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Abstract—Grow-when-required networks such as the Grow-
ing Dual-Memory (GDM) networks possess a dynamic network
structure, expanding to accommodate new neurons in response
to learning novel concepts. Over time, it may be necessary
to prune obsolete neurons and/or neural connections to meet
performance or resource limitations. GDM networks utilize an
age-based pruning strategy, whereby older neurons and neural
connections that have not been activated recently are removed.
Catastrophic forgetting occurs when knowledge learned by the
networks in previous learning iterations is lost due to being
overwritten by newer learning iterations, or to the pruning
process. In this work, we investigate catastrophic forgetting in
GDM networks in response to different pruning strategies. The
age-based pruning method was shown to significantly sparsify
the GDM network topology while improving the networks
ability to recall newly acquired concepts with a slight decrease
in performance with respect to older knowledge. A significance-
based pruning method was tested as a replacement for the age-
based pruning, but was not as effective at pruning even though
it performed better at recalling older knowledge.

Index Terms—catastrophic forgetting, grow-when-required
networks, network topology

I. INTRODUCTION

Grow-when-required networks [1] are a type of neural
network that dynamically allocates new neurons in response
to novel inputs, bypassing the need to pre-determine the
size and structure of the neural network before training. The
growth of the network has to be carefully balanced. The
fast-growing network may be able to perfectly encode all
learned information but taking up a lot of computational
power and storage space. Neuron proliferation is mitigated
by adding new neurons to learn sufficiently novel or unique
information not already known by the neural network. When
an input is otherwise insufficiently dissimilar, the neuron
that is closest or most similar to the input is activated and
learning is performed by adapting the neuron weights to
closely match the incoming input.

In a continuous learning process, the network structure
will continue to expand to add new neurons to accommodate
new knowledge. Due to hardware or software constraints
however, it may be necessary to remove older neurons that

contain knowledge that is no longer relevant. Catastrophic
forgetting refers to a side-effect of pruning and the neural
network learning process that results in loss of existing
knowledge. For example, neuron weights that are updated in
response to new inputs may not fully match the older inputs
used to train the neural network. Also, network pruning
may sometimes result in catastrophic forgetting of learned
knowledge.

The Growing Dual-Memory (GDM) network [2] con-
sists of two hierarchically arranged recurrent self-organizing
networks. The episodic memory layer (G-EM) is highly
dynamic, quickly adapting the neural structure and adding
new neurons to learn spatio-temporal representations of
novel episodic events. The semantic memory layer (G-SM)
on the other hand, operates slower in order to construct more
compact representations of the episodic events over larger
temporal windows. An intrinsic replay system in the GDM
constantly replays neural activity patterns to consolidate
learned knowledge and mitigate catastrophic forgetting. No
pruning mechanism was implemented, however. In a con-
tinuous learning scenario, the GDM networks will continue
adding neurons over time in response to novel inputs while
still retaining older neurons containing obsolete information.
Given hardware or software resource constraints, a GDM
with excessive topology size will cause either a reduction in
performance speed or generalization. An appropriate pruning
strategy is required to fulfill several objectives; ensuring
that the growth of the GDM topology in response to new
knowledge is regulated by pruning obsolete knowledge; and
identifying the appropriate neurons and/or synapses to be
pruned so that only the least relevant knowledge is removed.

In this work, we investigate the use of several different
conditional pruning strategies on the GDM network. Par-
ticularly because the GDM consists of two networks with
different neural behavior, the G-EM and G-SM networks
may require different pruning strategies to achieve optimal
performance. The networks performance was benchmarked
using several metrics to measure the topology of the network



as well as the retention and acquisition of knowledge. We
briefly explain the operations of the GDM network in section
II, and the pruning strategies in section III. The experiment
is outlined in section IV and the results are presented in
section V and discussed in section VI.

II. GROWING DUAL-MEMORY NETWORKS

The GDM network [2] consists of two hierarchically-
arranged recurrent self-organizing networks for learning
spatio-temporal representations from a sequence of images
or video. Neurons in the episodic memory are highly dy-
namic, quickly adapting neural representations using Heb-
bian learning and adding new neurons to learn the spatio-
temporal representations of novel episodic experiences.
Neurons in the semantic memory layer gradually develop
condensed representations of statistical regularities from
episodic events. Both memory layers are modeled as Grow-
When-Required networks [1] that adapt neural map plasticity
in response to novel sensory observations. While the learning
process in the episodic memory layer is unsupervised, the
semantic memory layer utilizes learned class labels to reg-
ulate the generation of new neurons and neural update rate.
Consolidation of existing knowledge was achieved using
internally-generated activity patterns in the episodic memory
layer to be replayed to the semantic memory, thus mitigat-
ing the effect of catastrophic forgetting during incremental
learning tasks. The operation of the GDM network is briefly
summarized in the next section. For more details, refer to
the authors’ work [2].

A. Episodic Memory

The episodic memory (G-EM) layer consists of a Gamma-
Grow-When-Required self-organizing network [3] with a
dynamic number of neurons and synapses in a competitive
map that learns the spatio-temporal structure of a multi-
dimensional input, preserving its topological properties. The
Gamma-GWR determines the winning neuron in response
to an input while taking into account the activity of the
network and a temporal context. Each neuron in the map
consists of a weight vector wj and a number Kem of context
descriptors ckj for encoding prototype sequence-selective
snapshots of the learning input. Given a network with N
recurrent neurons, the best matching unit (BMU) b was
computed with respect to the learning input x(t) as follows:

b = argmin
j∈N

(dj) (1)

dj = α0‖x(t)− wj‖2 +

K∑
k=1

αk‖Ck(t)− ck,j(t)‖2 (2)

Ck(t) = β · wI−1 + (1− β) · ck−1,I−1 (3)

a(t) = exp(db) (4)

where ai and β ∈ (0; 1) are constants regulating the
influence of the learning input relative to previous neural
activity, wI−1 is the weight of the BMU in the previous
learning iteration t − 1, and Ck ∈ Rn is the global context
of the network with Ck(t0) = 0, and a(t) is the activity of
the network in response to the current learning input. Each
neuron has a habituation counter hi ∈ [0, 1] representing
how frequently it has fired (i.e. activated as BMU), expressed
by a habituation rule as:

∆hi = τi · κ · (1− hi)− τi (5)

where κ and τi are constants regulating the rate of
decrease of a neurons habituation counter [1].

When a learning input is presented to the network, a new
neuron is inserted if the activity and habituation of the BMU
are smaller than the activity threshold aT and habituation
threshold hT respectively. Training of the activated neuron
is carried out by adapting the weight vectors and context
descriptors of the BMU according to:

∆wemi = εi · hi · (x(t)− wemi ) (6)

∆cemk,i = εi · hi · (Cemk (t)− cemk,i ) (7)

where εi is a constant learning rate. Topological neighbors
were updated at a significantly lower learning rate.

B. Semantic Memory

The semantic memory layer (G-SM) consists of a Gamma-
GWR network combining bottom-up drive from the G-EM
and top-down, task-relevant signals to develop overlapping
representations over a larger temporal scale. The neural
activity from the G-EM (i.e. the BMU of the G-EM in
response to a learning input) is used as input to the G-SM.
Neurogenesis is regulated by imposing another condition: a
new neuron is added only if the activity of a habituated BMU
is below a threshold, and if the label of the learning input
is different from the winner label of the BMU. If the BMU
correctly predicts the class label, then the update rate of the
weight vectors and the context descriptors were decreased
by a factor εc. Thus (6) and (7) become:

∆wsmi = εi · hi · εc · (wsmb − wsmi ) (8)

∆csmk,i = εi · hi · εc · (Csmk (t)− csmk,i ) (9)

The additional factors regulating neurogenesis and neu-
ral update can be seen as a regularized learning process
where task-relevant signals create new neurons only when
the network misclassifies the class label of the input, and
reducing the learning rate of bottom-up observations when
the prediction is correct. As a result, the G-SM network
will develop more compact, overlapping representations of
the learned concepts that cannot reconstruct episodic events,



but are activated in response to semantically related input
(i.e. the same neuron may be activated for the same object
seen from different angles).

III. NETWORK PRUNING

The following network pruning strategies were proposed
for the GDM network. Synapse-aging pruning [4] removes
synapses that have not been activated for a length of time.
Habituation-based pruning [5] considers how often a neuron
had been activated and removing neurons that were rarely
activated. Significance-based pruning [6] computes the sig-
nificance of synapses based on the activation function of the
neurons.

A. Pruning by Synapse Age

Synapses are created connecting any two fired neurons
in response to learning inputs. Each synapse has an aging
counter that increments with each learning iteration, and
resets to zero whenever the two connecting neurons are
activated simultaneously. Synapses with ages exceeding a
threshold are pruned. Similarly, neurons that have all their
synapses pruned and are thus isolated will also be removed.

Selecting the appropriate age threshold is non-trivial prob-
lem to avoid catastrophic forgetting, especially in incremen-
tal learning scenarios where neurons coding for consolidated
knowledge might not fire for a large number of iterations.

B. Pruning by Neuron Habituation

An alternate metric to synapse aging was proposed by
Gryshchuk [5], bypassing the problem of selecting the age
threshold. Neuron habituation is a mechanism to gradu-
ally desensitize a neuron after repeated activation [1]. The
habituation value of a neuron can thus be associated to
the relevance or importance of the information encoded in
the neuron. Neurons that have been activated frequently
in response to learning inputs will typically have a lower
habituation value, given by the habituation equation (5).
The proposed method defines the removal of a neuron as
a threshold function of its habituation:

v = µ(H) + σ(H) (10)

where H is a vector representation of the habituation of
all the neurons in the network, µ is the mean function, and
σ is the standard deviation. Neurons with habituation values
above the threshold will be pruned.

C. Pruning by Neuron and Synapse Significance

Scardapane et al. [6] proposed an unsupervised sparsifi-
cation method for evaluating the significance of neurons and
connecting synapses in an echo state network architecture.
The pruning strategy considers the relative significance of
a synapse in terms of the correlation between its input and
output neurons. The significance of a synapse at a particular
time instant n is defined as:

sij(n) =
1

T

n∑
z=n−T

(xi(z − 1)− µ̂x)(xj(z)− µ̂x)

σ̂2
x

(11)

where T is a time interval chosen a priori, and µ̂x and
σ̂x are the empirical estimations of the mean and standard
deviation of the neuron states. xi and xj denote the state of
the neurons i and j in the reservoir respectively. Generally
the time instant is incremented as each learning input is
presented to the network during training. The probability
that the synapse between neurons i and j would be removed
is represented as:

pij(n) = exp (−|sij(n)|
t(n)

) (12)

where t(·), also called the temperature parameter of the
system, is a positive, monotonically decreasing function of
n. This is to ensure that the probability of removing a
synapse is higher at the beginning of the network learning
process and decreases over time. Temperature t(n) is defined
as:

t(n) = α
n
Q−1t0 (13)

for conducting synapse pruning at every Q time instants.
The temperature parameter is scaled by a factor α at every
pruning step, given by ( nQ ) − 1, and t0 is the initial
temperature value chosen a priori. The significance of a
neuron is defined as the weighted average of the significance
of its connecting synapses:

sj(n) =
1

2|Jj(n)|
∑

z∈Jj(n)

sjz(n) +
1

2|σj(n)|
∑

z∈σj(n)

szj(n)

(14)
where | · | denotes the cardinality of the set. Neurons with

low significance, i.e. having insignificant synapse connec-
tions, will be denoted with a small value in the equation, with
the corresponding probability of removal using the same
equation as (12) but for neurons instead of synapses.

While the significance-based pruning method was origi-
nally introduced for echo state networks, here it is modified
for recurrent weight networks. In (11), the state values of
neurons in GDM networks are calculated using the GDMs
neuron activity in (4). The pruning strategy as outlined in
(11) is an online strategy that evaluates neurons based on
their activities in a moving time window, and is suitable for
GDM networks operating in a continuous learning environ-
ment. The settings for T and Q should be considered in
the context of the application of the GDM. For example,
GDMs that were constantly trained with large quantities of
samples in a short time would require a large T parameter so
that significant neurons are not prematurely removed. The Q
parameter balances pruning between earlier and later training
samples. A low Q may cause excessive pruning among



earlier training samples, causing catastrophic forgetting of
prior information, while neglecting later training samples,
producing low generalization of newly acquired information.

IV. EXPERIMENT

An experiment was conducted to evaluate the performance
of the GDM network when subjected to different prun-
ing strategies: no pruning, synapse-aging pruning, neuron-
habituation pruning, and significance pruning. A dataset for
continuous object recognition from video sequences is used
for benchmarking using an incremental learning approach.

A. Dataset Pre-processing

The CORe50 dataset [7] consists of 50 objects recorded
in 11 different environment conditions, backgrounds, and
object poses. For this experiment, sessions 1 and 2 were
used for training while 3 was used for testing. Frames were
selected for processing from each video sequence at 1 frame-
per-second. A deep convolutional network VGG16 [8] was
used to extract a 256-dimension feature vector from each
image frame. Relief-F was conducted for feature selection.

An incremental learning approach was formulated as
follows. Of the ten object classes in the dataset, half were
selected for the first training and testing session. Of the
remaining five object classes, each object was placed in
a separate training session. During the experiment, each
session was presented sequentially to the GDM network for
training and testing. After each training and testing session,
the network was benchmarked to measure catastrophic for-
getting using indices explained in the next section. In this
manner, the GDM network trained with an initial knowledge
base will encounter and learn new and unknown objects
and then tested on previous data to measure the loss of
information as well as new information gained.

B. Evaluation Metrics

Network performance and catastrophic forgetting were
measured using a number of indices as proposed by Kemker
et al. [9] and Chaudry et al. [10]. Immediately after the net-
work was trained using the first training session, testing was
performed using the same training input. Testing accuracy
was assumed as the networks ideal performance: accideal.

When trained with a new object class in subsequent
training sessions, the network was tested using the testing
data for each of the prior training sessions, and labeled as
acck,j : the accuracy evaluated on the held-out test set of the
jth session (j ≤ k) after training the network incrementally
from sessions 1 to k. Testing was also conducted for all
prior test sets up to the current session simultaneously and
labeled as acck,all.

Intransigence [10] was measured relative to a standard
classification model which had access to all the datasets at
all times. The reference classification model was tested with
the testing data of the kth session: acc∗k. Intransigence for
the kth session was then calculated as:

Ik = acc∗k − acck,k (15)

As intransigence was defined as the difference between the
accuracy of an incremental-learned network and a reference
model, negative intransigence (i.e. Ik < 0) implies that
incremental learning up to session k positively impacts the
models knowledge about it.

Forgetting for a specific training session was defined as the
difference between the maximum knowledge gained about
the session throughout the learning process in the past,
and the knowledge the network currently has about it [10].
Quantifying forgetting for the jth session after incrementally
training the network up to session k:

fkj = max
l∈{1,...,k−1}

accl,j − acck,j , j < k (16)

The average forgetting at the kth training session is then
written as:

Fk =
1

k − 1

k−1∑
j=1

fkj (17)

The metrics proposed by Kemker et al. [9] instead mea-
sure the networks knowledge retention and acquisition. The
networks ability to recall the knowledge from the first
training session is represented as:

Ωbase =
1

k − 1

k∑
j=2

accj,1
accideal

(18)

The networks ability to immediately recall newly acquired
knowledge is calculated as:

Ωnew =
1

k − 1

k∑
j=2

accj,j (19)

The networks ability to retain prior knowledge and acquire
new knowledge is represented as:

Ωall =
1

k − 1

k∑
j=2

accj,all
accideal

(20)

Normalization was performed against accideal to facilitate
a fair comparison between different datasets.

C. Methodology

The experiment was conducted to study the networks
ability to acquire new knowledge and measure catastrophic
forgetting. The settings for the GDM hyperparameters are
listed in Table I and are described here briefly.

Insertion thresholds aT set the minimum activity of a
neuron in response to an input in order to add a new
neuron. G-EM networks typically have higher thresholds (i.e.
easier to add new neurons) in order to encode more fine-
grained and non-overlapping representations as compared to



TABLE I: Hyperparameters for GDM Networks

Hyperparameters Value
Insertion thresholds aEM

T = 0.3
aSM
T = 0.001

Habituation hT = 0.1
τb = 0.3
τn = 0.1
κ = 1.05

Context descriptors KEM = 2
KSM = 2

Temporal context α = [0.67, 0.25, 0.09]
β = 0.7

Learning rates εb = 0.5
εn = 0.005

G-SM networks. The habituation hyperparameters control
the rate in which a neuron is habituated after being fired.
Setting a strict habituation condition (i.e. high hT , τ , and
κ) will result in fired neurons quickly becoming habitu-
ated and the necessity for additional neurons to be added.
Context descriptor parameters are used for encoding the
spatio-temporal structure of the input. Setting a large value
would allow neurons to be encoded with longer temporal
sequences, but with a potential for over-generalization. The
temporal context parameters α and β modulate the influence
of the current input with respect to previous neural activity
and the global context of the network. Learning rates ε
control how much the neurons adapt in response to training
inputs.

The efficacy of the selected pruning method should take
into consideration the parameter settings of the GDM. Using
the pruning methods in this study as an example: neurons
in G-EM networks encode specific episodic prototypes.
Using a strict pruning method for G-EM may remove
dormant neurons that act as temporal links between other
neurons, resulting in catastrophic forgetting. However, a
strict habituation function may produce similar neurons
that may act as redundancies. The interplay between the

various hyperparameters drastically affects the behavior of
the GDM, and consequently, a pruning methodology that
works in one application may not be applicable with different
hyperparameter settings.

In this work however, parameter optimization for G-EM
and G-SM was not performed in this experiment and was
set following the authors work [2]. The intrinsic replay
mechanism was not used in this experiment. With replay,
the significance-based pruning method will be affected con-
sidering (13), whereby the frequency of pruning is a function
of the number of training inputs presented to the network.
Implementing intrinsic replay will, therefore, bias most of
the pruning towards the earlier training sessions. Alternately,
this can be addressed by setting Q to a larger value to
accommodate the increased number of training iterations
from the intrinsic replays.

While selecting an appropriate age threshold for synapse-
aging pruning is a non-trivial problem, in this experiment
we tested several values as fractions of the number of
learning iterations of the dataset. For example, setting the
age threshold as 50% of the dataset size for a dataset with
5000 training samples would set the maximum age of a
synapse to 2500. We tested for several age thresholds equal
to [50%, 60%, 70%, 80%, and 90%] of the number of
training data in the dataset.

Habituation-based pruning was conducted at the end of
each training and testing session, i.e. after the GDM network
was presented with a new object class.

For significance-pruning, two scaling factor parameters
regulate the pruning of neurons and synapses respectively.
We tested all possible combinations of value pairs for the
scaling parameters in the interval range [0.1, 1.0]. Other
parameters such as n, Q, and t0 in (13) were set following
the authors work [6].

The GDM networks and the experiment were coded in
Python. Random elements were minimized by setting the
random number generator to a predetermined seed value just
prior to running the experiment for each pruning method.
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Fig. 1: Metrics of G-EM (top row) and G-SM networks (bottom row) for Ωall (left column), Ωbase (middle column), and
Ωnew (right column)



Fig. 2: Performance metrics of G-EM (top row) and G-SM networks (bottom row) using significance-based pruning for
Ωall (left column), Ωbase (middle column), and Ωnew (right column). Extreme outliers were excluded. Values range from
poor (blue) to good (red).

V. EXPERIMENT RESULTS

A. Generalization Performance

Generalization performance of a network is characterized
using three metrics: the networks ability to retain knowledge
from the first training session after learning new object
classes (18), the ability to immediately recall a newly learned
object class (19), and the networks generalization perfor-
mance on past and present knowledge (20). Fig. 1 compares
the metrics for different pruning methods after each train-
ing session. Synapse-aging pruning and significance-based
pruning were represented using the best overall result.

For synapse-aging pruning, setting the age threshold to
60% or lower significantly affected the networks ability to
recall the first training session with successive training. As
the GDM in this experiment does not use intrinsic replay,
neurons created during the first training session are rarely
activated in later sessions, and are subsequently pruned
when their ages exceeded the threshold. Setting the age
threshold to 70% or higher was able to avoid significant
catastrophic forgetting. 80% is the ideal age threshold for
maximizing pruning while minimizing reduction in gener-
alization performance: in G-EM networks, Ωall and Ωnew
were equivalent to that of unpruned networks while Ωbase
was slightly lower (0.9753 vs 0.9780). In G-SM networks,
Ωbase and Ωnew were equivalent to unpruned networks while
Ωall was slightly higher (0.9451 vs 0.9438).

Habituation-based pruning in G-EM networks produced
worse results for Ωbase (0.9140 vs 0.9780) and Ωnew
(0.8378 vs 0.9054), while Ωall was slightly better (0.8325 vs
0.8190) as compared to unpruned networks. This suggests
that habituation-pruning was able to identify outlier neurons,
resulting in slightly worse performance in specific domains

but with improved overall generalization. In G-SM networks,
habituation-based pruning produced worse generalization
performance in all three metrics compared to unpruned
networks.

Fig. 2 shows heatmaps of the GDM networks perfor-
mance for every combination of neuron pruning and synapse
pruning scaling factors for the significance-pruning method.
For overall testing performance Ωall, G-EM achieved peak
results when neuron pruning scaling factor was set to 0.9.
G-SM, on the other hand, showed better results on average
with less neuron pruning, except in two cases (n=0.8, s=0.6;
and n=0.9, s=0.5) where testing performance significantly
exceeded the other outcomes with the same neuron pruning
scaling factor. For testing performance on the first session
Ωbase, G-EM showed good results at neuron pruning scaling
factor 0.8 and below, while G-SM has better results at 0.7
and below. For testing performance on the most recently
learned object class Ωnew, G-EM was comparatively less
influenced by the scaling factors, with a few exceptions
producing slightly above average performance. G-SM, on
the other hand, performed better with large neuron pruning.

To summarize for significance-pruning, G-EM networks
are able to reach good generalization when neuron prun-
ing scaling factor was set to a high value. While overall
performance improved with a larger neuron pruning value,
some knowledge from earlier training sessions are lost when
the older neurons were considered less significant and were
pruned. Setting neuron pruning too high may disrupt the
temporal connections in the G-EM, resulting in a drastic
reduction in generalization. In addition, more pruning did
not guarantee better recall for newly learned object classes.
Pruning G-SM networks may be counterproductive as the
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Fig. 3: Comparison of Forgetting and Intransigence scores for G-EM and G-SM networks using various pruning methods.

topology is already consolidated. As seen in Fig. 2, setting
a high pruning scaling factor resulted in a trade-off between
the generalization performance for older consolidated knowl-
edge and for newly acquired knowledge.

B. Network Topology

This section explores the effect of the pruning strategies
on the topologies of the G-EM and G-SM networks. The
number of neurons and synapses of the resulting networks
were compared against G-EM and G-SM networks that were
trained without any pruning.

For the synapse-aging pruning strategy, setting the age
threshold to a low value resulted in significant synapse and
neuron pruning, at the cost of loss of network generalization
for earlier knowledge. Setting the threshold to 70

In comparison, the habituation-based pruning method re-
sulted in 63

For significance-based pruning in G-EM networks, the
synapse pruning scaling factor had minimal effect on the
topology compared to the neuron pruning scaling factor.
Even so, the pruned G-EM was nearly equivalent to the
unpruned G-EM unless the neuron pruning scaling factor
was set to 0.7 or higher, with 0.9 and 1.0 producing
significant catastrophic pruning. At 0.8, approximately 2

In G-SM networks however, a significant reduction in
network topology was achieved even with minimal scaling
factors. The optimum scaling factors to minimize network
size while maintaining equal or better generalization than
unpruned G-SM networks is 0.6 for neuron pruning and 0.8
for synapse pruning, resulting in a reduction of 20

C. Forgetting and Intransigence

An ideal network would have a score close to -1 for
both forgetting and intransigence to denote the positive

impact of training sessions on the networks generalization
ability. In Fig. 2, the drastic increase of forgetting for the
synapse-aging pruning method was the result of pruning
older neurons containing knowledge encoded from earlier
training sessions.

Habituation-based pruning showed good intransigence
scores in G-EM and G-SM for the 3rd and 4th training
sessions. However from the 5th session onwards, pruning
resulted in higher catastrophic forgetting and intransigence,
especially in G-SM networks where over 90

Fig. 4 shows the forgetting and intransigence scores for
significance-based pruning. In G-EM networks, setting the
neuron pruning scaling factor lower than 0.8 resulted in
equivalent forgetting scores to unpruned networks, while
0.8 produced better scores, and higher than 0.8 created sig-
nificant catastrophic forgetting. Similarly for intransigence,
the G-EM was equivalent to unpruned networks at neuron
scaling factors lower than 0.7, while peak intransigence oc-
curred with maximum neuron pruning and selected synapse
pruning scaling factors. For G-SM networks, less neuron
and synapse pruning was desirable to reduce catastrophic
forgetting. Intransigence however was better with significant
neuron pruning. Precise tuning for synapse scaling factor
was required to achieve good intransigence.

VI. DISCUSSION AND CONCLUSION

This work investigated the effects of various pruning
methods on the episodic memory and semantic memory
in Growing-Dual-Memory networks. The pruning methods
used in this study were synapse-aging, neuron habitation,
and significance-based pruning. The performance of the
pruned networks was benchmarked against that of the un-
pruned networks using seven performance metrics: number
of neurons, number of synapses, testing accuracy of prior



Fig. 4: Forgetting and Intransigence for G-EM and G-SM using significance-based pruning. Extreme outlier values were
excluded. Scores range from poor (blue) to good (red).

knowledge, testing accuracy of current knowledge, overall
testing accuracy, forgetting, and intransigence. An incremen-
tal learning scheme was conducted to simulate the GDM
learning new object classes over time in addition to its initial
knowledge base. After a training session in which a novel
object class was presented, the GDM was benchmarked.

Networks using synapse-aging pruning rarely outper-
formed unpruned networks. Precise tuning of the age thresh-
old is needed to ensure that older neurons which contain
important knowledge from earlier training sessions are not
pruned. This may not be possible in lifelong learning sce-
narios, where there is no fixed size for training data.

Pruning using neuron habituation was proposed as an
alternative to address the problems of pruning by age. As
neuron habituation is affected by activation frequency, neu-
rons that were rarely activated may be considered redundant
and be safely removed. From the experiment, habituation-
pruning removed outliers in G-EM resulting in slight losses
in testing accuracy. In G-SM however, habituation-pruning
resulted in more significant catastrophic forgetting, as neu-
rogenesis was more regulated for a compact topology. In
addition, as the topology becomes larger, newer neurons may
be pruned before achieving sufficient habituation, resulting
in poor testing accuracy of newly acquired knowledge. This
may be addressed in future work by a hybrid of age and
habituation to give newer neurons time to settle down before
being evaluated for pruning.

Significance-based pruning evaluates synapses and neu-
rons by their recent activations in response to learning
inputs. Two scaling factors control the rate in which neurons
and synapses were pruned. Precise tuning was required
to avoid excessive pruning. As observed from the experi-
ment, G-EM and G-SM networks responded differently to
neuron and synapse pruning. G-SM networks were more
severely affected by neuron and synapse pruning. On the
other hand, G-EM networks were generally equivalent to
unpruned networks unless the neuron scaling factor was set
to a high value, although excessive pruning can also result
in poor performance. When benchmarking G-EM and G-
SM networks against unpruned networks using the seven
performance metrics and tallying up the wins, draws, and
losses, optimum scaling factors were found to be 0.8 for

neuron and synapse pruning for G-EM networks, and 0.6
and 0.1 for neuron and synapse pruning for G-SM networks.

In conclusion, pruning strategies have to take into con-
sideration the characteristics of the GDM networks. In G-
EM where neurongenesis is a common occurrence, pruning
strategies should take into account multiple factors such
as age, habituation, and significance before deciding which
neuron to prune. In G-SM however, each neuron encodes
consolidated information that may not be as expendable, and
thus a more strict and careful pruning strategy is required.

ACKNOWLEDGMENT

This research was supported by the Georg Forster
Research Fellowship for Experienced Researchers from
Alexander von Humboldt-Stiftung/Foundation.

REFERENCES

[1] S. Marsland, J. Shapiro, and U. Nehmzow, A self-organising network
that grows when required, Neural Networks, vol. 15, no. 89, pp.
10411058, 2002.

[2] G. I. Parisi, J. Tani, C. Weber, and S. Wermter, Lifelong Learning of
Spatiotemporal Representations with Dual-Memory Recurrent Self-
Organization, arXiv preprint arXiv:1805.10966, 2018.

[3] G. I. Parisi, J. Tani, C. Weber, and S. Wermter, Lifelong Learning
of Humans Actions with Deep Neural Network Self-Organization,
Neural Networks, vol. 96, pp. 137149, 2017.

[4] T. M. Martinetz, K. J. Schulten, A neural-gas network learns topolo-
gies, in Artificial Neural Networks, T. Kohonen, K. Makisara, O.
Simula, and J. Kangas, Eds. North-Holland, Amsterdam, 1991, pp.
397-402.

[5] V. Gryshchuk, Learning to forget in self-organizing memory, unpub-
lished, University of Hamburg, 2018.

[6] S. Scardapane, D. Comminiello, M. Scarpiniti, and A. Uncini,
Significance-Based Pruning for Reservoirs Neurons in Echo State
Networks, in Advances in Neural Networks: Computational and
Theoretical Issues, Springer, Cham. 2015, pp. 31-38.

[7] V. Lomonaco, and D. Maltoni, CORe50: A New Dataset and Bench-
mark for Continuous Object Recognition, Proceedings of the 1st
Annual Conference on Robot Learning, PMLR 78:17-26, 2017.

[8] K. Simonyan, K., and A. Zisserman, Very deep convolu-
tional networks for large-scale image recognition, arXiv preprint
arXiv:1409.1556, 2014.

[9] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan,
Measuring catastrophic forgetting in neural networks, arXiv preprint
arXiv:1708.02072, 2017.

[10] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, Rieman-
nian Walk for Incremental Learning: Understanding Forgetting and
Intransigence, arXiv preprint arXiv:1801.10112, 2018.


