to the Tacotron2 system. The en-
coder compresses the image sequences from the mouth area into
latent vectors and the attention mechanism learns to align the
encoder and decoder time steps and focuses on the most relevant
information for the current step. Finally, the decoder consumes
the attention context vector and all the previous information to
predict the mel-spectrogram step by step.

The images of size 100x50 are compressed to 512 dimen-
sions by PCA and then directly fed into 6 layers of a 1D convo-
lutional neural network with 512 filters and a kernel size of 5.
These CNN layers have a similar function as the N-grams used
in natural language processing to capture the temporal informa-
tion in multiple adjacent frames. Each CNN layer is followed
by batch normalization and rectified linear unit (ReLU) activa-
tion functions. The outputs from CNN layers are consumed by
one bi-directional LSTM layer.

Attention mechanisms have become standard in encoder
and decoder architectures since they reduce computational com-
plexity and let the model focus on the most relevant informa-
tion. We use location-sensitive attention [30] to direct the in-
formation flow from the encoder to the decoder, which focuses
both content and location information to predict the next decod-
ing time step and yields smoother alignments.

The decoder consists of two LSTM layers, 2 fully con-
nected layers (pre-net) and 1 linear projection layer, which eval-
uates an output mel-spectrogram one frame at a time. Only dur-
ing training the ground truth mel-spectrogram extracted from
the corresponding speech waveforms is fed into the pre-net lay-
ers. We use the predicted mel-spectrogram from previous time
steps when inferring. Then the output from pre-net is concate-
nated with attention context vectors as the inputs of the fol-
lowing 2 LSTM layers. The output is used to generate mel-
spectrogram by one sigmoid projection layer at this time step.
In the meantime, the output from the LSTM layers is also con-
sumed by another sigmoid linear layer to predict the stop token.
This is useful for the inference phase since all sentences in the
training set are zero-padded to have the same dimensionality.
The stop token predicts when to terminate decoding and avoids



Bin blue by F five now Bin blue with F two please Set green with U seven now

Set green with O seven now 

Lay green with R zero again

Lay green with E zero again (a) (b)Bin blue by F five now Bin blue with F two please

Figure 2: The comparison of real (top row) and generated (bottom row) mel-spectrogram. (a) correct generation. (b) generated
mel-spectrogram with word substitution (as marked with red rectangles).

always generating the same duration and silence padding for
sentences of short duration. Finally, to further improve the mel-
spectrogram quality, the predicted mel-spectrogram is fed into
5 convolutional layers with residual connections, named post-
net. Both the mel-spectrogram output from the linear layer and
post-net are used for lip reading back-end model training.

3.2. Back-end: lip reading system

We use DeepSpeech 2 [1] ASR system as back-end module to
transcribe spectrogram into text, as shown in Figure 1 (right
rectangle), which begins with two layers of 2D convolutions,
followed by five layers of gated recurrent units (GRU) [31] and
a fully connected output layer. Finally, we use the connectionist
temporal classification (CTC) loss [32] to calculate the differ-
ence between the predicted transcriptions and the ground truth.

4. Experiments
In this section, we introduce two audio based speech recogni-
tion systems as gold standard and conduct experiments to re-
construct mel-spectrogram from videos with the GRID dataset.
The predicted spectrograms are evaluated on lip reading tasks.

4.1. Setups for mel-spectrogram generator and lip reading

The feature prediction experiments are conducted on a single
NVIDIA 1080Ti GPU card with a fixed mini-batch size of 30.
We used the Adam optimizer [33] with an initial learning rate
of 0.001 and anneal the learning rate with a value of 1.1 after
every 50000 iterations.

The input features for our lip reading systems are mel-
spectrograms. The back-end neural networks are trained with
the CTC loss function, using the stochastic gradient descent op-
timization strategy along with a mini-batch of 30 utterances per
batch. We use 40 epochs and pick the model that performs best
on the development set to quantify on the test set. Learning
rates are chosen from [1e-4, 6e-4] and a learning rate anneal-
ing algorithm is used with the value of 1.1 after each epoch.
The momentum is 0.9. Batch normalization is used to optimize
models and accelerate training on hidden layers. All architec-
tures described in this paper do not use any language models.

4.2. Audio gold standard models for lip reading

We use Word Error Rate (WER) and Character Error Rate
(CER) as the evaluation metric. There are two strong audio
gold standards in this work. Audio gold standard 1 is trained
from scratch using only the mel-spectrogram features extracted
directly from the original training set. Audio gold standard 1

achieves better performance, with 0.8% CER and 2.1% WER,
than all lip reading systems [14–16] that only use the visual
modality as input. This result also verifies that the speech
modality contains more useful information for recognition than
the visual modality.

To further improve the performance, we use the 960 hours
LibriSpeech [34] training set to pretrain the audio gold standard
model. LibriSpeech is a large open source speech corpus and
a widely-used speech recognition benchmark. The pretrained
acoustic model achieves 11.43% WER on the LibriSpeech clean
evaluation set after 13 epochs. After fine-tuning 18 epochs on
the pretrained LibriSpeech acoustic model, the audio gold stan-
dard 2 gets significant improvement with 0.2% CER and 0.6%
WER on the GRID test set.

5. Results and Discussion
5.1. Results of mel-spectrogram reconstruction

As shown in Figure 2, we visualize the original mel-
spectrogram (top row) extracted from the corresponding audio
as references. We also show the mel-spectrogram samples (bot-
tom row) generated from our feature prediction front-end.

Figure 2 (a) shows two correctly generated samples. As
shown in the figure, the mel-spectrogram predicts highly simi-
lar details to the original one, with similar starting and ending
time, low frequency and formants. We tend to attribute this per-
formance to the good alignment learned by the attention mecha-
nism between the encoder and decoder time steps. But the high
frequencies seem fuzzy and are not as clear as in the original
mel.

We transform the generated mel-spectrogram back to wave-
form using Griffin Lim algorithm [35] with 50 iterations. The
Griffin Lim algorithm is widely used to restore phase informa-
tion for waveform reconstruction. We can verify that the mel-
spectrogram generator can learn different speakers’ voices. But
by directly hearing the generated sounds, we find that some
of the isolated letters have been substituted by another letter,
as shown in Figure 2 (b). For example, the letter ’O’ in the
sentence ’Set green with O seven now’ is replaced by ’U’ and
the letter ’R’ in ’Lay green with R zero again’ is replaced by
’E’. However, the other words are inferred correctly. Unlike the
words with multiple letters, the isolated letters are independent
of context. For the same left and right context, for example
’with+*+seven’ where * means A-Z (excluding W), there are
25 possibilities. It is difficult for the decoder to infer a correct
letter using the same context information. Besides, after check-
ing the original sounds, we found that speakers tend to have
a short pause before producing isolated letters. The short si-



lence affects attention alignment radically. Figure 3 shows the
influence of silence on alignment. The beginning and end of
the sentence is silence, causing a divergent alignment instead of
an intensive yellow line. More audio samples are available on
https://soundcloud.com/user-612210805/sets/video-to-mel.

Lay blue by D eight now

Figure 3: Alignment between encoder and decoder time steps.
Top: the attention mechanism alignment curve (yellow diagonal
line). Bottom: mel-spectrogram generated from post-net.

5.2. Results of lip reading

As expected, the gold standard models trained on audio out-
perform the models [14–16] trained only on visual information.
This shows again that speech carries more useful information
for recognition.

Table 2: CER and WER comparison on the GRID lip reading
dataset. All cited works use visual information as model inputs.
Audio gold standard 1 is trained on the GRID audio dataset.
Audio gold standard 2 is pre-trained on the LibriSpeech acous-
tic model. NoLM: no language models are used.

Model CER (%) WER (%)

Audio:
Gold standard 1-NoLM 0.811 2.053
Gold standard 2-NoLM 0.180 0.564
Visual:
LipNet-NoLM [14] 2.0 5.6
LipNet [14] 1.9 4.8
WAS [15] - 3.3
LCANet [16] 1.3 2.9
LipSound-NoLM 1.532 4.215
LipSound with pretrain-NoLM 0.843 2.525

Table 2 shows the comparison between our proposed Lip-
Sound and previous works. All cited works [14–16] predicted
text transcriptions from videos directly. LipNet [14] is trained
in an end-to-end fashion on a sentence-level which makes use of
spatio-temporal convolutions and CTC and achieves 1.9% CER
and 4.8 WER%. The WAS [15] network utilizes an encoder-
decoder with an attention architecture and pretrains on the Lip
Reading Sentences dataset which is a large-scale dataset for
audio-visual speech recognition. The WAS model yields 3.3%

WER on the GRID evaluation set. The LCANet networks intro-
duced a cascaded attention-CTC decoder to further improve the
performance and achieved 1.3% CER and 2.9% WER.

Our model trained on the visually generated mel-
spectrogram achieves 1.532% CER and 4.215% WER. To fur-
ther improve the accuracy, we fine-tune the lip reading model on
the pretrained LibriSpeech model with updating all parameters.
After 15 epochs, we get better than state-of-the-art performance
with 0.843% CER and 2.525% WER.

Table 3 lists the comparison between the ground truth and
the predicted text transcriptions. As reported [14], the fre-
quently confused phoneme pairs are (d, t) and (b, p), while in
our results, the most frequent errors are letter substitutions, such
as (A, H) where ’A’ is substituted by ’H’. This indicates that our
mel-spectrogram front-end has reconstructed the lost informa-
tion in the visual representation, while it needs to make guesses
for phonemes that are easily confused in visually.

Table 3: Comparison between ground truth and predicted sen-
tence by our lip reading system. Mistaken words are underlined.

Ground truth Predicted sentencs

Lay blue in A seven please Lay blue in H seven please
Place red in N zero soon Place red in A zero soon

Lay red in O seven please Lay red in I seven please
Bin green by L seven now Bin green by S seven now
Lay green at X six soon Lay green at X six sooen

Set blue in R three please Set blue in R three pleae
Lay white at C seven now Lay white it C seven now

6. Conclusions
We proposed a novel architecture, LipSound, for lip reading in
which an encoder-decoder architecture with attention mecha-
nism is used to reconstruct mel-spectrogram from the image
sequences of videos directly. The encoder encodes source im-
age sequences into a context vector, and the decoder decodes
the context vector to predict a target mel-spectrogram. The
attention mechanism learns to align the encoder and decoder
time steps and to concentrate on the most relevant informa-
tion. The lip reading back-end consumes the generated mel-
spectrogram representation to predict text transcriptions. The
speaker-dependent evaluation results on the GRID benchmark
dataset demonstrate that our system outperforms state-of-the-
art performance.

Since the GRID lip reading corpus is designed by a re-
stricted grammar instead of spontaneous sentences, future work
will focus on spontaneous speech and speaker-independent
tasks. Furthermore, we are interested to combine both visual
and audio modalities to improve the robustness of speech recog-
nition system. Future work will apply our system in real human-
machine interaction scenarios.
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