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Abstract. Learning hierarchical abstractions from sequences is a chal-
lenging and open problem for Recurrent Neural Networks (RNNs). This is
mainly due to the difficulty of detecting features that span over long dis-
tances with also different frequencies. In this paper, we address this chal-
lenge by introducing surprisal-based activation, a novel method to preserve
activations contingent on encoding-based self-information. The preserved
activations can be considered as temporal shortcuts with perfect memory.
We evaluate surprisal-based activation on language modelling by testing
it on the Penn Treebank corpus and find that it can improve performance
when compared to a baseline RNN.

1 Introduction

Recurrent Neural Networks (RNNs) are powerful sequence processing models
that are equipped with memory from recurrent feedback connections. While they
are naturally unable to learn long-term dependencies due to vanishing gradients,
this issue was addressed by the introduction of gating units, made popular by
the Long Short-Term Memory (LSTM; [3]). The success of gating models has
led to a wide range of practical applications and a generally increased interest
and research on RNNs.

One drawback of these models is that they operate in discrete time steps
and also update at every time step. This makes it generally difficult to learn
temporal features that have a significantly different resolution than their input
frequency. We hypothesize that the capability to learn when to update could
open up promising directions for a number of current research problems, such
as dealing with event-driven extremely long sequences (e.g. raw audio data)
without preprocessing, having adaptive computation times [2], learning multi-
ple timescales and their boundaries [1, 5], or integrating sensory data under
asynchronous sampling conditions [9].

Some recent approaches focus on the idea of suppressing hidden unit ac-
tivations under specific conditions. The recently proposed Clockwork RNN
(CWRNN; [5]) utilizes a hidden layer that is partitioned into modules which
are only activated on specific timesteps. Inactive modules simply preserve their
hidden activation from the previous timestep until a periodic clock sets them
active again. The benefit is that the network has perfect memory along inac-
tive paths. A large disadvantage of the CWRNN, however, is that the periodic
activation conditions are i) predefined and not learned, and ii) global for the
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entire sequence. This can lead to challenges when dealing with varying dis-
tances between dependencies or phase shifts which are common in real-world
applications. This idea has been developed further as a regularization method
called zoneout [6]. Zoneout randomly preserves the previous activations of hid-
den units and can therefore be seen as a variant of dropout in which connections
are masked with a random mask of ones (copy) instead of zeros (drop). In the
context of recurrent architectures, zoneout is also a special case of the CWRNN
with random clocking and a single module. The Phased LSTM [9] extends the
LSTM with adaptive time gates that can learn when to preserve and when to
activate based on rhythmic oscillations. It introduces adaptive preservation but
has a number of new parameters that have to be tuned or learned. Another
report proposes to perform zoneout based on the information-theoretic surprisal
from feeding back the prediction error [7]. However, while this is fully adaptive,
it depends on additional supervised information in both training and test phases.
Surprisal (also called self-information) has also previously been used successfully
in natural language processing as a preprocessing metric for segmentation [4].

In this paper, we introduce a novel activation mechanism based on surprisal
that is in itself fully unsupervised, i.e. depends neither on labelled data nor
prediction errors. Instead of applying pre-/postprocessing on in-/output, we
observe the surprisal directly on the encoding and preserve states locally within
modules as long as the surprisal does not shift significantly.

2 Surprisal-based Activation

In the following, we assume a standard RNN with a single hidden layer ht, of
which the candidate activation ĥt is calculated as follows1:

ĥt = f(Wxh · xt +Whh · ht−1),

where Wxh, Whh are the input and recurrent weight matrices, and xt, ht−1 the
input and previous state, respectively. We further partition our hidden layer

into M evenly-sized modules m
(i)
t such that ĥt = [m̂

(1)
t ; m̂

(2)
t ; · · · ; m̂(M)

t ]. The
purpose of these modules is to introduce stability through ensembling since the
decision to apply the candidate activation ĥt or to preserve ht−1 is made per
module. We therefore pool the candidate activations in the next step to compress
the activations on a per-module-basis:

pt = g(m
(i)
t )

where pt is the resulting pooling vector with |pt| = M and g(·) is a pooling
operator such as max or avg. In the next step, we normalize with softmax σ
and calculate the surprisal from the resulting probability distribution:

st = log
( 1

σ(pt)

)
= log

(∑M
i=1 exp(p

i
t)

exp(pt)

)
1To apply surprisal-based activation on an LSTM or GRU, one can apply their respective

gated update rules to ĥt instead.
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Fig. 1: Overview of surprisal-based activation within a hidden layer. Module
activations in t that are significantly different to the previous timestep t− 1 are

kept (green), all other modules preserve their previous states m
(i)
t−1 (red).

As a final step, each module m
(i)
t is activated depending on their respective

change in surprisal. We choose candidate activations where the surprisal change
is larger than an experimentally determined hyperparameter θ, and otherwise
preserve all states:

m
(i)
t =

{
m̂

(i)
t if |st − st−1| > θ,

m
(i)
t−1 otherwise.

Fig. 1 illustrates our complete approach. All other parts of the RNN are
trained normally and backpropagation through time is executed without any
modifications. We hypothesize that the combination of local pooling and preser-
vation of previous states based on surprisal does not only maintain the reg-
ularizing effect of zoneout, but can also lead to a self-organization process in
which modules separately learn features over long time distances during which
the input, and subsequently the encoding, does not undergo significant changes.

One potential pitfall of masking activations by internal surprisal is a “dead-
lock” in which an encoding sequence with mostly constant surprisal is never
updated. To counteract this, we element-wise multiply the hidden state with a
decay mask:

ĥt = ĥt−1 � dt with dt = (P (d
(1)
t ), · · · , P (d

(|h|)
t ))

where dt is a decay vector, and P (dj = α) = pd and P (dj = 1) = (1 − pd) are
empirically determined probabilities to decay the activation of unit j by α = 0.01
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Table 1: Single model validation
and test perplexity (the lower, the
better) of our models (+S) com-
pared against the baseline on the
Penn Treebank dataset.

Model Best Val. Test
RNN 130.4 140.8
RNN+S 131.5 126.4
LSTM 123.6 121.5
LSTM+S 124.3 123.1

none

probabilistic

constant

Activation Decay
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Fig. 2: Comparing decay and pooling
methods from our approach by valida-
tion perplexity.

with probability pd = 0.2. This introduces variability on sub-module level and
allows single units to counteract potential information loss from pooling.

3 Evaluation

3.1 Experimental Setup

To investigate the effect of surprisal-based activation, we evaluate our model with
language modelling on the Penn Treebank Corpus, a relatively small but well-
known benchmark. While many recent studies make heavy use of regularization
techniques to combat the corpus’ high susceptibility for overfitting and reach
the lowest possible perplexity (PPL), we are mainly concerned with evaluating
performance gains from our approach in controlled conditions. We therefore run
our own RNN and LSTM models as a baseline and apply our method under
the same experimental conditions. Our hyperparameters for gradient descent
follow (where possible) the previous state-of-the art for this dataset, achieved
by Recurrent Highway Networks [11], even though we restrict ourselves to a
medium-sized layer with 1000 hidden units. We run 100 configurations and
repeat every experiment three times. We test variations for pooling (max vs.
average), activation decay (none, probabilistic, constant), number of modules
M (1, 2, 4, 8), and activation function (sigmoid, tanh). Training stops at 20
epochs due to risk of overfitting and we record the epoch with the best validation
perplexity. After selecting the best models by validation perplexity, we then run
the evaluation on the test set.
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M 1 2 5 10 25 50 100 250 500 1000
Valid. 681.4 136.0 136.1 133.8 134.2 134.0 135.9 154.9 299.2 312.2
Test 634.7 130.2 130.4 127.6 128.4 128.8 130.3 148.2 280.6 296.7

Table 2: Validation and test perplexities for different number of modules M in
the RNN+S.

3.2 Overview

Table Tab. 1 shows the overall results comparing our lowest achieved perplexi-
ties against the baselines. As can be seen, surprisal-based activation in an RNN
(RNN+S) yields a significantly better generalization on the test set when com-
pared to the baseline (RNN). It is important to note that an unregularized RNN
language model can be trained to test perplexities as low as 124.7 [8], which in
turn would also improve our RNN-specific hyperparameters, and consequently
also our RNN+S model. The baseline LSTM yields a better overall score al-
though surprisal (LSTM+S) does not quite improve the language model. A
possible explanation could be that the unit-level gates slightly counteract the
module-level effect of surprisal.

3.3 Pooling and Decay

The impact of pooling and decay can be seen in Fig. 2. Average pooling yields
overall better perplexities. The negative effect of max pooling is, however, some-
what reduced for the LSTM+S, most likely due to a low numerical difference
between the average activations in each module and their maximum. The decays
also have an adverse effect when applied to the LSTM. The RNN+S benefits
the most from applying a unit-level decay mask (see Sec. 2) when using average
pooling. A constant, global decay gives slightly worse results, on par with hav-
ing no decay at all, indicating that a decay on sub-module level is indeed the
best choice. This gives us evidence that random variations on a lower granu-
larity than the pooling process might help with any surprisal-based “deadlocks”
(see Sec. 2).

3.4 Number of Modules

Deadlocks from constant surprisal are especially significant when the mask is
applied to the entire layer, as is the case with M = 1. Indeed, the RNN+S
produces significantly worse results whenever the hidden layer is not partitioned
into modules (643.7 PPL). This is confirmed by the performance increasing with
the number of modules (128.6 PPL for M = 2, 127.9 PPL for M = 4, 126.4 PPL
for M = 8). Interestingly, we observed that the LSTM+S is quite stable under
M = 1, most likely as a side effect of the gating units. To further investigate
the ideal partition size, we ran additional trials for the best RNN+S model with
M ∈ {10, 25, 50, 100, 250, 500, 1000}. As can be seen from Tab. 2, performance
increases until M is increased to 10 but reduces for additional modules after this
point. Since less modules equate to more units per module, the performance
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drop for M < 10 can additionally be explained by the larger area of effect of
pooling. However, the opposite end of the spectrum, such as for M = 1000
(where each module consists of a single unit) shows that the absence of pooling
worsens the language models considerably. This gives us evidence about the
importance of modules when pooling, and more generally, how balancing the
correct degree of locality influences binary activation masking.

4 Discussion

We have introduced a novel method to preserve activations in RNNs based on
surprisal. Our results show that surprisal-based activation can improve gener-
alization for RNN language models. When applied to gated units, however, we
have observed a slightly mitigated effect, most likely due to the LSTM having a
higher variability on unit-level as a result of its gates. We therefore hypothesize
that the surprisal mechanism should be implemented directly as part of the gat-
ing process for the LSTM. The next step is to integrate both approaches. Future
work will also start with investigating the internal dynamics that emerge from
our approach. This would also be facilitated by an evaluation of character-level
language modelling and other tasks with hierarchical temporal dependencies.
Future work will also include an investigation into surprisal-based attention as
both surprisal and attention are suspected to have related roles for language
processing within the predictive coding framework [10].
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