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Abstract—Among different gesture types, static gestures or
postures deliver a broad range of communicative information
like commands or emblems. Vision-based processing for posture
recognition is the most intuitive yet challenging task in intelligent
systems. Achievements in deep learning, specifically convolu-
tional neural networks (CNN), replaced creating hand models
or engineering features for automated image feature learning
at the expense of large data requirements and long training
sessions for optimal parameter tuning. The aim of the present
study is to explore the potentials of sparse autoencoders for
posture recognition, promoting an alternative method to present
convolutional approaches. We conduct experiments with hierar-
chically designed autoencoders to retain the desired image feature
abstractions on two posture datasets with distinct characteristics.
The different data properties allow us to demonstrate parameter
influences on the network performance. Our evaluation shows
that even a shallow network design achieves superior perfor-
mance compared to a multiple channel CNN, and comparable
results on a small dataset with sparse image samples. From our
study we conclude that “lightweight” approaches can be viable
tools for posture recognition, which are worth more explorations
in the future.

I. INTRODUCTION

One aim of the neural network community is to develop neu-
ral computational models resembling processing capabilities of
the brain, capturing its efficiency and robustness in detection
and recognition over different modalities. The progress both in
data availability and accelerated computing on GPUs tremen-
dously influenced the neural network and machine learning
community in the past years. The term “Deep Learning”
signifies deep neural networks (DNN), where especially CNNs
address challenging problems primarily in computer vision
but also speech recognition and audio processing. Although
learning filters instead of handcrafting shows convincingly
good performance, the past years’ literature demonstrates
merely a set of network variations and constraints on training
those models for the sake of benchmark performance. Learning
becomes an engineering process relying on exhaustive tun-
ing and the provision of correct labels [1] being diametric
to the “neurally-inspired” learning principles. Additionally,
CNN s are rather robust perceptual tools mirroring early vision
processing in the visual cortex, which identifies image feature
like edges and shapes. Autoencoders are neural models which
provide this feature emergence in the absence of any labels
and may offer an unsupervised learning approach in addi-
tion or even in substitution to supervised CNNs. Moreover,
autoencoders allow a visualization of features obtained after
learning and thus open the often criticized ‘black box’ behav-
ior of neural networks. We want, therefore, to investigate the
potential application capabilities of autoencoders for the task

of posture recognition, which is an essential research topic
in Human-Computer Interaction (HCI) and an important part
in natural interactions between humans and robots (HRI). In
particular, we are using autoencoder networks with different
hierarchical levels to retain feature abstractions similar to
CNNs and with neurons implementing a sparse firing behavior.
In neuroscience it is hypothesized that sparse codes [2] balance
neuronal responses to incoming stimuli and the metabolic
costs. In the present context, a sparsity constraint enables
neurons to react to only specific image features.

In the vision domain, hierarchical learning has been
adopted, for instance, in learning features for object recog-
nition with sparse feature detectors [3], deep belief networks
(DBN) [4] as well as recurrent convolutional neural networks
(CNN) [5]. For action recognition, the introduction of 3D
kernel CNNs [6] allowed for spatial learning across images
as well as a two-stream CNN for video data [7]. In the unsu-
pervised domain, hierarchical processing employing growing-
when-required networks (GWR) was introduced to tackle the
problem of classifying new actions without retraining [8].
However, only few approaches consider posture recognition.
A study on sign language recognition contrasted CNNs, Deep
Belief Network (DBN) and HOG-features combined with
Support Vector Machines (SVM) and revealed superior perfor-
mance of DBN over CNNss, and slightly better results of CNNs
versus SVM [9]. Testing the models met realtime conditions
for CNNs and DBNs but training the models took hours.
Another sign language study compared CNNs and stacked
denoising autoencoders (SDAE) [10], the latter showing best
performance in training and testing and in runtime comparison.
We target a similar approach: particularly, we focus on two
papers on vision-based posture recognition introducing posture
data with distinct characteristics evaluated on two different
approaches, which we describe in the following.

The first paper we are considering addresses elastic graph
matching (EGM) [11] inspired by orientation selectivity of
neurons in a cat’s extrastriate cortex [12]. A graph describes
characteristic points of a posture e.g. the fingertips. Local
nodes (jets) are parametrized 2D Gabor wavelets responding
to local image patches regarding spatial size and orientation.
The global hand shape is captured by edges labeled with a
distance vector. A set of model graphs serve as templates and
are compared with new test images regarding the locations
and distance similarities. The approach was tested on a set
of hand postures with both uniform and complex background
(see Figure 1, JTD dataset in the following).

As an alternative to hand models, a CNN with three
independent input channels implementing additional Sobel



Fig. 1. Examples from the JTD dataset comprising 10 hand postures
shown in front of two uniform backgrounds (row 1-2) and a complex
background (row 3).
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Fig. 2. Examples from the NCD posture set. The first column depicts
the default position and posture type. Each posture was also varied in
hand orientation and positions in the scene including hand occlusions.

edge dectectors (Multi-Channel Convolutional Neural Net-
work, MCNN) was proposed [13], introducing the NCD
dataset obtained from a camera of the NAO humanoid robot.
The network was trained using a 2D kernel for image-wise
learning and a 3D kernel for image stacks. For comparison,
the authors used the JTD database [11] and a set of 4 postures
varying in hand orientation and positions (see Figure 2). We
use the two datasets in our study and will contrast the different
approaches in section VI.

II. SPARSE AUTOENCODERS IN A NUTSHELL

An autoencoder is a network that learns an approximate
reconstruction of its input =, i.e. x ~ h(Wz + b), where
W denotes a set of weights including a bias term b, and h
is either a linear or nonlinear transfer function. The rationale
behind autoencoders is to learn a compact representation by
an encoder-decoder scheme. The encoding is a mapping of
the N-dimensional input x to a lower dimension M, i.e.
RN + RM M << N. This mapping is realized by training
the connection weights 1 between the input and the encoder,
which capture characteristic features of the images. The de-
coder reconstructs the input from the resultant representations,
which is an input approximation due to the lossy compression.
However, autoencoders trained to obtain distinct input features
can be beneficial for classification, and the visualization of the
encoder weights allows an analysis of resultant representations
in the network which contributes to an understanding of what
the network actually learns [14].

Sparse Autoencoder Training

The autoencoder learns discriminative features of its input in
the absence of any labels. As images usually contain specific

patterns and sensor noise, hierarchical or usually called “deep”
models provide a way to learn image structures ranging from
simple lines to shapes similar to early vision processes in the
brain. To achieve this, autoencoders can be stacked where the
decoding phase is discarded and instead the feature coding
from the first stage is passed as input to a second layer and
so on, until a desired level of depth is reached (see Figure
3). A standard autoencoder produces an image manifold from
the original input images, and the training performances from
such an autoencoder gives a quantitative measure how well
this original data was reconstructed. The minimization of the
objective function £ is evaluated using the mean-squared-
error (MSE). It is common to additionally introduce a penalty
coefficient A\ on the weight norm ||TV|| to avoid overfitting.

Another constraint on the training in the context of an
autoencoder enforces sparse firing of neurons in the hidden
layer activated by the presented inputs. This process is based
on neuroscientific work on sparse coding schemes in the
human brain [2], where neurons respond to specific input stim-
uli only specializing to e.g. orientation. Sparse firing is also
hypothesized to account for the tradeoff between information
transmission and a neurons’ energy consumption, a principle
captured by neuroscientific information maximization models.
A sparse firing pattern is achieved when a neuron mostly
remains silent, which translates to either an activation' of 0
or —1. The average neural activations in the hidden layer are
computed as:
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where a; is the activation of the jth hidden neuron, () the
ith input and p; an approximation of the sparsity parameter
p in the range [0;1]. As p; = p is desirable, the training
penalizes divergence between these values. A way to quan-
tify this is the Kullback-Leibler divergence K L(p||q) which
measures (dis)similarities between probability distributions
depending on their parameters p, the theoretical value, and
g, its approximation. Note, that K L(p||q) = 0 iff p = ¢ and
KL(pllg) # KL(q||p). The firing pattern is modeled as a
Bernoulli distribution with mean p because we are interested
only in neural “firing” or “not firing”. The KL-divergence is
computed as:
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resulting in Z;ﬂ:l K L(p||p;), where an additional coefficient
B > 0 controls the influence of this sparsity regularization term
[15]. With increasing ¢ deviating significantly from p the KL-
divergence increases monotonically. An additional constraint
to suppress this behavior is supplemented in the overall sparse
autoencoder objective function [15], [2]:

ldepending on the range of the used transfer function
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Fig. 3. Neural architecture consisting of an unsupervised learning
stage implemented by stacked, sparse autoencoders (grey box) and a
subsequent supervised training part for the final classification (green
boxes). We show here the L2 design, i.e. two stacked autoencoders,
for illustration purposes. The number of layers L depend on the
complexity of the task.

£y) = min [ 32w (@0 =y A(IWIR)
=1 . (3)
+83 KL(pllp5)]
j=1

where A is the parameter for the ¢ regularization.

III. EXPERIMENTS

In the following, we describe the datasets and the prepro-
cessing scheme employed on the data to ensure an understand-
ing of our experiments and to stimulate reproduction on similar
tasks.

A. Datasets and Preprocessing

The NCD set is recorded with the NAO camera which has
an image resolution of 640 x 320. Posture performances are
varied along the image plane including hand occlusions. To be
comparable with the results presented in [13], we follow the
same image processing steps and convert first the images from
RGB to greyscale. For both datasets, we reduce the images
to 28 x 28 pixel size because we are interested in a minimal
setting to investigate the potential of small images with respect
to the autoencoder feature representations and their impact on
the classification capabilities. Increasing the image sizes would
reveal more image detail and consequently the adding of this
information usually results in higher performance. As this is
rather trivial, we exclude the variable image size.

The JTD set provides 10 gestures performed by 24 subjects
in front of 3 different backgrounds® (see Figure 1). A posture
is always situated frontal to the camera positioned in the
image center, despite some few variations due to different
hand shapes (e.g. length of fingers). The original image size
is 128 x 128 pixels. We split the JTD dataset into subsets. The
letters behind the individual sets determine the background,
ie. W=white, B=black, and A=all images combined, i.e.
from the complex and the uniform backgrounds (cf. Figure
1). For the JTD-A subset, the training set comprises 169
posture samples with complex background and 167 each for

2http://www.idiap.ch/resource/gestures/

TABLE I
DATASET SIZES

Total | Train | Test
JTD-W | 240 168 72
JTD-B 239 167 72
JTD-A 718 503 215

NCD 2716 1901 815
TABLE II
AUTOENCODER PARAMETER
ALy BL, PLy A2 | Br, PLo N1 | N2
0.001-0.01 1-4 0.1-04 | 0.01 1-4 0.1-0.4 100 50

the uniform background. As a remark, we did not expect
reasonable performance for the subset comprising posture with
complex backgrounds only due to our constraint on small
image sizes. Thus, it is left out in this study.

B. Training Procedure and Parameters

We further split all datasets into 70% for training and 30%
for test. The number of samples for each dataset are listed in
table I.

The activation functions for both the encoder and decoder
was the logistic sigmoid, i.e. == The result of the encoding
was then passed to a softmax layer and subsequently finetuned
across the whole network (500 epochs each). We used the
‘scaled conjugate gradient’ (scg) [16] optimizer for the back-
propgation (cf. Figure 3). The autoencoders were stacked using
layers L = {1,2,3}. We empirically determined the number
of neurons and the value ranges for all other parameters used
in this study. They are summarized in table II. We increased
the number of neurons to A1 = 200, ho = 100 and h3s = 50
to ensure proper training for the L3 network design. When
training networks with three hidden layers we realized that
the scg optimization for backpropagation performed worse
than the °‘resilient backpropagation’ (rprop) algorithm [17].
The results from supervised learning were evaluated using
crossentropy and were averaged over 20 trials.

IV. RESULTS AND EVALUATION

In the following, we evaluate the different autoencoder
schemes considering their design with layers L; and separate
the classification performance between the unsupervised au-
toencoder stage with subsequent softmax classification (in the
following ‘AE+softmax’) and the finetuning over the network
(in the following ‘whole network’). All results apply to the
evaluation of the test set of the corresponding dataset and
parameters given above.

A. Performances of Architectures - NCD dataset

For an autoencoder with only one layer L = 1 the lowest
accuracy over all parameter configurations was observed for
regularization parameters A = 0.001, § = 1, and sparsity
p = 0.1, i.e. the mean accuracy from AE+softmax was
44.5% and 78.0% when trained over the whole architecture
(median: 42.85% and 86.2%). To find an explanation for



the performance difference, we investigated the individual
trials and observed that in 3 trials only 1 posture class was
learned. As a consequence, both learning stages achieved only
28.8% accuracy, which influenced the global performance. Our
assumption that the classes were too imbalanced both in the
training and test set could not be supported. Hence, there might
be other factors like insufficient feature representations, which
we will demonstrate in section V.

Table III shows the influence of the sparse firing parameter
p and parameters A = 0.001 and S = 1 on the classification
performance both expressed as the average calculation (mean
performance) and the median over all trials. The results show
a peak performance for p = 0.3 with a median of 93.62%.
A high discrepancy between the average and the median
calculations hints at large skewness of results across trials.
To avoid the influence of outliers, we will only report the
median but both measures are shown in the corresponding
tables. Increasing the sparsity regularization 5 dampens this
effect, as depicted in the corresponding graphics. Figure 4
and Figure 5 show the boxplots for 8 parameter values, while
we fixed p = 0.3 and A = 0.001 both for AE+softmax and
for the final classification. We observe a large span of the
accuracy results for 5 = 1 ranging from a minimum of 28.8%,
which is close to guessing the correct posture, to an outlier
with a maximum of 75%. When (3 is increased, we observe
a significant reduction in the result variations concurrently
to a rise of the accuracy, best demonstrated in Figure 5
for 5 = 4. This parameter configuration yielded the lowest
intra-trial variances, which is relevant when discussing the
reliability of neural architectures regarding their classification
ability. A network which has high intra-trial variability and
thus only produces by chance good performance is clearly
not desirable in any application of a posture recognition
system. Overall, best performance with a median value of
100% was achieved for p = 0.1, which supports the rule
of setting this parameter to a low value. However, we are
also interested in the resultant feature representations in the
unsupervised learning stage and its impact on the performance.
For the mentioned parameters, the AE+softmax stage yields
58.83%, which shows that finetuning is still necessary to
obtain good performance.The best result for AE+softmax only
was obtained for p = 0.2 (other parameters constant) yielding
an accuracy of 64.48%. From our results it becomes apparent
that different values of the parameter p produce only slight
differences in the overall performance so other factors like
experimental variances or analysis of the parameter impact on
the feature representations become important. We suspect that
variations among the posture images influence the resolution
needed in the neuronal responses.

From the evaluation of the single autoencoder network, we
infer that parameter configurations degrading or increasing the
performance naturally influence the network behavior of such
stacked autoencoders. Our results confirm worse performance
for both, AE+softmax and the whole network when the
sparsity parameters p and (3 are low. Table IV depicts accuracy
for increasing p;, i.e. the sparsity firing in the first layer with

TABLE III
VARYING SPARSITY FIRING FOR NCD (L1)

Accuracy (%) AE+softmax ‘Whole network

p mean | median | mean | median

0.1 44.5 42.85 78.02 86.20

0.2 50.27 49.32 87.67 81.28

0.3 56.63 55.21 80.27 93.62

0.4 52.02 50.55 73.38 87.79
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Fig. 4. Boxplot demonstrating the influence of 5 on the results of the NCD
set with A = 0.001 and p = 0.3 of the softmax classifier (L1). The red
crosses depict outliers.

B1 = P2 =1 and A\; = 0.001. Other parameters were fixed as
follows: pa = 0.1 and A2 = 0.01. The best performance was
again obtained for p; = 0.3 but also with higher variances
across trials. Increasing the regularization S now for both
layers to 31 = B2 = 4 with p; = 0.3 and po = 0.2 yielded the
best performance for the fully trained network with an average
accuracy of 100%. This result with the impact of § is shown
in Figure 6. We obtained very good results on classification
accuracy with a shallow network design. Going “deeper” with
more layers would give no further performance improvements
but may lead to overfitting. Thus, we did not consider the L3
network for further analysis.

B. Performances of Architectures - JTD dataset

Involving autoencoders for the training of posture with
uniform background reveals good performance as we will
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Fig. 5. Boxplot demonstrating the influence of 3 on the results of the NCD
set with A = 0.001 and p = 0.3 after finetuning (L1). The red crosses depict
outliers.
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Fig. 6. Regularization effects for the L2 network on the intra-trial variability.
Red crosses depict outliers.

TABLE IV

VARYING SPARSITY FIRING FOR NCD (L2).
Accuracy (%) AE+softmax Whole network
p mean | median | mean | median
0.1 40.01 38.59 66.41 73.25
0.2 43.28 42.64 75.54 82.27
0.3 52.82 52.27 87.39 99.14
0.4 46.61 49.20 71.48 78.90

demonstrate in the following. We start with the results on the
JTD-B subset for both L1 and L2 networks.

In table V, the results for the effect of sparse firing for § = 1
and A = 0.001 are shown. Here, the best performance was
achieved with p = 0.2 for both AE+softmax and finetuning
with a median of 70.83% and 75.70%, respectively. Notably,
the median for the remaining sparsity parameter in the last
column is similar, which we explain by the small dataset.

In combination with stricter regularization, the performance
increases as shown in table VI. Considering only the re-
sults from the AE+softmax learning, the best performance of
79.17% was achieved for 8 =4, A = 0.001 and p = 0.3.

TABLE V
VARYING SPARSITY FIRING FOR JTD-B (L1)

Accuracy (%) AE+softmax Whole network

p mean | median | mean | median

0.1 49.93 51.39 64.31 69.44

0.2 56.11 70.83 61.11 75.70

0.3 48.33 62.29 52.08 69.44

0.4 47.15 63.40 45.13 69.44
TABLE VI

EFFECT OF 8 FOR p = 0.2

Accuracy (%) AE+softmax Whole network
B mean | median | mean | median
1 56.11 70.83 61.40 75.70
2 61.94 61.80 72.99 76.38
3 67.78 71.52 74.10 77.08
4 69.30 73.61 74.44 77.78

TABLE VII
SPARSITY REGULARIZATION ON JTD-B (L2)

Accuracy (%) AE+softmax ‘Whole network
B mean | median | mean | median
1 50.28 54.86 61.39 73.61
2 57.57 54.17 70.21 71.53
3 50.76 50.00 65.70 70.83
4 55.00 56.94 68.54 72.91

Table VII displays the accuracy on the JTD-B set for a 2-
layered, stacked autoencoder with the same fixed parameter
set as reported for the evaluation of the NCD set.

The best overall performance achieved for training only
AE+softmax was 76.39% for Br1 = Bre =4, A1 = A2 =
0.001 with pr; = 0.2 and pre = 0.1. This performance
is comparable to the final finetuning step which yielded an
average accuracy 77.78%. We observed a significant per-
formance push when finetuning the network for the NCD
set. However, the best result for the JTD-B subset here was
81.25% for Br1 = Br2 = 4, pr1 = 0.2 = pra = 0.2 and
Ar1 = 0.001, Ap2 = 0.01, showing only minor performance
differences between the two learning stages for this dataset.

The JTD-W subset contains postures performed in front of
a white background. We assumed, that the lack of contrast
negatively impacts the performance of the autoencoder in
addition to its spare samples. Our evaluation confirms this
hypothesis. The overall best performance achievable for L1
was 45.83% for A = 0.007, 8 = 4 and p = 0.4. This parameter
configuration also yielded the best result when considering
only training the autoencoder with a final softmax classifier, a
median of 24.3%.

Using the L2 design showed few improvements only. The
parameterization with Sp1 = Brs = 4, Ap1 = Are = 0.001
with pr; = 0.2 and pro = 0.1 yielded also the best result
for the light background when trained over the whole network
but with a considerable performance drop: only an average
accuracy of 45.14% was obtained. The decrease in accuracy is
even more notable for the AE+softmax combination, yielding
22.22% accuracy with parameters Ay = Az = 0.001,
Br1 3, Br1 = 1, pr1 = 0.2, and pro = 0.1. For
both network designs we observed a high intra-trial variabil-
ity resulting in ranges of performances from, for instance,
9.72% — 87.5% derived for the trials with the best reported
network performance. A closer look into the trial performances
reveal that worse performance results from the AE+softmax
training phase delivering insufficiently discriminative features
to the successive layer and consequently backpropagating
through the network fails in learning from this input. As
this subset is rather small, finetuning cannot compensate for
insufficient representations as shown for the NCD set.

From the slight improvements of the stacked autoencoders
(L2) we did not expect any more performance increase when
adding layers. Initial experiments choosing different param-
eters supported our assumption and thus, no more essential
information can be derived using a L3 scheme. However, we
expect that for the JTD-A the use of stacked autoencoders



TABLE VIII
SPARSITY REGULARIZATION ON JTD-A

Accuracy (%) AE+softmax Whole network
Jé] mean | median | mean | median
1 30.69 40.81 33.37 43.88
2 32.58 32.79 44.23 44.07
3 35.42 35.93 49.20 51.51
4 28.43 28.60 37.22 41.51
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Fig. 7. Boxplot demonstrating the influence of the sparse regulariza-
tion parameter (3 on the performance of the final classification results
with A = 0.001 and p = 0.4. The red crosses depict outliers.

capturing complexities in the images might be beneficial. We
will show that our evaluations confirm this assumption.

Our evaluation of the JTD-A set confirms low performances
when incorporating AE+softmax only. Similar to the findings
for the NCD set, increasing the neuronal firing behavior
is beneficial for the classification but with noticeable less
improvement. The best performance was achieved for p = 0.4,
yielding a median value of 47.80%. Again, our results show
no crucial role of A on the performance. Increasing the sparsity
constraint g led to better performance achieved for 8 = 3 with
p = 0.4 (cf. table VIII) and A = 0.001, concretely a median
of 51.1%.

Among all subsets, the JTD-A dataset is the most challeng-
ing set in this study due to merging the three different image
background conditions into the training and test sets, and our
results show that despite supervised learning the single autoen-
coder scheme did not yield sufficient feature representions.
Additionally, compared to the NCD set, all JTD sets comprise
fewer samples while containing 2.5 times more posture classes.
However, using a deeper autoencoder network turned out to
be beneficial for the JTD-A set. Using the L3 design demands
careful choice of a suitable backpropagation algorithm. Prop-
agating gradients along a network hierarchy might lead to the
well-known problem of vanishing or exploding gradients and
thus the optimization procedure on backpropagation learning
plays a crucial role. Here, we chose the rprop algorithm [17].
Based on our study observations of the influences of {\, 3, p}
we only varied the latter. Concretely, we let p; = 0.2 and
varied p2 and p3, which showed only performance increase for
the AE+softmax stage but not in a significant way comparable
to the whole network (cf. Figure 9). A performance of 82.32%
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Fig. 8. Confusion matrix for JTD-A using a deep sparse autoencoder
(L3).
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Fig. 9. Performances and variances for the two learning stages in
a three-layered autoencoder using the JTD-A posture set. The red
crosses depict outliers, showing that the network is error-prone to
local minima even when the parameter configurations yield globally
good results.

was achieved for p; = 0.1 and p3 = 0.05, similar to 82.80%
for po = 0.15 and p3 = 0.1. To show further support,
a confusion matrix sampled from an individual trial on a
test set demonstrates an accuracy of 81.9%. This figure is
exemplary but representative as space is limited here. It shows
that posture 10 was mostly confused with posture 7, which
can be explained by the similar hand position (bent hand) but
while posture 7 shows only the little finger, posture 10 includes
the thumb. This information might have been missing in the
classification. Similarly, most confusion is detectable between
posture 5 and posture 6, being the most similar postures among
all others in the JTD dataset, that is, pointing to the left with
either index finger or index and middle finger.

V. STATISTICAL DIFFERENCES AND VISUALIZATIONS

We also investigated the performance difference between the
AE+softmax learning stage of the architecture and the whole
network performing the network finetuning step.



Our motivation is to investigate whether the AE+softmax
learning stage is able to produce a sufficient representation of
the input with correspondingly good performance competitive
to network finetuning. If this is the case, we can think of
an integrating of such learning modules into larger scale
application where convolutional training would be too time-
consuming. To address the question, we have to evaluate the
performance difference between the two stages. Therefore, we
conducted the McNemar test which is a statistical test used
to evaluate performances of two distinct classifiers under the
hypothesis (Hy) that both methods have equal capabilities.
The assumption is rejected, when performance results ‘signif-
icantly’ differ which means that one classifier outperforms the
other. For the test we assume a significance level of v = 0.01.
We applied the test on the performance obtained from all
trials, i.e. we got 20 responses whether the performances were
equally good or differ (in a statistical sense).

In an intra-trial analysis on the performances compared
between AE+softmax and the whole network, we see crucial
differences for the NCD set as visible in our result section.
In detail, neither for L1 nor for the L2 design learning by
AE+softmax performed equally good than the training over the
whole network. To be more specific, for L1 with parameters
A = 0.001, B =4, and p = 0.2, which resulted in a median
result of 99.94% (average: 95.81%), only one trial achieved the
same performance of 99.88%. The distribution of individual
results is shown in Figure 10. The test can also be used to
identify learning cases where the autoencoder failed to encode
sufficiently good representation directly affecting also the final
classification. This becomes especially apparent for parameter
configurations which show already lower average performance
results. One such example is when g = 1 while keeping
the other parameter values as just described. The intra-trial
analysis revealed 3 cases, where the autoencoder learned only
1 class representation, which consequently also the subsequent
finetuning could not resolve. Figure 11 demonstrates the
results and shows, for instance for trial 2, a performance of
28.47% for both learning stages. Interestingly, this fact is not
mirrored when referring to the averaged values (cf. table III).
Similar results are noticeable for the L2 design - in almost all
cases within and across trials the finetuning performed superior
than the AE+softmax training. However, the graphs also show
the impact of insufficient neural encodings of the image for
both learning stages (within a range of 26.26% — 32.15%).
In such cases, Figure 16 shows exemplary the corresponding
representations for JTD-W when learning fails (we obtained
similar visualizations for NCD).

For the JTD-W we observed high variations within the
individual trials. Figure 12 demonstrates exemplary the distinct
accuracy ranges for the L2 design. It shows, that for five
trials the hierarchical structure fails to produce discriminative
features from the input images which impacts the successive
training over the whole network. At the same time, trial
8 and trial 14 seemed to achieved reasonable training with
corresponding good test performance for both learning stages.
In detail, in trial 8 an accuracy of 87.5% was obtained, for trial
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Fig. 10. Comparison of performance results within trials for pa-
rameters A = 0.001, 8 = 4, and p = 0.2 for the NCD set and
L1 design. The black bars show the accuracy obtained for training
only AE+softmax, the orange bars depict the performance results for
the whole network. Only for trial number 15 the classifier achieved
similar performance.
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Fig. 11. Comparison of performance results within trials for param-
eters A = 0.001, 5 = 1, and p = 0.2 for the NCD set and L1
design. The black bars show the accuracy obtained for training only
AE+softmax, the orange bars depict the performance results for the
whole network. Trial number 2,4, and 19 show a negative impact of
failed autoencoder learning on the final classification.
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Fig. 12. Comparison of performance results for the JTD-W subset
of the individual trials for the L2 design. The black bars show the
accuracy obtained for training only AE+softmax, the orange bars
depict the performance results for the whole network. The graphs
depict high variations across trials and 6 cases where the autoencoder
stage negatively impacts subsequent network finetuning.
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Fig. 13. Comparison of performance results for the JTD-B subset
within the individual trials for the L2 design. The black bars show
the accuracy obtained for training only AE+softmax, the orange bars
depict the performance results for the whole network.
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Fig. 14. Visualization of neuronal responses for 8 =1 and p= 0.1 for JTD-B.

14 a value of 90.28% and 91.67%. In other words, there is
no statistically significant performance difference between the
classifications. Evaluating the classifier performances between
the two training stages for L2, the performances for 14 out of
20 trials were not significantly different. Considering also the
representations, posture contours are more visible in Figure 15
than Figure 14. Our evaluation of these specific trials supports
the assumption: while for 5 = 1 the AE+softmax achieved
only 43.06% accuracy but 72.22% in the final classification,
the average performance for § = 4 increases to 80.56 for
AE+softmax and 83.33% when finetuning the network, show-
ing no statistical significant different performance between
both learning stages. We find this fact supports that reasonable
performance is achievable with shallow autoencoders even for
small datasets but with rich classes and omitting heavy label
learning.

The differences in the posture set are revealed by the
corresponding feature representations: while for the NCD
set with only 4 postures the weights show rather clear and
uniform representations, it is more challenging to capture all
diversity characteristics comprised in the JTD posture set.

Fig. 16. Example of neuronal responses sampled from a training trial using
the JTD-W subset which show insufficient image representations with negative
impact on the accuracy in the subsequent classification.

Thus, we hypothesize that the NCD set relies more on a
suitable preprocessing as both postures and background are
simplistic and only the variations in the image plane must be
considered. Our results show, that good performance can be
achieved with a simplistic neural architecture.

Our study further demonstrates that much performance
power can be squeezed out from the finetuning, which can
obfuscate the learning itself in the sense of “what has been
learned”. This way, the learning reduces to enforcing label
matching and supports critical voices in the neural network
community that deep neural networks are merely blackboxes.

VI. DISCcUSSION AND FUTURE WORK

Deep neural models have shown superior performance for
a number of benchmark datasets for vision and audio data.
However, architectural variants, constraints and requirements
for successfully training those models boil down the learning
part to a network engineering task. Still, training DNNs is



data-hungry, time-consuming, and often deep learning models
are treated rather as black boxes. We were questioning this
approach and explored instead the power of autoencoders for
two specific but distinct posture datasets under the hypothesis
that “lightweight” architectures potentially perform equally
well and may simplify image feature learning.

In the following, we will highlight both the advantages and
downsides of our approach within the context of the work
who have introduced the JTD and NCD datasets ([11], [13]) to
identify alternatives and improvements on the topic of posture
recognition. As the two approaches (EGM and MCNN) differ
in their methodology, a direct comparison with the approach
presented here would not be legitimate. An introduction of the
NCD posture set and the usage of the JTD data for experimen-
tal evaluation was performed with a multichannel CNN using
both a 2D kernel and a 3D kernel [13]. The authors reported an
Fl-score on the JTD postures of 77% for both kernel designs.
As no further details on how the JTD dataset was splitted,
we contrast the results with the accuracy we gained using an
L3 network on JTD-A of approx. 81%. Although the results
improved to over 90% when considering all channels in the
MCNN network architecture [13], we find our networks more
comparative in the following sense: autoencoders, as used
here in the study, do not need a predetermined number of
filters and their corresponding sizes, which greatly reduces
the number of parameters. Instead, the feature encoding is
done in an unsupervised fashion and thus gives an insight into
the corresponding input representation as we have exemplary
shown in this paper. Also, we showed that for the NCD
and the JTD-B as well as JTD-A subset, the performance
is competitive to the convolutional approaches. Moreover, a
statistical test reveals equal performance capabilities of the
AE+softmax network stage as finetuning for the JTD-B set.
The extension of traditional CNNs with multiple channels was
proposed to enhance the image features [13]. Our evaluation
showed that the sparse autoencoders performed superior to
the MCNN for the NCD set even with a shallow network
design (median accuracy 100%). Our analysis on the reported
performances revealed only slight recognition improvements
between the 2D and the 3D kernel, which speaks rather in
favor of the edge enhancement of the independent channels
than the necessity of stackwise image learning. In the light
of our present study results, we conclude that, for datasets
similar to the NCD dataset, sparse autoencoder networks
have the potential to be powerful alternatives to convolutional
approaches. A critical discussion point remains open regarding
the sparsity firing p, which is usually claimed to be small. In
our study we could not obtain a certain value for p, presumably
due to data variations for only a few classes. A deeper analysis
and further experiments on this particular dataset remains
necessary. Our evaluation on the JTD subsets reveal worse
performance for postures with white background than reported
for hand model graphs [11]. We assume that low contrasts
between the hand and the background negatively influence the
learning of image features.

Until today, only a few studies in the domain of posture

recognition focus on learning with autoencoders. Studies de-
scribed in our paper exploited depth images [9] or compared
both CNNs and stacked denoising AE demonstrating compet-
itive capability of the latter [10]. In our paper, we showed the
influence of different parameter configurations from both the
qualitative and quantitative perspective on the performance.
By separating the autoencoder with subsequent classifier from
the backpropagation training along the whole network, we
demonstrated that the first training phase is able to achieve
competitive results to network finetuning for certain input data.
For specific datasets we reported the optimal parameters and
demonstrate their influence on the image feature representa-
tions and the classification performance. Here, we also looked
into cases where autoencoders show low accuracy. Although
this seems counterintuitive to the usual procedure of reporting
best results only, our motivation was to investigate also certain
network designs and parameter configurations connected to an
impact on also poor performance in order to better understand
the methodology. Together with the visualization of learnt
autoencoder weights (feature representations) we showed both
cases when but also when not an autoencoder learns useful
representations. This may guide future applications on autoen-
coder network design on image data.

The evaluation of our study let us promote the integration of
(even shallow) autoencoder networks in a modular fashion into
larger gesture recognition systems would be highly beneficial
when combining static with dynamic gestures as to enlarge
the gesture vocabulary. The ease of training and testing of
network parameters omitting labels and different filter sizes
in contrast to convolutional approaches may be potential
candidates to substitute those approaches when processing
time is constrained as in HRI scenarios with humanoid robots.
Notably, we restricted our experiments to a small image size
and achieved superior results on the NCD posture set, which
was specifically designed for NAO robot interactions [13].
Our results on this dataset underpin our suggestion employing
“lightweight” computational models.

Although we showed that small datasets can yield reason-
able performance, our study is limited in the sense that we
always assume a hand in the scene. Additional image data
to the current datasets to distinguish between presence and
absence of a hand per se is desirable to avoid false positive
results on the classification.

From our present study, we suggest two major further
research directions: first, incorporating easy trainable and slim
network architectures for postures into systems for dynamic
gestures, which would increase the gesture vocabulary due to
the additional access to hand shape and finger configurations.
To distinguish both the hand movement and the hand shape
in a modular fashion with fast yet robust computational tools
would enhance sensible gesture HRI scenarios.

Secondly, it is interesting to unveil the potential of pretrain-
ing or transfer learning also for large-scale datasets. Recent
advances in the area of generative models (e.g. variational
autoencoders) may provide a way to learn variations across
postures to account for inter-subject variability without the



effort of creating larger datasets. A special challenge for a
deep learning model is evident when considering only images
from the JTD dataset with complex backgrounds: it contains
too few examples for the number of classes to reasonably train,
e.g., CNNs, as originally the evaluation of hand graphs was
in the focus. To still benefit from such data, we hypothesized
that training autoencoders on the uniform backgrounds would
provide us with weights coding the image details, which
then blends out the background when applying the trained
autoencoders on test images with complex background. Our
initial experiments evaluated in a qualitative manner showed
indeed segmentation-like effects, and we are currently running
experiments to include a quantitative measure on this topic.

VII. CONCLUSION

Our study contributes to the area of posture recognition
by evaluating the performance of differently designed sparse
autoencoders for two datasets with distinct characteristics.
Although in standard deep learning tasks large datasets are
needed, our evaluation revealed good to superior performance
in even shallow networks for specific image data. A statistical
test on classifier performance demonstrated the effectiveness
of a “lightweight” learning scheme for a subset of images.
Notably, our results were achieved on a rather small image
size, which fosters the robustness of the networks and their
applicability in time-critical scenarios. Thus, autoencoders
may even substitute past approaches promoting filter learning
as in convolutional networks. We explored different parameter
configurations and their impact on the recognition performance
(quantitative analysis) and the learned representations (qual-
itative analysis). The corresponding parameter values may
guide other researchers conducting similar experiments. Con-
sequently, sparse autoencoders qualify to be an integral part in
successive applications in the domain of gesture recognition
extended to dynamic hand gestures.
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