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Abstract— Robotic motor policies can, in theory, be learned
via deep continuous reinforcement learning. In practice, how-
ever, collecting the enormous amount of required training
samples in realistic time, surpasses the possibilities of many
robotic platforms. To address this problem, we propose a
novel method for accelerating the learning process by task
simplification inspired by the Goldilocks effect known from
developmental psychology. We present results on a reach-
for-grasp task that is learned with the Deep Deterministic
Policy Gradients (DDPG) algorithm. Task simplification is
realized by initially training the system with “larger-than-
life” training objects that adapt their reachability dynamically
during training. We achieve a significant acceleration compared
to the unaltered training setup. We describe modifications
to the DDPG algorithm with regard to the replay buffer to
prevent artifacts during the learning process from the simplified
learning instances while maintaining the speed of learning. With
this result, we contribute towards the realistic application of
deep reinforcement learning on robotic platforms.

I. INTRODUCTION

Deep reinforcement learning can be used to learn discrete
or continuous motor policies based on interaction with the
environment. Therefore, this class of learning algorithms
is a perfect fit for research in developmental robotics [1],
as it enables an embodied neuro-cognitive system to learn
complex sensorimotor abilities through trial and error. These
approaches have been successfully applied in virtual environ-
ments [2]. However, it is challenging to adapt these results
to real-world applications, as deep reinforcement learning
relies on a vast amount of training samples. Considering the
number of operation hours [3], [4], which an agent needs to
learn a policy, using an actual robot is often not practicable.
Therefore, the scientific challenge arises to accelerate the
learning process, with regard to the number of samples that
are necessary to learn a motor policy (sample efficiency).
To this end, we present a novel approach that follows the
developmental robotics paradigm, where more and more
sophisticated cognitive and sensorimotor abilities are de-
veloped through interacting with increasingly challenging
environments [1].

We focus on a reach-for-grasp task, one of the most
general and fundamental tasks in robotics, which is in the
focus of research [2]–[6]. In our approach, a simulated robot
arm learns to reach for an object, as shown in Figure 1. While
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Fig. 1. Task simplification: The joint space shows possible solutions (red)
for grasping the red target, which is represented twice in this space due to
redundant solutions. Reaching a small target requires a very precise joint
configuration that is difficult to find by random exploration. By simplifying
the task (lower row) through larger training targets, the requirements for the
joint configuration are relaxed; this is represented by larger red areas. This
can accelerate the initial phase of deep reinforcement learning.

traditional approaches for grasping use separate models for
vision, grasp planning and inverse kinematics [5], neural
learning paradigms offer the possibility to learn all of these
subtasks in an end-to-end approach without even knowing
the robot model [7].

To address the problem of sample efficiency, the task is
simplified by presenting the system with “larger-than-life”
training targets which are easier to reach, as depicted in
Figure 1. Motor policies that develop from this simplified
task instance are then used to learn to reach for increasingly
difficult, e.g., smaller, targets.

We evaluate the proposed learning strategy using the
well-established continuous deep reinforcement learning al-
gorithm DDPG (Deep Deterministic Policy Gradients) [2].
Results show a 50% average acceleration for the overall
learning time by dynamically adapting the reachability of the
target according to the learning progress. We also document
necessary modifications to the algorithm with regards to how
episodes are stored in the replay buffer and utilized for
updating the neural networks of DDPG to prevent learning
suboptimal policies from simplified learning instances.
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II. BACKGROUND

A. Continuous Deep Reinforcement Learning

First, we describe deep reinforcement learning with
DDPG, to motivate both the idea of task simplification
and the necessary modifications to DDPG. Though task
simplification can be applied to most variants of (continuous)
reinforcement learning algorithms like the continuous actor-
critic learning algorithm (CACLA) [8] and continuous deep
q-learning with model-based acceleration [9] we focus on
the widely-used and well-established DDPG algorithm.

Q-learning is based on trial-and-error learning by an agent
in an interactive environment. The agent learns the mapping
from a discrete set of states st and actions at to an expected
reward (q-value), which allows selecting the best action in
a given state. Mnih et al. [10] introduced Deep Q-Network
learning, which uses complex, high dimensional input data,
e.g., unprocessed pixel data, but it is still limited to discrete
actions. To address this challenge, DDPG was introduced by
Lilicrap et al. [2] to extend deep reinforcement learning to
continuous actions.

Deep Q-Networks are based on neural function approxi-
mates for q-values, i.e., the neural network is updated with
the Bellman equation, where the sum of direct rewards and
expected (discounted) future rewards from the environment
are learned for each action-state combination. In deep Q-
networks, an action is selected by letting a neural network
approximate the expected reward in a given state for a fixed
set of actions. The action with the highest expected reward
is then chosen.

For a continuous control problem, like robot grasping,
even a coarse discretization of actions would lead to an expo-
nentially high number of actions with increasing degrees of
freedom. DDPG solves this challenge by training a separate
parameterized actor function realized as a neural network. It
follows the actor-critic architecture for deterministic policy
gradient algorithms [11].

The critic and actor-networks are not trained directly with
a sequence of performed actions, but performed actions are
committed to the replay memory (replay buffer) and drawn
randomly for updates. This decorrelates the samples used
for a single update to increase stability. The actor network is
updated by gradient transfer from the critic network with
respect to the actor parameters. Given a state, the actor
network outputs the action with the highest expected reward.

To increase stability, “soft” target updates are used for
both the critic and actor networks by creating copies of the
respective networks that are only slowly adjusted towards
the learned networks. This further slows down learning,
requiring hundreds of thousands of samples for a policy [2].

B. Speeding up Deep Reinforcement Learning

Various approaches have been suggested to accelerate deep
reinforcement learning. They modify different aspects of the
learning procedure; here we give an exemplary overview:

Mnih et al. [10] suggest utilizing an optimal selection
of samples from the replay memory to update the neural

network. They propose to use prioritized sweeping [12] to
select those samples that have the best effect on learning.
This was successfully realized by Schaul et al. [13].

Other approaches focus on the exploitation behavior:
Hafez et al. [14] use a curiosity-driven approach in a reach-
for-grasp task to reward the exploration of yet unknown parts
of the state space to speed up learning time as a repeated
exploration of known parts of the action space is prevented.

Otte et al. [15] employ a curriculum training method for a
neural network realization of inverse kinematics. The training
is split into several episodes, with incrementally relaxed
joint limits, thus increasing the size of the action space
gradually. This can be seen as a form of task simplification
by constraining the possible actions. None of the summarized
approaches, however, alter the learning task itself.

A different approach to increase sample efficiency is to
transform the reinforcement learning task into supervised
learning. Levine et al. [16] and Kerzel and Wermter [7]
utilize fully annotated training samples of successful trials
to train a neural architecture, thus fully avoiding the trial-
and-error learning phase. Levine et al. compute the forward
kinematics of a robot that is generating samples, while Kerzel
and Wermter exploit the fact that the action of grasping
an object can be inverted into the much simpler task of
placing an object at a random position. Both approaches
rely on having additional information available to the system
(forward kinematics) or being able to devise a suitable
learning scenario (task inversion) - both options are not
always available.

C. Developmental Background

According to Libertus et al. [17] there is biological evi-
dence that infants who are less experienced in grasping show
a preference to visually and manually explore larger objects.
Once the reach-for-grasp ability of the infants improves, it
shifts towards smaller objects. Though Newman at al. [18]
attribute this shift in preference to a development in visual
processing streams that enable object-related actions, it can
also be interpreted as an instance of the Goldilocks effect
[19], that describes the tendency of infants to prefer stimuli
that have just the right complexity to enable learning novel
abilities without being overburdened.

To address the research question if and how deep con-
tinuous reinforcement learning can also benefit from the
Goldilocks effect, i.e., learner appropriate task difficulty, we
develop an experimental reach-for-grasp setup and evaluate
the effect of task simplification.

III. METHODOLOGY: TASK SIMPLIFICATION BY
REACHABILITY ADAPTATION

To enable DDPG to learn from task-simplification, we
introduce two changes to the algorithm: first, we reorganize
learning into learning stories. Stories are learning units,
where the target has a fixed position but dynamically adapts
its size and therefore reachability according to the learning
success. Secondly, for each story, we construct a local
memory that is separated from the main replay memory to



Fig. 2. Simulated environment with train and test targets. Blue circles
indicate the training targets and black circles indicate the test targets.

prevent the algorithm from learning artifacts from simplified
task instances. Our experimental setup is a two-dimensional
reach-for-grasp task with a simulated robot arm with two
degrees of freedom depicted in Figure 2.

A. Training Phases

Learning is organized into learning stories. During each
story, the agent will try to repeatedly reach a target at the
same position until it achieves a reliable success rate. A story
consists of episodes. At the beginning of each episode, the
joint configuration is randomly initialized before the learning
steps begin. Finally, during each step, when the actor network
is fed the current joint configuration and target location, it
determines an action (modification to the joint values) with
the highest expected reward. This action is then executed in
the simulator and a reward is assessed: if the gripper reaches
the target a positive reward of 10 is given, and the episode
terminates. The episode also terminates if the target was not
reached within 800 steps (MaxStepNumber = 800). In
every other step a small negative reward of -0.001 is given.
The expected reward is calculated by adding the reward for
the current step to the discounted future reward according to
the Bellman equation with a discount factor γ of 0.99.

A story is finished when the agent manages to reach
the non-simplified target reliably. In our experimental setup,
this is defined as reaching the target 20 consecutive times
(found empirically). Figure 3 shows the three nested loops
of our modified DDPG algorithm: the outer loop controls
the position of the target. The next loop, called episode
loop, controls the size of the target. This loop is repeated
depending on learning success; it also performs the fine tune
procedure. Finally, the core loop controls the configuration
of the robot during single steps.

Fig. 3. Overview of our modified DDPG algorithm.

Fig. 4. Exemplary target size adaptation: during the 20 first steps, the size
is not changed as the current reaching ability of the learner is evaluated.
Usually the target is not reliably reached which results in the target growing
to its upper size limit. Once the target is reliably reached, it begins to shrink
gradually. Finally, when the agent reliably reaches the target, fine tuning
on the non-simplified target prevents learning artifacts from simplified
instances.

B. Task-simplification through Adaptive Reachability

To adapt to the learner’s progress, the size of the target
is dynamically adjusted according to the learning success. In
the initial learning phase the target will gain an increased size
and is, therefore, easier to find by random exploration. Once
the target is reached, its size, and therefore its reachability, is
dynamically adjusted by the target size controller according
to Figure 4. Different schemes for adapting the target size
were tested and the best results were gained when the starting
size of the target is non-simplified to see if the actor can
already reach the target reliably from past learning stories.
If not, the target size is increased quickly. Once the target
reached reliably the size is again decreased at a slower pace.
The target size controller monitors if episodes are terminated
successfully by reaching the target or unsuccessfully after
800 steps of not reaching the target. After each episode, the



target size is adjusted in the following way:

MAS(β) =
1

β

EN∑
E′

N=EN−β

SE′
N

SEN
=

{
1 if success
0 if fail

(1)

TS =

 Smin EN < Ethr
min(TS + δ+, Smax) MAS(20) < Pthr & EN ≥ Ethr
max(TS − δ−, Smin) MAS(20) ≥ Pthr & EN ≥ Ethr

(2)

MAS represents the sum of moving average over the success
queue. Target size (TS) is defined by three different equations
for each stage of the algorithm: initialization, growing, and
shrinking. These stages are formalized by three conditions
(equation 2) which indicate how the target size has been
modified (Figure 4). Pthr is the performance threshold of
0.9 and Ethr is the episode threshold of 20 (empirically
optimized). δ− and δ+ are the rate of shrink and expand,
respectively. Both size operations are limited to the mini-
mum (Smin) and maximum (Smax) size of the target. For
initialization and fine-tuning, target minimum size Smin is
assigned. This ensures that the size of the target and therefore
the difficulty of the task adjusts to the learning success of
the agent in a stable way.

C. Consolidation Phase and Local Memory

A necessary modification to DDPG is the introduction of
a local memory in addition to the usual replay memory,
renamed main memory. The local memory is used to sep-
arate experiences from main memory to ensure that task-
simplification does not lead to learning artifacts. At the
beginning of a story a new local memory is initialized by
creating a copy of the main memory. After each step, the
transition (state(t), action(t), reward(t), state(t+1), terminal)
is stored as a 5-tuple in the local memory. If the episode took
place while the target had already reached its minimum size,
then the transitions of all steps within that episode are also
committed to the main memory. This separation ensures that
the local memory can take advantage of the simplified task
instances while the main memory does not contain artifacts
from these instances.

During an update, samples from the local memory are
used; this leverages the acceleration gained from task sim-
plification, but prevents catastrophic forgetting [20], as each
local memory is initialized as a copy of the main memory.

Once a story ends because the target has been reliably
reached during the last 20 episodes, the learning is con-
solidated in a fine tuning phase, for another 50 episodes
(Successmaxstory = 50), the learning is continued to learn
transitions of the non-simplified task instance.

IV. IMPLEMENTATION AND RESULTS

We evaluated the effect of task simplification by dynami-
cally adapting the target size in the above-described task.

A. Experimental Setup

We have developed a fully graphical simulator for this pur-
pose where the control frequency is almost 1 kHz. Though
this setup cannot be compared to real robotic platforms, it

Algorithm 1 DDPG Algorithm [2] with task simplification
Randomly initialize critic network Q(s, a|θQ) and actor
µ(s|θµ) with weights θQ and θµ with Glorot uniform
Initialize target network Q′ and µ′: θQ

′ ← θQ, θµ′ ← θµ

Initialize main and local replay buffer RM , RL
for story = 0 : TargetPoints do

Assign a new position to target
Replace the local memory by the main memory
Initialize FineTunen = 0, Episode number EN = 0,
Successstory = 0, FineTunePhase = False
while FineTunen < FineTunemax do

if EN < Ethr OR FineTunePhase then
Ts = Smin

else if EN > Ethr then
if MAS(20) < Pthr then
TS = min(TS + δ+, Smax)

else if MAS(20) ≥ Pthr then
TS = max(TS - δ−, Smin)

end if
end if
Initialize a random process N for action exploration
Receive initial observation state s0
for t = 0, MaxStepNumber do

Select action at = µ(st|θµ) +Nt according to the
current policy and exploration noise
Execute action at and observe reward rt and ob-
serve new state st+1

if TS > Smin then
RL

Store← (st, at, rt, st+1, tert)
else
RL, RM

Store← (st, at, rt, st+1, tert)
end if
Sample a random mini-batch from RL
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ′)|θQ
′)

Update critic: min
θQ

1
N

∑
i(yi −Q(si, ai|θQ))2

Update actor network:
OθµJ ≈ 1

N

∑
iOaQ(s, a|θQ)|a=µ(si)s=si Oθµµ(s|θµ)|si

Update the target networks:
θQ

′ ← τθQ + (1− τ)θQ′

θµ
′ ← τθµ + (1− τ)θµ′

end for
if TS == Smin and SEN

== 1 then
SuccessStory + = 1
if Successstory ≥ Successmaxstory then
FineTunePhase = True

end if
end if
if FineTunePhase then
FineTunen + = 1

end if
end while

end for

enables us to evaluate the (sample) efficiency of different
learning setups.



Similar to Lillicrap et al. [2] we excluded vision process-
ing and directly fed target position and joint angles into the
DDPG network that outputs changes to the joint configura-
tion. The rationale behind this is that joint angles are known
to a learning robotic system, and the visual localization of
the target can happen via pre-trained components.

B. Implementation

Our modified DDPG algorithm was implemented in Keras
[21] with Tensorflow backend [22]. Critic-network and actor-
network have 400 hidden units each. The input is defined as
a low-level feature vector regarding the position of the target
in polar space and the current joint configuration of the arm
in joint space.

Input(t) =[sin(θ0), cos(θ0), sin(θ1), cos(θ1),

sin(θtarget), cos(θtarget), radiustarget] (3)

The Adam optimizer has been used to train new policies
with a learning rate of 10−4 for the actor and 2 × 10−4

for the critic. The activation function for all layers was
Rectified Linear Unit (ReLU). The activation function of
the last layer of the actor-network which produces the joint
angles was a hyperbolic tangent function (tanh). The neural
network architecture and hyper-parameters were optimized
empirically; smaller or more shallow networks had problems
learning larger numbers of targets.

The actor-network produces one value between -1 and 1
per joint; at each time step each joint moves at most 1 degree
in either direction. In case bigger steps are desired, the output
of the actor can be scaled up by a proportional factor.

C. Evaluation

In both the static baseline and the dynamic task simplifi-
cation condition the algorithm was trained with 72 stories.
To ensure comparability between conditions, the positioning
of targets both for training and evaluation followed the fixed
scheme depicted in Figure 2 and used the same network
architecture and hyper-parameters. Each learning target was
presented once in random order. Both conditions have been
repeated six times to avoid biases through random initializa-
tion of the neural networks. Figure 5 shows the success rate
during training for known targets and Figure 6 for unseen test
targets to demonstrate how the network generalizes. Results
indicate that adapting the target size to the learning success
leads to a better reach-for-grasp accuracy.

More importantly, adapting the target size to the learn-
ing progress significantly shortened the overall number of
training steps. Figure 7 shows the accumulated number of
learning steps in each story. In the dynamic task simplifica-
tion condition, the number of steps accumulates slower than
in the static baseline condition, which means the agent has
learned to generalize well to new targets.

D. Discussion

These results can be interpreted in the following way: as
any reinforcement learning algorithm, DDPG relies on gain-
ing reward through successful actions. Only these rewards

Fig. 5. The average number of successes to reach the training targets. The
vertical axis indicates the average success number and the horizontal axis
indicates the story number.

Fig. 6. The average number of successes to reach the test targets. The
vertical axis indicates the average success number and the horizontal axis
indicates the story number.

Fig. 7. The cumulative number of learning steps. Our modified DDPG
algorithm learns about twice as fast as the baseline algorithm.



train the critic and indirectly the actor-network. The updated
actor then directs the exploitation towards more rewarding
areas of the state space while a random term ([−0.3, 0.3]
linearly scaling down to [−0.05, 0.05] over 300 epochs)
added to the output of the actor ensures ongoing exploration,
e.g., finding shorter paths to the target.

However, the networks for the critic and the actor are
randomly initialized. Therefore, the actor generates random
actions, and the target can only be found by a low chance.
If the range of possible joint configurations that do reach the
target are marginal compared to the configurations that do
not, it becomes unlikely to reach the target; extending the
initial phase unnecessarily. Providing a larger target, on the
other hand, simplifies the task and increases the likelihood
to gain initial rewards quickly, thus accelerating learning.

The observed acceleration can also be explained by an-
alyzing what transitions are stored in the main memory.
During the long, initial random exploration at the beginning
of new stories, transitions with little learning value are
committed to the memory. This is shown in Figure 5, where
forgetting of already learned policies [20] can be observed.

In the dynamic condition, however, transitions are only
committed to the main memory when the task has reached
its non-simplified difficulty; this, in turn, happens when the
learner reliably reaches the target. Therefore, the dynamic
condition realizes a hard prioritization of samples with a high
learning value which could also be interpreted as a pushing
the learning scenario towards supervised learning [7], [16].

V. CONCLUSION

We have presented a novel approach to accelerate deep
continuous reinforcement learning with DDPG in terms of
sample efficiency by utilizing task-simplification inspired by
the Goldilocks effect from developmental psychology. We
introduced modifications to DDPG to prevent overfitting to
simplified task instances. Results show that adapting the
difficulty of a task according to the learner’s progress, e.g.,
by presenting an easier target in a reach-for-grasp task,
accelerates the learning compared to a baseline condition
and furthermore creates a more stable learning result. For a
2D reach-for-grasp task with a two-jointed arm, we achieve
a 50% percent average acceleration compared to the DDPG
baseline algorithm. We assume that this relative increase will
also apply to more complex tasks like controlling a robot arm
with six degrees of freedom.

We contribute a novel technique to accelerate reinforce-
ment learning by modifying the learning task itself. This
method and the modifications to the learning algorithm can
be adapted to related approaches and also be combined with
other methods to accelerate the learning. To what extent this
is successful will be evaluated in future work. Likewise, the
approach can be generalized to other typical reinforcement
learning tasks by providing simplified problem instances to
accelerate initial learning like a more stable pole to swing
up, a shorter path to find or a more straight road to follow.
As this contribution is aimed to enable deep reinforcement

learning on real robotic systems, in future work, we will
employ our approach on a humanoid robot.
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