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Abstract—The naive video stylization method is to perform
neural-style transfer on individual frames, but this method would
result in a flickering effect, which is particularly visible in static
regions. Previous remedies extract optical flow from a video and
use this information to stabilize the stylized videos. However,
computing optical flow is complex and time-consuming. We
consider stylizing videos in which the background is fixed and
only the foreground object moves, which is the case in video calls.
We propose a simple method to stylize such videos in real time
based on frame difference. The main idea is to use the frame
difference to detect foreground and rebuild it in the next frame
while maintaining the stylized background from the previous
frame. This method is easy to implement and can stylize videos
in real time with stabilized frames.

Keywords—Deep learning, real-time video processing, image styl-
ization, morphology transformation, computer vision.

I. INTRODUCTION

As the internet is becoming increasingly connected nowa-
days, video call is becoming more popular. People can com-
municate “face-to-face” using this technology. In most video
call software, while there are many fancy visual effects such
as colorful filters and animated gif, some users would also
want their video calls to be artistic, by which the videos will
have the same style as a famous painting.

The idea of generating an image with a style of a famous
painting, style transfer, was proposed in [1]. They proposed to
use a pre-trained convolutional neural network that can mathe-
matically capture the style (using a Gram Matrix) and content
of various images. Given a work of fine art, this approach
can take an arbitrary image and generate an optimized image
with the same content as the original, but in the style of the
work of [2] proposed another method that trains a feed-forward
CNN and renders a stylized image immediately when input
the content image and style image. These image style transfer
approaches have been widely used in artistic software like
Prisma and Artisto.

However, when methods of image style transfer are applied
to videos frame by frame, they will produce flicker artifacts in
the stylized video, as is shown in Fig. 1. To solve this issue,
[3] proposed a new way to transfer style in video sequences
by adding a temporal constraint. Their approach relies on
optical flow calculation. They extract the optical flow from
the video to calculate the temporal and long-term constraints,
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Fig. 1. Style transfer in video that produce flicker artifact. Two images are
consecutive stylized frames. The zoom-in areas from the blue rectangle show
flicker artifacts where the backgrounds of stylized frames are inconsistent
between two consecutive frames.

penalize the deviation along point trajectories, and make the
video sequence stable. Other methods based on feed-forward
networks are also proposed to stylize video with a faster speed
[4]-[6].

To stylize consistent videos, i.e. videos without flicker, with
faster speed, we propose a new method that captures the
deviation between each frame, the frame difference. In our
method, we first stylize the current frame by a feed-forward
network [2]. In order to make the stylization consistent, we
calculate the difference in gray channel between current frame
and previous frame and determine which part of the frame is
in motion. Then, using a binary mask, we only update the area
that is in motion (foreground) and preserve the motionless area
(background). This new methodology can compute consistent
stylized video sequences with a speed much faster than using
optical flow calculation. Since our method utilizes frame-
difference to detect foreground and background, it is based
on the assumption that the camera itself rarely moves, which
can be applied in video calls.

ITI. RELATED WORKS

A. Style Transfer on Images

1) Optimization-based: The ground-breaking paper [1]
finds an impressively effective method with a descriptive
network. They notice that when reconstructing images from
feature maps in a pre-trained VGG-19 [7], it will keep the
details of content in lower layers, and style in upper layers.
They then proposed an approach to optimize a new image
(starting from Gaussian white noise) that has similar neural
activation in feature maps of a given content image in lower
layers while also having similar correlations (as defined by an
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Fig. 2. The architecture of the feed-forward network based on [2].

inner product of feature maps) as a given style image in its
upper layers. They define two loss functions for optimization:
style loss for learning style features and content loss for
preserving the original content information. After sufficient
epochs of optimization, the new image will have the style
from the style image while preserving the content from the
content image.

Nevertheless, optimization-based style transfer is extremely
time-consuming because an optimization process is needed for
each image to be stylized.

2) Network-based: In order to address the shortcoming of
optimization, [2] proposed to train a feed-forward generative
image transform CNN by using a similar perceptual loss in
corresponding style and content layers defined in the loss
network (VGG-16) [7], which eliminates the time-consuming
optimization. [8] further develop this method by suggesting
instance normalization to replace batch normalization .

B. Style Transfer on Videos

However, when methods of image style transfer are imple-
mented on videos (i.e., stylizing every individual frame with
a single style image), the output video sequences will have
flicker artifacts and inconsistent video frames.

1) Optimization-based: In order to make stylized video
temporally consistent, [3] introduce a method for video styliza-
tion based on optimization . The optical flows between frames
are extracted (using DeepFlow [9]) and taken into account to
calculate the temporal constraint that penalizes deviation along
point trajectories. This process allows the areas that have not
changed or been occluded to be initialized with the desired
appearance on the next frame, while the occluded regions
are rebuilt based on the optimization. Furthermore, a long-
term constraint can be calculated between a frame and another
frame several frames before. This method can generate frames
that have consistent correspondences with previous frames.
Thus, the whole video sequence is consistent and stable.

2) Network-based: However,the approach in [3] can bring
huge computational burden, which is not suitable for real-time
video stylization. [4] proposed another method to achieve real-
time video stylization . They mimic the architecture of feed-
forward network in [2] and add temporal loss on the network.
Their temporal loss also needs optical flow calculation, and
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Fig. 3. The diagram of our method. To obtain the current stylized frame,
we first generate a binary mask from consecutive original frames; then we
apply the mask on the last stylized frame to preserve the background and
use the mask on the new stylized frame to produce the new foreground;
then background and foreground are combined to eventually form the current
stylized frame.

they train the network by feeding two consecutive frames to
enhance pixel-level temporal consistency. After the generative
network is trained, no optical calculation is needed in the test
stage. On the other hand, [5] proposed a recurrent convolu-
tional neural network that also does not need optical flow at
test time . In this manner, feed-forward networks in [4], [5]
can yield temporally consistent stylized videos in real-time.

Recently, a new network-based method was proposed in



[6] that can yield consistent stylized videos, which is an im-
provement on their optimization-based method. This reduces
runtime by utilizing a faster optical flow extractor — FlowNet
2.0 [10]. They also construct a video transfer network, in
which consistency loss is measured with warped frame and
output frame. Their new method does need optical flow at test
time, but FlowNet ensures a fast optical flow extraction speed.

III. FRAME-DIFFERENCE-BASED REAL-TIME
STYLIZATION IN VIDEOTELEPHONY

To make video stylization fast and consistent, we propose a
new method that only stylizes the foreground (such as human
faces, body, and hand gestures) but keeps the background un-
changed. Because in videotelephony, the camera rarely moves,
we use frame-difference to discern between background and
foreground. Our stylization part is based on the method in
[2], but we use frame difference to detect foreground and
only update foreground in stylized video to make stylization
consistent.

A. Feed-forward Network for Stylization

We first stylize each new image by using feed-forward
network in [2]. This architecture combines a feed-forward
network with a loss network (VGG-16), shown in Fig. 2.
During training, a stylized image will first be computed
through a feed-forward network. Then, iteratively, a random
content image from a large dataset and a target style image
will be used to calculate content loss and style loss via
the loss network (VGG-16). Through back-propagation and
optimization of the two losses, the feed-forward network will
be trained. Once the feed-forward network is trained, each
stylized image passed through the feed-forward network will
preserve the spatial original features of the original while
adding the stylistic features from the style image. We then
only update the foreground of the stylized frame to make the
video consistent.

B. Frame Difference for Foreground Detection

In order to yield temporal consistency, we expect the
background (the area that does not move) to remain unchanged
throughout the video sequence while re-stylizing the fore-
ground (area of object that moves).

First, we define F* € RT*W as a matrix containing pixel
information in the grey channel at the t-th original frame (the
current frame), where the gray channel is calculated by the
average value of the R, G, and B channels. Thus, we can
obtain the frame differences [11] between every adjacent pair
of frames to calculate pixel differences from frame to frame
as:

Dt _ Ft o Ft—l (l)

where F'~1 is a matrix of pixel information for the (t—1)-
th frame (the previous frame); F* € R¥*W is a matrix of
pixel information for the t-th frame (the current frame), and
t =1,2,3,... for Ft; D* ¢ R"*W is a matrix containing

pixel differences between the ¢-th frame and the (¢t—1)-th
frame, and ¢t = 2, 3,4, ... for D

We can thereafter judge whether the pixel at a particular
location is in motion from the (¢ —1)-th frame to the ¢-th
frame by setting up a threshold value. We define a value dﬁ, i
which is the value of frame difference at pixel (7, j) between
the ¢t-th frame and the (t—1)-th frame, where i = 1,2,, H,
g=12,,W.If dﬁ,j exceeds the threshold value, we consider
the pixel at location (7, 7) to be in motion from the (t—1)-th
frame to the ¢-th frame. We thereafter define a binary mask
B! to judge whether the pixel is in motion from F*~! to F?,
where b} ; is the pixel information at location (4, j) in B,

o L|di;| <T @
Y00, |d > T

By this equation, the pixel at (7,j) is determined to be in
motion between the (¢ — 1)-th frame and the ¢-th frame if
dﬁ)j exceeds the threshold value T. Else, it is considered
background.

Then, we keep the stylized background from the (¢—1)-th
frame and add stylized areas in motion in the ¢-th frame:

St ,=S"toB' +5"6 (1~ BY, (3)

new

where S? is the stylized ¢-th frame using feed-forward network
in [2], B! is being duplicated three times to become a binary
mask in RGB channels. The ® calculation is the Hadamard
product between matrices. 1 € R¥*W is a matrix full of 1.
The complete process of our method is illustrated in Fig. 3.

C. Morphology Transformation

Usually, the frame difference cannot fully detect the fore-
ground of the frame, so the binary mask B? is incomplete on
the foreground while some noise in the background might be
erroneously detected as foreground. Thus, we use morphology
transformation on B! to enlarge the area of the foreground and
to prevent detecting background as foreground due to noise.

Morphology transformation, including erosion and dilation,
is widely used in computer vision. It is basically an operation
that deals with digital images, especially binary images. Judg-
ing whether a pixel is background or not only using a threshold
on frame difference can incur much noise and only capture the
lineament of the foreground. Fig. 4 shows that simply using
the frame difference method to detect foreground between two
frames is not effective. We can only capture the outline of
foreground, and there is much noise in the background that
is incorrectly detected as foreground. We therefore apply the
closing operation to the binary mask to remove noise and fill
the area of foreground.

Closing is a morphological operation on images; it consists
of dilation and erosion [12]. The equation for closing is

AeB=(A® B)©o B, 4

where @ and © denote dilation and erosion, respectively.

Let A be a binary mask consisting of 0 and 1, B a
morphological kernel with kernel size k. The dilation of A
and B is defined [12] by:
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Fig. 4. An example of morphological transformations. The first row shows two original frames: the first figure is the previous frame F*—! and the second
figure is the current frame F't. The first figure of the second row shows a binary mask B?; the second figure shows the outcome of dilation; the third figure

shows the outcome of erosion after dilation.
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Fig. 5. An example of dilation where B is a 3 X 3 square matrix full of 1.

Ao B =] A, (5)
beB

where A is defined by the translation of A by b. See Fig. 5
for an example.

The erosion of the binary image A to a kernel B is defined
[12] by:

AcB= ()4, (6)

beB

where A_, is the translation of A by —b. See Fig. 6 for an
example.

Since erosion can expand the black area and dilation can
expand the white area, we need to dilate the noise area
in B'~! first in order to prevent making the noise as the
foreground. After that, we erode the image several times to fill
the outline of the incomplete foreground and make it complete
and accurate.

IV. RESULTS

Our feed-forward network was trained and validated on the
Microsoft COCO dataset [13] with 1000 epochs.
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Fig. 6. An example of erosion where B is a 3 X 3 square matrix full of 1.

Fig. 7. An example of morphological transformation with too much dilation.

A. Foreground Detection

With binary thresholding and , we can obtain an accurate
mask that distinguishes between foreground and background.
Examples of morphological transformations are shown in Fig.
4. The first image of the second row shows B! without
morphological operation; as we can see, there is much pixel
noise in the background being detected as foreground (black
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style image

Fig. 8. The style image is The Scream, shown in the first row. The
second row shows two consecutive stylized frames using the method in [2];
areas enclosed by green rectangles indicate stylized backgrounds are variant
between the consecutive frames. The third row shows two consecutive stylized
frames using the network-based method in [6]; areas enclosed by green
rectangles indicate stylized backgrounds are consistent. The fourth row shows
two consecutive stylized frames using our method; areas enclosed by green
rectangles indicate stylized background are nearly unchanged.

pixels). The second image of the second row shows B?
with two iterations of dilation and kernel size of 3 (3 x 3
square matrix with all value of 1); the background noise is
effectively removed from B! while keeping the outline of the
foreground. The third image of the second row shows B? with
five iterations of erosion and kernel size of 5 (5 x 5 square
matrix with all value of 1) after dilation; most part of the
foreground has been filled with black (indicating detection as
foreground), and there is little noise near the background.

For morphological transformation, we recommend three or
four iterations of dilation before erosion to eliminate noise
while preserving the outline of foreground. If too many
iterations of dilation are applied, as is shown in the second
row of Fig. 7, even erosion cannot completely capture the fore-
ground completely. We apply multiple steps of dilation/erosion
because this allows us to use a smaller kernel than when
applying only one step.

B. Comparison to Previous Methods

Although there are several ways to stylize videos, there is
only a limited number of ways to stylize video in real-time.
In our paper, we compare our method with the method in [2]
and [6]. The comparison is shown in Fig. 8, from which we
can see that our method and the method in [6] yield consistent
stylized background. The areas enclosed by green rectangle on
the third row indicate that our method improves by producing
unchanged background, whereas the method in [2] produces
variant background between frames. In addition, our method
can produce similar consistency results as [6].

TABLE I
TIME ELAPSED FOR ONE STYLIZATION BY DIFFERENT METHODS.
Method | Time/frame | Consistency
2] 0.11s Flickering
[6] 0.43s Consistent
Ours 0.13s Consistent

Fig. 9. The orange area shows the “ghost effect” where some feature of the
background is not smoothly integrated with the whole frame.

By using a NVIDIA Titan X GPU, our method can transfer
one single frame with a resolution of 1024 x 436 within 0.13
seconds and achieve approximately 8 fps in real-time styliza-
tion (an optional choice for increasing frames per second (fps)
to 25 is to resize the frame size to be 320 x 240). A comparison
of stylization speed is shown in Table 1. Our method can
produce consistent stylized video with much faster speed than

[6].
C. Ghost Effect

Because we use a binary mask to update the foreground
and keep the background, sometimes there is a “ghost effect”
in the background, as is shown in Fig. 9. “Ghost effect”
refers to some artifacts staying in the background in regions
that have earlier been detected as foreground from which the
object (person) has now moved away. This is caused by a
wrong calculation of binary mask and a failure to update
foreground. These small artifacts appear while uncovering
occluded regions, but not as sudden changes, so they are hard
to detect.

D. Other Results

We also implement our method on other styles, subjects,
and backgrounds. The outputs are reasonably pleasant and the
frames are consistent, in which they have an artistic style, see
Fig. 10.

V. CONCLUSION

In conclusion, our method combines the advantage of
existing methods of being fast, as [2], and not producing
unpleasant flicker, as [6]. Since our approach is based on the
assumption that the camera does not move, it can be used
in real-time video calls. If the camera moves, or if all image
content changes, flicker will not be perceived, and our method
becomes equivalent to [2]. While the method implemented in
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Fig. 10. Video stylization using six different styles. For each style, we stylize and display four frames, each three frames later from the previous one.

this paper is not perfect, it is a great improvement on previous
efforts.
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