
Frame Difference-Based Real-Time Video
Stylization in Video Calls

Zheyang Xiong
Nansha College Preparatory Academy,

511458 Guangzhou, China

Cornelius Weber
University of Hamburg,

Department of Informatics,

22527 Hamburg, Germany

Xiaolin Hu
Tsinghua University,

Department of Computer Science and Technology,

Beijing 100084, China

Email:xlhu@mail.tsinghua.edu.cn

Abstract—The naive video stylization method is to perform
neural-style transfer on individual frames, but this method would
result in a flickering effect, which is particularly visible in static
regions. Previous remedies extract optical flow from a video and
use this information to stabilize the stylized videos. However,
computing optical flow is complex and time-consuming. We
consider stylizing videos in which the background is fixed and
only the foreground object moves, which is the case in video calls.
We propose a simple method to stylize such videos in real time
based on frame difference. The main idea is to use the frame
difference to detect foreground and rebuild it in the next frame
while maintaining the stylized background from the previous
frame. This method is easy to implement and can stylize videos
in real time with stabilized frames.

Keywords—Deep learning, real-time video processing, image styl-
ization, morphology transformation, computer vision.

I. INTRODUCTION

As the internet is becoming increasingly connected nowa-

days, video call is becoming more popular. People can com-

municate “face-to-face” using this technology. In most video

call software, while there are many fancy visual effects such

as colorful filters and animated gif, some users would also

want their video calls to be artistic, by which the videos will

have the same style as a famous painting.

The idea of generating an image with a style of a famous

painting, style transfer, was proposed in [1]. They proposed to

use a pre-trained convolutional neural network that can mathe-

matically capture the style (using a Gram Matrix) and content

of various images. Given a work of fine art, this approach

can take an arbitrary image and generate an optimized image

with the same content as the original, but in the style of the

work of [2] proposed another method that trains a feed-forward

CNN and renders a stylized image immediately when input

the content image and style image. These image style transfer

approaches have been widely used in artistic software like

Prisma and Artisto.

However, when methods of image style transfer are applied

to videos frame by frame, they will produce flicker artifacts in

the stylized video, as is shown in Fig. 1. To solve this issue,

[3] proposed a new way to transfer style in video sequences

by adding a temporal constraint. Their approach relies on

optical flow calculation. They extract the optical flow from

the video to calculate the temporal and long-term constraints,

Fig. 1. Style transfer in video that produce flicker artifact. Two images are
consecutive stylized frames. The zoom-in areas from the blue rectangle show
flicker artifacts where the backgrounds of stylized frames are inconsistent
between two consecutive frames.

penalize the deviation along point trajectories, and make the

video sequence stable. Other methods based on feed-forward

networks are also proposed to stylize video with a faster speed

[4]–[6].

To stylize consistent videos, i.e. videos without flicker, with

faster speed, we propose a new method that captures the

deviation between each frame, the frame difference. In our

method, we first stylize the current frame by a feed-forward

network [2]. In order to make the stylization consistent, we

calculate the difference in gray channel between current frame

and previous frame and determine which part of the frame is

in motion. Then, using a binary mask, we only update the area

that is in motion (foreground) and preserve the motionless area

(background). This new methodology can compute consistent

stylized video sequences with a speed much faster than using

optical flow calculation. Since our method utilizes frame-

difference to detect foreground and background, it is based

on the assumption that the camera itself rarely moves, which

can be applied in video calls.

II. RELATED WORKS

A. Style Transfer on Images

1) Optimization-based: The ground-breaking paper [1]

finds an impressively effective method with a descriptive

network. They notice that when reconstructing images from

feature maps in a pre-trained VGG-19 [7], it will keep the

details of content in lower layers, and style in upper layers.

They then proposed an approach to optimize a new image

(starting from Gaussian white noise) that has similar neural

activation in feature maps of a given content image in lower

layers while also having similar correlations (as defined by an

Fig. 2. The architecture of the feed-forward network based on [2].

inner product of feature maps) as a given style image in its

upper layers. They define two loss functions for optimization:

style loss for learning style features and content loss for

preserving the original content information. After sufficient

epochs of optimization, the new image will have the style

from the style image while preserving the content from the

content image.

Nevertheless, optimization-based style transfer is extremely

time-consuming because an optimization process is needed for

each image to be stylized.

2) Network-based: In order to address the shortcoming of

optimization, [2] proposed to train a feed-forward generative

image transform CNN by using a similar perceptual loss in

corresponding style and content layers defined in the loss

network (VGG-16) [7], which eliminates the time-consuming

optimization. [8] further develop this method by suggesting

instance normalization to replace batch normalization .

B. Style Transfer on Videos

However, when methods of image style transfer are imple-

mented on videos (i.e., stylizing every individual frame with

a single style image), the output video sequences will have

flicker artifacts and inconsistent video frames.

1) Optimization-based: In order to make stylized video

temporally consistent, [3] introduce a method for video styliza-

tion based on optimization . The optical flows between frames

are extracted (using DeepFlow [9]) and taken into account to

calculate the temporal constraint that penalizes deviation along

point trajectories. This process allows the areas that have not

changed or been occluded to be initialized with the desired

appearance on the next frame, while the occluded regions

are rebuilt based on the optimization. Furthermore, a long-

term constraint can be calculated between a frame and another

frame several frames before. This method can generate frames

that have consistent correspondences with previous frames.

Thus, the whole video sequence is consistent and stable.

2) Network-based: However,the approach in [3] can bring

huge computational burden, which is not suitable for real-time

video stylization. [4] proposed another method to achieve real-

time video stylization . They mimic the architecture of feed-

forward network in [2] and add temporal loss on the network.

Their temporal loss also needs optical flow calculation, and

Fig. 3. The diagram of our method. To obtain the current stylized frame,
we first generate a binary mask from consecutive original frames; then we
apply the mask on the last stylized frame to preserve the background and
use the mask on the new stylized frame to produce the new foreground;
then background and foreground are combined to eventually form the current
stylized frame.

they train the network by feeding two consecutive frames to

enhance pixel-level temporal consistency. After the generative

network is trained, no optical calculation is needed in the test

stage. On the other hand, [5] proposed a recurrent convolu-

tional neural network that also does not need optical flow at

test time . In this manner, feed-forward networks in [4], [5]

can yield temporally consistent stylized videos in real-time.

Recently, a new network-based method was proposed in

[6] that can yield consistent stylized videos, which is an im-

provement on their optimization-based method. This reduces

runtime by utilizing a faster optical flow extractor – FlowNet

2.0 [10]. They also construct a video transfer network, in

which consistency loss is measured with warped frame and

output frame. Their new method does need optical flow at test

time, but FlowNet ensures a fast optical flow extraction speed.

III. FRAME-DIFFERENCE-BASED REAL-TIME

STYLIZATION IN VIDEOTELEPHONY

To make video stylization fast and consistent, we propose a

new method that only stylizes the foreground (such as human

faces, body, and hand gestures) but keeps the background un-

changed. Because in videotelephony, the camera rarely moves,

we use frame-difference to discern between background and

foreground. Our stylization part is based on the method in

[2], but we use frame difference to detect foreground and

only update foreground in stylized video to make stylization

consistent.

A. Feed-forward Network for Stylization

We first stylize each new image by using feed-forward

network in [2]. This architecture combines a feed-forward

network with a loss network (VGG-16), shown in Fig. 2.

During training, a stylized image will first be computed

through a feed-forward network. Then, iteratively, a random

content image from a large dataset and a target style image

will be used to calculate content loss and style loss via

the loss network (VGG-16). Through back-propagation and

optimization of the two losses, the feed-forward network will

be trained. Once the feed-forward network is trained, each

stylized image passed through the feed-forward network will

preserve the spatial original features of the original while

adding the stylistic features from the style image. We then

only update the foreground of the stylized frame to make the

video consistent.

B. Frame Difference for Foreground Detection

In order to yield temporal consistency, we expect the

background (the area that does not move) to remain unchanged

throughout the video sequence while re-stylizing the fore-

ground (area of object that moves).

First, we define F t ∈ RH×W as a matrix containing pixel

information in the grey channel at the t-th original frame (the

current frame), where the gray channel is calculated by the

average value of the R, G, and B channels. Thus, we can

obtain the frame differences [11] between every adjacent pair

of frames to calculate pixel differences from frame to frame

as:

Dt = F t − F t−1 (1)

where F t−1 is a matrix of pixel information for the (t−1)-
th frame (the previous frame); F t ∈ RH×W is a matrix of

pixel information for the t-th frame (the current frame), and

t = 1, 2, 3, ... for F t; Dt ∈ RH×W is a matrix containing

pixel differences between the t-th frame and the (t− 1)-th
frame, and t = 2, 3, 4, ... for Dt.

We can thereafter judge whether the pixel at a particular

location is in motion from the (t− 1)-th frame to the t-th
frame by setting up a threshold value. We define a value dti,j ,

which is the value of frame difference at pixel (i, j) between

the t-th frame and the (t−1)-th frame, where i = 1, 2, , H ,

j = 1, 2, ,W . If dti,j exceeds the threshold value, we consider

the pixel at location (i, j) to be in motion from the (t−1)-th
frame to the t-th frame. We thereafter define a binary mask

Bt to judge whether the pixel is in motion from F t−1 to F t,

where bti,j is the pixel information at location (i, j) in Bt,

bti,j =

{
1, |dti,j | ≤ T

0, |dti,j | > T.
(2)

By this equation, the pixel at (i, j) is determined to be in

motion between the (t− 1)-th frame and the t-th frame if

dti,j exceeds the threshold value T. Else, it is considered

background.

Then, we keep the stylized background from the (t−1)-th
frame and add stylized areas in motion in the t-th frame:

St
new = St−1 �Bt + St � (1 −Bt), (3)

where St is the stylized t-th frame using feed-forward network

in [2], Bt is being duplicated three times to become a binary

mask in RGB channels. The � calculation is the Hadamard

product between matrices. 1 ∈ RH×W is a matrix full of 1.

The complete process of our method is illustrated in Fig. 3.

C. Morphology Transformation

Usually, the frame difference cannot fully detect the fore-

ground of the frame, so the binary mask Bt is incomplete on

the foreground while some noise in the background might be

erroneously detected as foreground. Thus, we use morphology

transformation on Bt to enlarge the area of the foreground and

to prevent detecting background as foreground due to noise.

Morphology transformation, including erosion and dilation,

is widely used in computer vision. It is basically an operation

that deals with digital images, especially binary images. Judg-

ing whether a pixel is background or not only using a threshold

on frame difference can incur much noise and only capture the

lineament of the foreground. Fig. 4 shows that simply using

the frame difference method to detect foreground between two

frames is not effective. We can only capture the outline of

foreground, and there is much noise in the background that

is incorrectly detected as foreground. We therefore apply the

closing operation to the binary mask to remove noise and fill

the area of foreground.

Closing is a morphological operation on images; it consists

of dilation and erosion [12]. The equation for closing is

A •B = (A⊕B)�B, (4)

where ⊕ and � denote dilation and erosion, respectively.

Let A be a binary mask consisting of 0 and 1, B a

morphological kernel with kernel size k. The dilation of A
and B is defined [12] by:

Fig. 4. An example of morphological transformations. The first row shows two original frames: the first figure is the previous frame F t−1, and the second
figure is the current frame F t. The first figure of the second row shows a binary mask Bt; the second figure shows the outcome of dilation; the third figure
shows the outcome of erosion after dilation.

Fig. 5. An example of dilation where B is a 3× 3 square matrix full of 1.

A⊕B =
⋃
b∈B

Ab, (5)

where Ab is defined by the translation of A by b. See Fig. 5

for an example.

The erosion of the binary image A to a kernel B is defined

[12] by:

A�B =
⋂
b∈B

A−b, (6)

where A−b is the translation of A by −b. See Fig. 6 for an

example.

Since erosion can expand the black area and dilation can

expand the white area, we need to dilate the noise area

in Bt−1 first in order to prevent making the noise as the

foreground. After that, we erode the image several times to fill

the outline of the incomplete foreground and make it complete

and accurate.

IV. RESULTS

Our feed-forward network was trained and validated on the

Microsoft COCO dataset [13] with 1000 epochs.

Fig. 6. An example of erosion where B is a 3× 3 square matrix full of 1.

Fig. 7. An example of morphological transformation with too much dilation.

A. Foreground Detection

With binary thresholding and , we can obtain an accurate

mask that distinguishes between foreground and background.

Examples of morphological transformations are shown in Fig.

4. The first image of the second row shows Bt without

morphological operation; as we can see, there is much pixel

noise in the background being detected as foreground (black

Fig. 8. The style image is The Scream, shown in the first row. The
second row shows two consecutive stylized frames using the method in [2];
areas enclosed by green rectangles indicate stylized backgrounds are variant
between the consecutive frames. The third row shows two consecutive stylized
frames using the network-based method in [6]; areas enclosed by green
rectangles indicate stylized backgrounds are consistent. The fourth row shows
two consecutive stylized frames using our method; areas enclosed by green
rectangles indicate stylized background are nearly unchanged.

pixels). The second image of the second row shows Bt

with two iterations of dilation and kernel size of 3 (3 × 3
square matrix with all value of 1); the background noise is

effectively removed from Bt while keeping the outline of the

foreground. The third image of the second row shows Bt with

five iterations of erosion and kernel size of 5 (5 × 5 square

matrix with all value of 1) after dilation; most part of the

foreground has been filled with black (indicating detection as

foreground), and there is little noise near the background.

For morphological transformation, we recommend three or

four iterations of dilation before erosion to eliminate noise

while preserving the outline of foreground. If too many

iterations of dilation are applied, as is shown in the second

row of Fig. 7, even erosion cannot completely capture the fore-

ground completely. We apply multiple steps of dilation/erosion

because this allows us to use a smaller kernel than when

applying only one step.

B. Comparison to Previous Methods

Although there are several ways to stylize videos, there is

only a limited number of ways to stylize video in real-time.

In our paper, we compare our method with the method in [2]

and [6]. The comparison is shown in Fig. 8, from which we

can see that our method and the method in [6] yield consistent

stylized background. The areas enclosed by green rectangle on

the third row indicate that our method improves by producing

unchanged background, whereas the method in [2] produces

variant background between frames. In addition, our method

can produce similar consistency results as [6].

TABLE I
TIME ELAPSED FOR ONE STYLIZATION BY DIFFERENT METHODS.

Method Time/frame Consistency
[2] 0.11s Flickering
[6] 0.43s Consistent

Ours 0.13s Consistent

Fig. 9. The orange area shows the “ghost effect” where some feature of the
background is not smoothly integrated with the whole frame.

By using a NVIDIA Titan X GPU, our method can transfer

one single frame with a resolution of 1024× 436 within 0.13

seconds and achieve approximately 8 fps in real-time styliza-

tion (an optional choice for increasing frames per second (fps)

to 25 is to resize the frame size to be 320×240). A comparison

of stylization speed is shown in Table 1. Our method can

produce consistent stylized video with much faster speed than

[6].

C. Ghost Effect

Because we use a binary mask to update the foreground

and keep the background, sometimes there is a “ghost effect”

in the background, as is shown in Fig. 9. “Ghost effect”

refers to some artifacts staying in the background in regions

that have earlier been detected as foreground from which the

object (person) has now moved away. This is caused by a

wrong calculation of binary mask and a failure to update

foreground. These small artifacts appear while uncovering

occluded regions, but not as sudden changes, so they are hard

to detect.

D. Other Results

We also implement our method on other styles, subjects,

and backgrounds. The outputs are reasonably pleasant and the

frames are consistent, in which they have an artistic style, see

Fig. 10.

V. CONCLUSION

In conclusion, our method combines the advantage of

existing methods of being fast, as [2], and not producing

unpleasant flicker, as [6]. Since our approach is based on the

assumption that the camera does not move, it can be used

in real-time video calls. If the camera moves, or if all image

content changes, flicker will not be perceived, and our method

becomes equivalent to [2]. While the method implemented in

Fig. 10. Video stylization using six different styles. For each style, we stylize and display four frames, each three frames later from the previous one.

this paper is not perfect, it is a great improvement on previous

efforts.

ACKNOWLEDGMENT

This work was done in the Research Science Initiative

program at Tsinghua University. And this work was supported

in part by the National Natural Science Foundation of China

under grants nos. 61332007, 61621136008, and 61273023 and

by the German Research Foundation (DFG) under project

Transregio Crossmodal Learning (TRR 169).

REFERENCES

[1] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer
using convolutional neural networks,” in Proceedings of 2016 IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, Jun. 2016, pp. 2414–2423.

[2] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in Proceedings of European
Conference on Computer Vision, Amsterdam, Netherlands, Oct. 2016,
pp. 694–711.

[3] M. Ruder, A. Dosovitskiy, and T. Brox, “Artistic style transfer for
videos,” in Proceedings of Pattern Recognition: 38th German Confer-
ence, GCPR 2016, Hannover, Germany, Sep. 2016, pp. 26–36.

[4] H. Huang, H. Wang, W. Luo, L. Ma, W. Jiang, X. Zhu, et al., “Real-
time neural style transfer for videos,” in Proceedings of 2017 IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu,
Hawaii, USA, Jul. 2017, pp. 7044–7052.

[5] A. Gupta, J. Johnson, A. Alahi, and L. Fei-Fei, “Characterizing and
improving stability in neural style transfer,” in Proceedings of 2017 IEEE
International Conference on Computer Vision, Venice, Italy, Oct. 2017,
pp. 4087–4096.

[6] T. B. Manuel Ruder and Alexey Dosovitskiy, “Artistic style trans-
fer for videos and spherical images.” [Online]. Available: http-
s://arxiv.org/abs/1708.04538v3.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition.” [Online]. Available:
http://cn.arxiv.org/abs/1409.1556v6.

[8] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Improved texture
networks: Maximizing quality and diversity in feed-forward stylization
and texture synthesis,” in Proceedings of 2017 IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, Jul. 21-
26 2017, pp. 4105–4113.

[9] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “DeepFlow:
Large displacement optical flow with deep matching,” in Proceedings of
IEEE International Conference on Computer Vision, Sydney, Australia,
Dec. 2013, pp. 1385–1392.

[10] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition , Honolulu, Hawaii, USA, Jul. 2017, pp. 1647–1655.

[11] C. Chen, J. Liang, H. Zhao, H. Hu, and J. Tian, “Frame difference
energy image for gait recognition with incomplete silhouettes,” Pattern
Recognition Letters, vol. 30, no. 11, pp. 977–984, Aug. 2009.

[12] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using
mathematical morphology,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 9, no. 4, pp. 532–550, Jul. 1987.

[13] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
et al., “Microsoft COCO: Common objects in context,” in Proceedings
of European Conference on Computer Vision, Zürich, Switzerland, May
2014, pp. 740–755.

