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Abstract—We present an embodied neural model for haptic
object classification by active haptic exploration with the hu-
manoid robot NICO. When NICO’s newly developed robotic
hand closes around an object, multiple sensory readings from
a tactile fingertip sensor, motor positions, and motor currents
are recorded. We created a haptic dataset with 83200 haptic
measurements, based on 100 samples of each of 16 different
objects, every sample containing 52 measurements. First, we
provide an analysis of neural classification models with regard to
isolated haptic sensory channels for object classification. Based on
this, we develop a series of neural models (MLP, CNN, LSTM)
that integrate the haptic sensory channels to classify explored
objects. As an initial baseline, our best model achieves a 66.6%
classification accuracy over 16 objects. We show that this result is
due to the ability of the network to integrate the haptic data both
over time domain and over different haptic sensory channels.
Furthermore, we make the dataset publically available to address
the issue of sparse haptic datasets for machine learning research.

Index Terms—haptic perception, embodied neuro-cognitive
model, developmental robotics, haptic dataset

I. INTRODUCTION

Developmental robotics aims to develop intelligence in
artificial agents through a rich interaction with complex,
lifelike environments [6]. Often research focuses on the visual
modality, but understanding non-visual concepts like hard,
soft, spongy or flexible, is relevant for language acquisition
[13] and development of motor abilities in the physical world.
Recognition of such object properties is vital to avoid danger,
e.g., a soft object needs to be grasped firmly to avoid slippage
while fragile objects require a soft grasp. Haptic perception is
also relevant when identifying objects in the absence of visual
information, e.g., when a robot is picking up an occluded
object. However, haptic perception is complex: in contrast
to visual perception, haptic perception requires motor actions
to actively explore an object. In humans, the resulting haptic
perception is mediated by several different sensory subsystems
ranging from different tactile sensing cells in the skin to
proprioception of position and forces in joints, tendons, and
muscles. Likewise, for robotic agents, signals from specialized
types of tactile sensors, position and currents of motors need

*The authors gratefully acknowledge partial support from the German
Research Foundation DFG under project CML (TRR 169). The authors also
thank Pedro Ramilo and the SeedRobotics team for the joint development of
the tactile sensing robotic hand presented in this paper.

Fig. 1. The humanoid robot NICO, Neuro Inspired COmpanion, in its
experimental setup: NICO is squeezing 16 different objects to learn how to
distinguish them by touch. Here, NICO is squeezing the object “red ball”.

to be integrated to facilitate haptic perception. Artificial neural
networks have shown great ability to integrate multimodal data
[3], [10] and also process the sequential data from a haptic
exploratory action. However, few established architectures
exist which integrate multiple haptic sensory channels [19],
which can in part be attributed to the lack of available haptic
datasets.

To address this issue, we developed a novel robotic setup for
recording a large haptic dataset based on a single-point tactile
sensor embedded in a robust three-fingered robotic hand. The
hand is used to actively close around objects (squeezing) and
record several data channels from the tactile sensors as well as
motor positions and forces to perceive different haptic prop-
erties of the object like compliance and shape in one single
active exploration. The dataset consists of 1600 samples of a
set of 16 different objects that are explored in 100 repetitions
with 52 measurements per sample, overall resulting in 83200
haptic measurements. It will be made publically available1.
Based on this dataset, we developed and optimized a series
of neural baseline approaches for haptic object classification

1The haptic dataset will be made available at https://www.inf.uni-hamburg.
de/en/inst/ab/wtm/research/corpora.html.
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that ranges from simple MLP architectures to convolutional
and LSTM recurrent neural networks. Extending our previous
work [15], we show that artificial neural networks can process
and integrate raw sensory haptic data and do not require hand-
crafted features. We reach a classification accuracy of over
66.6% on 16 different objects with the best architecture. In
contrast to existing robotic haptic sensor setups, our design
is robust, requires low-maintenance and relies on the neural
integration of existing motor sensors with tactile information.
Furthermore, we provide an analysis of different neural ar-
chitectures with regard to involved sensory subsystems of
the neuro-robotic platform. Our research contributes to the
development of active robotic haptic perception with neural
approaches.

II. RELATED WORK

To develop embodied neuro-cognitive models based on
active haptic exploration, understanding of both biological as
well as technical sensory processes is necessary [13]. We will
first report relevant findings of active human haptic sensing
and robotic haptic perception before we discuss suitable neu-
rocognitive models for processing this sensory information.

A. Haptic Perception in Humans

Haptic perception is to a significant degree caused by
active movements. Lederman and Klatzky [18] observed a
set of haptic exploratory procedures that humans use to gain
information about an object by touching or manipulating it
in various ways: Humans press down an object to learn
about its compliance; they slide a fingertip over the object
to learn about its surface; objects are enclosed in a hand, or
their contours are traced to learn about the object’s shape.
Objects are lifted to weigh them or objects are held in static
grasp to gain information about their temperature. Research
by Klatzky et al. [17] showed that sometimes these haptic
exploratory procedures are used to compensate for the lack
of visual information, e.g., when handling an object in a dark
environment. At other times haptic exploratory procedures are
employed to gather information about an object that is not
visually available, e.g., finding out how soft or smooth an
object is if this cannot be approximated from experience or
context.

Haptic perception is mediated by a complex set of indepen-
dent sensory channels [11]. Specialized nerve cells that are
distributed in different densities in the epidermis are excited by
pressure, skin deformation, different frequencies of vibration
and temperature. This sensory subsystem is referred to as
tactile sensing. It is complemented by proprioception: inside
of the body, nerve cells register strain on and the state of
muscles and tendons. Additionally, efferent signals from the
motor cortex are used in processing haptic information. All
of these signals converge in the somatosensory system [14],
where they are integrated and processed. Though often thought
of a singular sense, haptic perception can be seen as a complex
multimodal perception process.

B. Robotic Haptic Perception and Datasets

Different robotic sensor systems can be categorized accord-
ing to the area and spatial resolution of the haptic sensor [19].
Furthermore, the sensors differ in their pressure sensitivity
and sampling frequency. In the high-frequency range, these
sensors pick up vibrations, which can, for instance, be caused
by sliding the sensor over an object to differentiate materials.

One-Point tactile sensors measure the interaction forces
between a single point of contact and an object. Jikvo Sinapov
et al. [23] classify materials by scratching with an artificial
fingernail. They use a k-nearest neighbors algorithm (k-NN)
and a support vector machine (SVM) to classify the material
based on magnitude and frequency components of the caused
vibrations. In a similar approach, Romano and Kuchenbecker
[21] move a pen-like recording tool over material samples
using a PR2 robot. Materials are classified by Support Vector
Machines.Kerzel et al. [15] use a one-point sensor for both
sliding over a surface and for measuring compliance by
pushing the sensor into the surface. They apply a convolutional
neural architecture to classify materials based on the raw
sensor data.

Several one-point sensors can be arranged into a dense array
to form a fingertip-like sensor or a tactile sensitive surface.The
SynTouch biomimetic tactile sensor (BioTac) [26] resembles
an artificial fingertip with an array of 19 tactile sensors;
additionally, it also registers vibration and temperature. Fishel
and Loeb [9] use the BioTac sensor to slide it over different
material samples based on Bayesian exploration. Gao et al.
[10] use a robotic gripper with BioTac sensors to hold, squeeze
and slide across different objects. Together with visual data,
the resulting sensory information is used to train a deep
neural network for haptic adjective classification. Tada et al.
[24] developed a tactile-skin based on polyvinylidene fluoride
(PVDF) films and strain gauges that covers the palm and the
fingertips of a robotic hand. Takamuku et al. [25] use these
sensors to squeeze and tap objects placed into the robotic hand.
They employ a self-organized map (SOM) to cluster materials
according to haptic properties like softness.

Additionally there are non-tactile sensors: The BioTac con-
tains, for instance, a temperature sensor [26]. Finally, motor-
system related sensors act like human proprioception by mea-
suring position and forces in motors [12]. This functionality is
regularly included in robotic motors for motion planning and
prevention of motor overload. Similar to the presented dataset,
the Open Access Haptic Database [5] focuses on multi-modal
haptic datasets. However, non-hand-like end effectors are used
for haptic exploration. In contrast, the dataset from Murali et
al. [20] is more focussed on optimizing a grasping process.
In summary, different approaches and datasets haptic sensing
exist. However, the presented dataset explores everyday items
that are characterized and distinguished by a set of haptic prop-
erties like softness and shape with a human haptic exploratory
procedure. A combination of different sensors that cover the
distinctive properties of objects will have a high utility for
object classification.



C. Neural models of haptic perception

In related work on robotic haptic perception neural (con-
volution, SOM) and non-neural approaches (SVM, k-NNm
Bayesian classifier) are used. In contrast to non-neural ap-
proaches, neural networks can learn to extract meaningful
features from raw sensor data [15] and can also be used
to integrate different sensory channels [10], [15]. For some
time recurrent models have been established as best practice
when processing sequential data. Thus, such models should
be applied to haptic sensory information collected during
a temporally extended haptic exploration. However, recent
advances question this status: Bai et al. [2] argue that convolu-
tional architectures can outperform recurrent architectures on
tasks like audio synthesis and machine translation. Likewise,
Dauphin et al. [8] show for the domain of language modeling,
that stacked convolutional architectures outperform recurrent
architectures. In summary, there is not yet an established best
practice for developing neural architectures for classification of
haptic data. We will evaluate both convolutional and recurrent
architectures and also include a simple MLP model that is
based on a single measurement instead of a sequence of
measurements.

III. METHODOLOGY

We collect a dataset of 83200 haptic measurements, based
on 100 samples of each of 16 different objects, every sample
containing 52 measurements by applying a haptic exploratory
procedure of squeezing an object in a robotic hand. We use
the humanoid robot NICO and its three-fingered robotic hand
with a tactile sensor for squeezing. During the closure of the
hand, 52 measurements are taken, recording the following:
the position of the fingers, current in the motors associated
with the fingers, and tactile data from a sensor in the thumb.
With the resulting data, a series of neural network classifiers
are trained to evaluate the recorded dataset and to provide a
baseline for further research.

A. NICO Humanoid Robot Platform

We recorded the haptic dataset with NICO, the Neuro
Inspired COmpanion, developed by the Knowledge Tech-
nology group in Hamburg2 [16] for embodied multimodal
neurocognitive models and social interaction. NICO is a child-
sized humanoid with a height of one meter. Its size and design
aim to create an approachable and non-threatening appearance
while still being able to interact in a domestic environment.
Distributed over its body, NICO features 30 degrees of free-
dom that enable anthropomorphic motions pattern. NICO is
equipped with two cameras and stereo microphones. Now,
with the installation of haptic sensors into its hands another
modality for the perception of its environment is available.

The basis for the robot hand is the child-sized three-
fingered seed robotics RH4D manipulator 3. The robotic hand

2Visit http://nico.knowledge-technology.info, for further information and
video material.

3Visit http://www.seedrobotics.com/rh4d-manipulator.html for more infor-
mation.

Fig. 2. Newly developed SeedRobotics hand with embedded OptoForce sensor
squeezing the object “purple grapes”.

is underactuated and tendon driven: a single motor operates
a tendon that coils all three segments of a finger. One motor
operates both index fingers, and one motor operated the thumb.
With only these two degrees of freedom, the hand can securely
grasp objects of different sizes as the finger position adjusts
to the shape of the objects. During the closing process, the
position of the motors and their currents are registered. This
hardware design realizes the human hand synergies [22], i.e.,
the fact that despite its complexity the human hand can be
described by a few parameters because of correlated joint
movements.

We embedded an OptoForce 3-Axis optical force sensor4

into the tip of the thumb. Figure 2 shows the three-fingered
hand with the embedded sensor. The OptoForce sensor consists
of a small rubber dome (11mm diameter) that houses an
infrared emitter, reflector, and sensor that registers slightest
deformations of the dome to compute the applied force in
three dimensions with an accuracy of 2.5 mN. The sensor is
installed in a way that the dome acts as a fingertip for the
robot hand during grasping. The sensor falls into the category
of one-point interaction sensors. Like the hand, the sensor is
robust and does not require maintenance; including pretrials,
over 2000 grasps were executed without causing wear and tear
to the hand or the embedded sensor. Kerzel et al. [15] report
good results when using the OptoForce sensor in a robotic
setup for material classification with a neural approach.

B. Dataset Recording

For recording the dataset, NICO is seated at a table; its
hand is resting on the table with the palm of the left hand
facing upward. The sampling procedure begins with an object
being placed into the empty hand. The hand closes in 52 steps,
during each step the following data is stored: the position
of index fingers, position of the thumb, current in finger
motor, current in thumb motor and x-,y-, and z-forces in the
tactile sensor embedded into the thumb. The currents of both

4Currently available from OnRobot as OMD-3 axis sensor (https://onrobot.
com/products/omd-force-sensor/)

http://nico.knowledge-technology.info
http://www.seedrobotics.com/rh4d-manipulator.html
https://onrobot.com/products/omd-force-sensor/
https://onrobot.com/products/omd-force-sensor/


Fig. 3. Set of 16 objects used for recording the dataset. From left to right, top
to bottom: red ball, red dice, yellow banana, blue ball, red banana, red sponge,
green cucumber, purple grapes, red tomato, orange carrot, green pepper, purple
duck, orange fish, yellow dice, green figure and black hat.

motors are monitored to avoid overload and prevent the hand
from damaging itself during the closure. If one of the motors
exceeds 100 mA, the closing procedure stops. However, later
steps are still recorded to ensure equal sample length and
to pick up sensory information after closing. This overload
protection, together with the hand synergy enabling the design
of the tendon operated hands allows the robot to securely grasp
objects of unknown size and compliance without risk to the
hardware.

The 16 different objects chosen for recording the dataset are
depicted in Figure 3. All objects fit well into the child-sized
robot hand. The objects are chosen to have a large variety
concerning different haptic properties like symmetry (ball-
shaped, cylindrical or complex), (minimum) diameter, overall
compliance, and material. The properties are selected to be
fitting to different sensory channels of our setup.

The collected dataset consists of 1600 samples that are
evenly distributed over the 16 objects. Five experimenters were
involved in creating the dataset. The procedure for recording
was the following: The recording software selects a random
object for which the desired number of samples was not yet
collected. The object samples were evenly distributed over
the experimenters. The experimenter placed the object into
the robot hand and started the sampling procedure. The robot
closes the hand till a force limit is reached, releases the object
and the procedure repeats. All experimenters were instructed
to put the requested items into the robot hand in a way that
it does not fall out during closure of the hand. However,
it was not specified how non-symmetrical objects are to be
placed. During sampling, pictures were recorded from the
robot’s cameras; they show that experimenters placed the non-
symmetrical objects very differently into the hand leading to
a larger variance in measurements.

Figure 4 shows violin plots of the distribution of the seven

thumb_
position

finger_
position

thumb_
current

finger_
current

x_touch y_touch z_touch

0.0

0.2

0.4

0.6

0.8

1.0
red_ball (last recording in sequence, 1600 samples, normalized)

thumb_
position

finger_
position

thumb_
current

finger_
current

x_touch y_touch z_touch

0.0

0.2

0.4

0.6

0.8

1.0
orange_carrot (last recording in sequence, 1600 samples, normalized)

thumb_
position

finger_
position

thumb_
current

finger_
current

x_touch y_touch z_touch

0.0

0.2

0.4

0.6

0.8

1.0
puple_grapes (last recording in sequence, 1600 samples, normalized)

Fig. 4. Violin plots of the distribution of the seven different sensor values for
the objects “red ball”, “orange carrot”, “purple grapes” (last timeframe of the
sequence, all 1600 samples). The plots show distinctive distributions for all
three objects. I.e., the finger positions show less variance for the spherical “red
ball” in contrast to the non-symmetrical “orange carrot” or “purple grapes”.

different sensor values for the objects “red ball”, “orange
carrot”, “purple grapes” of the last sample in the sample series.
As expected the position of the fingers is mainly influenced by
the diameter of the objects, with the variance of the closing
angle of the fingers determined by the symmetry. E.g., the
finger position variance for the spherical “red ball” is small
compared to the other two objects. Also, the forces detected
at the fingertip, especially in the z-direction, is on average
lower for the soft “red ball”. For dynamic grasping, the force
of closing and how it ramps up is determined by the objects
overall compliance, e.g., when grasping a hard object a sudden,
steep increase in force results. Grasping a soft object, in



contrast, leads to a softer increase in force.

C. Neural architectures

The collected dataset consists of 1600 samples of a fixed
length of fifty-two time steps. Each time step contains seven
values: the position of the index fingers, the position of the
thumb, the current in the index finger motor, the current in
the thumb motors and the three x-,y- and z-forces at the point
of contact of the tactile sensor. In addition to these values,
the Euclidian vector norm of the three x-,y-, and z-forces is
calculated and fed into the network as an eighth value. The
Euclidean norm is used to compensate for the change of force
direction during grasping [15], [23]. All channels of the sample
are normalized to the interval [−1, 1] but are not preprocessed
in any other way.

Characteristic of the dataset, when compared to other se-
quences, are the following facts that inform the design of
neural architectures: Each sequence has a fixed length, which
enables easy application of a convolutional architecture. Each
sequence is relatively short with only 52 steps. Finally, the
eight channels of the samples are arranged arbitrarily, though
the signals in the channels are very likely correlated.

We evaluate three different neural architectures: Based on
the previous work [15], we use a convolutional neural network.
We compare this architecture with a recurrent LSTM network,
that is traditionally known to perform well with sequence
modeling tasks. Finally, the third model does not use sequen-
tial data, but the single last sensor reading of the squeezing
sequence. A simple MLP architecture processes this data.
We make this comparison to evaluate the difference between
training a neural classifier on the temporal grasping sequence
compared to a static grasp. Figure 5 shows a schematic of
all three architectures that resulted from the hyperparameter
optimization described in the next section.

IV. EXPERIMENTS AND RESULTS

In a first experiment, we evaluate how much each single
haptic information channels can discriminate explored objects
in isolation. In the main experiment, we develop and optimize
a convolutional, a recurrent, and an MLP architecture, for the
integration of all three channels of haptic sensory data.

A. Evaluation of Different Haptic Sensory Channels

To evaluate how much each of the three different haptic
channels, the finger position, the finger current and forces at
the fingertip, contribute to the achieved classification accuracy
we develop neural models for each of these sensory channels
in isolation. We split the dataset into three sub-datasets. We
use a convolutional architecture with one convolution, and one
dense layer informed by preliminary work [15] and perform
a 1000-step hyperparameter optimization for each of these
sub-datasets using Hyperopt [4]. The search space for the
convolutional architecture is described in Table I. For the
optimization, the dataset was split in an 80/10/10 ratio into
train, validation and test set. Early stopping on the validation

Fig. 5. Three architectures: (top) Convolution over time, (middle) recurrent
LSTM, (bottom) MLP. In contrast to the convolutional and recurrent architec-
ture, the MLP’s input is only the last of 52 records of the sampling process.

Fig. 6. Training histories for MLP, CNN and LSTM architecture for haptic
sensory integration.



Fig. 7. Confusion matrix for haptic object classification based on finger
position only (averaged 10-fold cross-validation). Highly symmetrical objects
and objects with a distinctive size like the “blue ball” or “red sponge” are
well classified.

accuracy with a patience parameter of 50 was used. All models
were implemented in Keras [7] and Tensorflow [1].

We perform 10-fold cross-validation for the best perform-
ing hyperparameter configurations. We achieve the following
accuracies for each of the three sub-datasets: 0.253±0.022
for the position data, 0.525±0.038 for the current data and
0.476±0.022 for the tactile data. Figure 7 shows the confusion
matrix for classification based on finger position only. It can be
seen that highly symmetrical objects (“red ball”) are classified
well as they have a constant diameter independent of the
exact grasping pose. Also, objects with a distinctively small
or large size like the small “red sponge” and the large “blue
ball” are recognized well. For comparison, Figure 8 shows
the confusion matrix for the classification based on the tactile
fingertip sensor. Here, compliance of the object’s material
contributes strongly to its classification. For instance, the very
soft “green pepper” and the hard “red banana” are classified
well in contrast to finger position based classification. This
result shows that the objects in the dataset are distinguished
by different haptic properties.

B. Neural Architectures for Integration of Haptic Sensory
Channels

We evaluate three neural architectures for the integration of
different haptic sensory channels: convolutional, recurrent and
simple MLP. Based on the previous work [15] and preliminary
grid-search experiments the number and type of layers for each
architecture type was determined and thorough hyperparameter

Fig. 8. Confusion matrix for haptic object classification based on tactile
fingertip sensor only (averaged 10-fold cross-validation). In comparison to
classification based on finger position objects with distinct softness like the
soft “green pepper” and the hard “red banana” are classified well.

Hyperparameter Model type Min Max
Batch size All models 8 128
# of filters Conv. 16 256
kernel sizes x & y Conv. 1 8
filter size Conv. 32 256
size of dense layer Conv. 16 256

# Units in LSTM layer LSTM 8 64
dropout rates MLP 0.001 1
# units in dense layers MLP 8 1024

TABLE I
RANGE OF HYPERPARAMETERS FOR OPTIMIZATION.

optimization performed. Again, for each architecture, we de-
fine a search space for hyperparameters and apply automated
optimization using Hyperopt. For all models, the batch size
was optimized. For the convolutional architecture, the number
of filters and the filter size in x and y dimension and the
number of units in the dense layers were optimized. For the
LSTM architecture, the number of units in the LSTM layer
was optimized. For the MLP architecture, the number of units
in the dense layers and the drop out rate were optimized. Table
I shows the range of all hyperparameters for all models. We
did not optimize the learning rate, as the adaptive learning rate
method Adadelta [27] was used to train all models. As a loss
function for all models, categorical cross entropy was used.
All layers use the rectified linear activation function except
for the output layer that uses a softmax activation function.

For the hyperparameter optimization, again, the dataset was
split in an 80/10/10 ratio into train, validation and test set.



Fig. 9. Confusion matrix for haptic object classification for convolutional
architecture (averaged 10-fold cross-validation).

The hyperparameter optimization was run for 1000 trials for
the convolutional and the MLP architecture and 500 for the
LSTM architecture. Again early stopping on the validation
accuracy with a patience parameter of 50 was used. As
expected, the optimization and training took longest for the
LSTM model (159 hours, 38 minutes), significantly shorter for
the convolutional model (23 hours, 58 minutes) and shortest
for the MLP (8 hours, 58 minutes). The times were measured
using an NVIDIA Geforce RTX 2080 TI card, using Cuda
Version 10. The optimized architectures were again trained
with an 80/10/10 split using the same early stopping criteria
as described above. The training and evaluation were repeated
in 10-fold cross-validation for each model.

1) Results: Convolutional Architecture: The hyperparame-
ter optimization resulted in the architecture shown in Figure
5 (top): One convolutional layer (160 filters of size 7x4)
is followed by a flatten layer and a dense layer with 192
units before the output layer with 16 units; batch size is 36.
Figure 6 shows the averaged training history of the models.
The architecture achieved an average classification accuracy of
0.666±0.029. This result significantly exceeds the classifica-
tion results of each isolated haptic sensory channel and shows
the ability of the neural network for meaningful integration of
these sensory channels. Figure 9 shows the averaged confusion
matrix for the 16 objects. The convolutional model performed
best among all models. It is noteworthy that the optimization
process has converged to a broad filter size of seven that
almost covers all haptic signal channels. We assume that the
additional parameters created in contrast to a 1D-convolution
are beneficial for the model.

Fig. 10. Confusion matrix for haptic object classification for MLP architecture
(averaged 10-fold cross-validation).

2) Results: Recurrent Architecture: The hyperparameter
optimization resulted in the architecture shown in Figure 5
(middle): A recurrent LSTM layer with 52 units is followed
by a dropout layer (dropout rate 0.50) before the output layer
with 16 units; batch size for training is 28. The architecture
achieved 10-fold cross-validation classification accuracy of
0.598±0.058. The performance is slightly lower than that of
the convolutional architecture. The averaged confusion matrix
does not diverge significantly from the one produced by the
convolutional architecture. Training and therefore optimization
took significantly longer although the model size (number of
trainable parameters) is much lower.

3) Results: MLP architecture: The hyperparameter opti-
mization resulted in the architecture shown in Figure 5 (bot-
tom): Two pairs of dense layers (644 and 358 units) followed
by a dropout layer (dropout rate 0.62 and 0.017) processes
the input before the output layer; the batch size is 76. The
architecture achieved a 10-fold cross-validation classification
accuracy of 0.534±0.021. Figure 10 shows the averaged
confusion matrix for the 16 objects. The performance is lower
than the performance of the other two architectures. We see
that is evidence that the temporal sequence of haptic sensory
data contributes to the haptic classification in comparison to
the static data in the state of already having gripped an object.
In this experimental setup, objects that are compressed during
squeezing to a similar diameter but with different hardness are
more likely confused, e.g., the plush “yellow banana” and the
hard-plastic “red banana”.



V. CONCLUSION

We present a large haptic dataset with 83200 haptic mea-
surements, based on 100 samples of each of 16 different ob-
jects, every sample containing 52 measurements. The objects
are actively explored by a humanoid robot by compressing
them in a robotic hand with a tactile sensor. The dataset
contains different sensor reading like finger position, finger
currents, and forces registered at the fingertip. To address the
issue of sparse datasets for robotic haptic perception, we make
this dataset publically available.

Based on the dataset we developed different neural mod-
els classifying objects based on the haptic information. We
achieve an initial baseline classification accuracy of 66.6% in
10-fold cross-validation. We showed that this result is due to
the ability of the network to integrate the data both over time
domain and over different sensory channels. Neither a single
sample from just one-time stamp nor a single sensory channel
achieves a comparable result. While some objects differ in
their shape and circumference (finger position) others differ
in their overall flexibility (finger force) or surface hardness
(fingertip sensor). Furthermore, we have shown that these
distinguishing features in different haptic properties can be
utilized well by neural approaches. These findings underline
the ability of artificial neural networks for integration of
different sensory (sub-)modalities. We have also shown that
convolutional and recurrent architectures achieve comparable
performance on the task while showing large differences in
training time and number of trained parameters.

Regarding robot design, we have shown that utilizing exist-
ing information available in most modern robot motors, like
motor position and motor current, significantly adds to the
capability of robotic haptic sensing. This source of haptic
information does not require extensions of existing hardware.

In future work, we will further extend the robotic hard-
ware by installing one-point haptic sensors in all fingers of
the robotic hand. We will evaluate other haptic exploration
strategies like lifting, tapping or sliding. We will also include
other sensory modalities like sound into our neural models.
Finally, we will develop model architectures that combine the
compactness of recurrent architectures with the fast training
time of convolutional architectures.
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