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Abstract. Ladder networks are a notable new concept in the field of
semi-supervised learning by showing state-of-the-art results in image
recognition tasks while being compatible with many existing neural archi-
tectures. We present the recurrent ladder network, a novel modification of
the ladder network, for semi-supervised learning of recurrent neural net-
works which we evaluate with a phoneme recognition task on the TIMIT
corpus. Our results show that the model is able to consistently outper-
form the baseline and achieve fully-supervised baseline performance with
only 75% of all labels which demonstrates that the model is capable of
using unsupervised data as an effective regulariser.
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1 Introduction

There is no doubt that the recent success of deep learning is tied to the rising
availability of labelled data. While tasks such as image or text classification have
greatly benefited from this availability, there are still a number of domains, e.g.
speech recognition, where the majority of the research community has no free
access to large amounts of labelled data. One promising approach towards this
problem is semi-supervised learning where models trained with labelled data can
be further improved by training with unlabelled data.

Recent methods, such as graph-supported training [10], sparse autoencoders
([4]; SSSAE) and especially the Ladder Network (LN) [11], a stacked Denoising
Autoencoder (DAE) with shortcut connections, show promising results for semi-
supervised training of feed-forward neural networks. The LN has been shown to
deliver state-of-the-art results in semi-supervised image classification while still
being compatible with many existing feed-forward neural networks [11].

However, this novel architecture has not yet been explored on more com-
plex sequential tasks, such as speech recognition, where Recurrent Neural Net-
work (RNN) architectures, like Gated Recurrent Units (GRU; [1]), are the cur-
rent state of the art. We therefore propose a novel Recurrent Ladder Network
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(RLN) architecture and evaluate it on the TIMIT phoneme recognition bench-
mark [5]. We introduce a novel recurrent layer for the LN decoder in order to find
better-suited abstractions for semi-supervised learning and test two noise injec-
tion schemes tailored to support recurrent dynamics to increase the regularising
nature of the RLN. Our results show that after hyper-parameter optimization
the model is able to significantly outperform the baseline in all experiments
using unsupervised data as a regulariser and achieves fully-supervised baseline
performance while training only on 75% of the labelled data.

2 The Ladder Network Architecture

The basic idea of the LN architecture [11], depicted in Fig. 1, is to make au-
toencoders more expressive by adding shortcut connections from the encoder to
the decoder. Each decoder layer is then able to combine the preactivation of the
encoder layer with the reconstruction of the previous decoder layer by means of
a combinator function g(·, ·). Therefore, the encoder does not have to carry all
reconstruction information since the shortcuts can compensate for it. Since the
shortcuts allow perfect reconstruction by simply copying the encoder input to
the decoder output, Gaussian noise N (0, σ2) is added to prevent the direct usage
of these short-circuits and enforce learning in the intermediate layers, i.e. we use
a denoising autoencoder. To ensure that the noise can be removed, the decoder’s
(noisy) reconstruction ẑ(l) is compared to the encoder’s (clean) preactivation z(l)

and added to the unsupervised objective function:

CDAE =

n∑
l

λlC
(l)
d with C

(l)
d = ‖ z(l) − ẑ(l)‖2 , (1)

where n is the total amount of layers, z(l) is the preactivation vector of the l-th
encoder layer without noise and ẑ(l) the l-th decoder layer reconstruction from
noisy input. The hyper-parameter λi controls the targeted similarity between
the encoder and decoder layers and prevents short-circuits by punishing direct
copies of the noisy data by weighting the difference between the layers. For semi-
supervised learning the encoder path is also used for the supervised task, i.e. its
output is evaluated with a supervised objective function Csup and combined with
the unsupervised objective function CDAE: Csemsup = Csup +CDAE. When using
the encoder in a supervised task the shortcuts help with reconstruction as the
needed information may also be retrieved over the shortcuts [11].

The combinator function g(·, ·) models p(z(l) | z(l+1)) and is responsible for

creating the reconstruction of the l-th layer ẑ(l) with the help of the recon-
struction of the previous layer ẑ(l+1) and the shortcut value of the l-th layer
z̃(l), i.e., ẑ(l) = g(z̃(l), ẑ(l+1)). The function may attempt to remove the noise

from z̃(l) with the help of the previous reconstruction, infer the inverse mapping
ẑ(l+1) → ẑ(l) or do a combination of both.
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Fig. 1. Illustration of the non-recurrent LN architecture with one hidden and one
output layer. The encoder and decoder paths are highlighted in green and yellow,
respectively.

3 Recurrent Ladder Networks

In this section, we will elaborate our modelling choices for the RLN. In order
to extend the original LN to support recurrence in the encoder, both the noise
injection scheme and the decoder have to be adapted since recurrent layers use
additional context layers. Overall, we are proposing two noise injection methods
and two decoder variants (see Fig. 2). Our supervised baseline model will be the
encoder of the RLN since it encodes the task closely to the full RLN but has
no means of using unsupervised data. The resulting six model combinations are
No-Decoder with Feed-Forward Noise (ND-FFN), No-Decoder with Recurrent
Noise (ND-RN), Recurrent Decoder with Feed-Forward Noise (RD-FFN) and
Recurrent Noise (RD-RN) as well as a Feed-Forward Decoder with Feed-Forward
Noise (FFD-FFN) and Recurrent Noise (FFD-RN).

3.1 Noise Injection

In the feed-forward case, noise is applied directly to the preactivations so that
the output of the layer and the shortcut are affected, i.e. z̃ = W x̃ + n with
n ∼ N (0, σ2). This would, however, introduce noise into the context memory of
recurrent layers even after receiving the noisy output from the previous layer,
effectively amplifying the noise even further. Therefore, we apply noise only to
the preactivation and the shortcut without direct perturbation of the context
memory. A hidden layer ht and its noisy counterpart h̃t are therefore updated
as follows:

ht = f(zt) = f(W x̃t + Uht−1), (2)

h̃t = f(z̃t) = f(zt + n), (3)
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where f(·) is the activation function, xt the input, W the input weight matrix,
and U the hidden-to-hidden weights, updated at each time step t.

This noise injection method will be referred to as recurrent noise from here
on. Another method of noise injection that we tested, referred to as feed-forward
noise, is to not inject additional noise at the recurrent layer, i.e. feed-forward
layers will be injected with noise but recurrent layers will not.

3.2 Recurrent Decoder

The decoder path in an autoencoder models the inverse information flow of the
encoder path. We propose two modelling options for the decoder path in an
RLN. The first (Fig. 2c) is a recurrent layer with g(·, ·) as activation function:

u
(l)
t = V ẑ

(l+1)
t +Oẑ

(l)
t−1, (4)

ẑ
(l)
t = g(z̃

(l)
t ,u

(l)
t ), (5)

where V are the input weights, O the hidden-to-hidden weights, u
(l)
t the pre-

activation of the recurrent decoder and z̃
(l)
t the noisy preactivation of the l-th

encoder layer at time-step t from the shortcut. The second modelling option is
to simply use a feed-forward network (Fig. 2d) in the decoder [11].

Batch normalisation is heavily used in the LN both for normalisation of
the layer-wise reconstruction cost and for normalisation of layer activations. It
was considered problematic with recurrent networks until the introduction of
recurrent batch normalisation [2]. Since it potentially requires tuning of another
hyper-parameter we decided to model the RLN without batch normalisation

with the exception of the layer-wise reconstruction cost function C
(l)
d which is

computed exactly as described by Rasmus et al. [11].

4 Experiments

We evaluate the RLN on the TIMIT phoneme recognition benchmark [5], a
widely used test corpus which allows comparing our architecture to previous
approaches. The audio samples of the corpus are reduced in dimensionality by
using libROSA1 to compute 13 Mel Frequency Cepstral Components (MFCC) [3]
and their first and second derivative with 20ms frames and 10ms frame skip,
similar to related work [4]. The 39-dimensional feature vectors are normalised
to have zero mean and unit variance. We grouped easily confused phonemes of
the English phoneme alphabet as described by Halberstadt [8] resulting in 39
phoneme classes to predict.

We use Connectionist Temporal Classification (CTC) [6] for the supervised
cost Csup to solve the problem of label alignment. Phoneme Error Rate (PER)
is used for evaluation and computed using the Levenshtein distance of all label
sequences to the predictions, normalised to the total length of all label sequences.

1 https://librosa.github.io

https://librosa.github.io
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Fig. 2. Overview of (a) feed-forward noise (FFN) and (b) recurrent noise (RN) in-
jection schemes for the encoders (green) introduced in subsection 3.1 as well as (c)
recurrent decoder (RD) and (d) feed-forward decoder (FFD) layouts (yellow) intro-
duced in subsection 3.2. Combining all encoder and decoder layouts gives a total of six
model variants including the two no-decoder (ND) baselines ND-RN and ND-FFN.

The predictions are obtained by using best path decoding [6], i.e. choosing the
phoneme class with the highest probability at each time step.

To build the supervised and unsupervised training sets we keep all input data
for unsupervised training and reduce the supervised set by drawing samples from
the full dataset until the least represented phonemes are drawn a minimum num-
ber of times to prevent under-representing a class while keeping the distribution
intact. We cycle the supervised dataset to match sizes with the unsupervised
set, similar to the implementation by Rasmus et al. [11].

4.1 Training Procedure

All networks have been trained using Adam [9] with a learning rate of 0.002 for
at least 100 epochs until the validation error stopped improving. The models
are four-layer networks consisting of one GRU layer with 192 units with tanh(·)
activation and one feed-forward output layer with softmax activation, as well as
the inverse layers in the decoder. The noisy softmax output is used to classify
phonemes during training for additional regularisation. Since the performance
of the encoder is likely to correlate with RLN performance, hyper-parameters,
including layer sizes and learning rate, were determined empirically by a grid
search using the encoder described in section 3, i.e. an RLN with λi = 0, which
also serves as the baseline. DAE cost weights (λ0, λ1, λ2) = (1000, 10, 0.1) and
the MLP combinator g(·, ·) were both adopted from Rasmus et al. [11].

We test the semi-supervised learning capabilities of the six RLN variants
from section 3, by varying the labels for the supervised part of the architecture
in steps of 25% (940), 50% (1856), 75% (2754), and 100% (3696) of labelled
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sequences while the unsupervised part of the model always receives all available
unlabelled data.

5 Results & Discussion

An overview of our results can be seen in Fig. 3 where the different modelling
choices are directly compared against each other. The overall best results after
hyper-parameter optimization for each supervised data split, as well as results
of other approaches, are shown in Table 1.
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Fig. 3. Comparison of PER achieved by the RLN variants with varying amount of
labelled data (25%-100%) and noise standard deviation σ. Each data point represents
the mean, the whiskers cover a 95% confidence interval. Higher σ are needed for fewer
labels to prevent overfitting.

As can be seen in Table 1, the RLN consistently outperforms the baseline
configuration, even in fully-supervised training and is able to achieve the same
performance as the baseline with 25% less labelled data which shows that the
RLN complements the encoder well and demonstrates the compatibility of the
LN with existing models. On average, the RD models perform better than the
FFD models for most σ, more so with fewer labels, suggesting that the recurrent
decoder is better at filtering noise. This also explains why the RD models work
better with higher σ compared to FFD.

The noise injection method and the chosen σ greatly impact the overall
performance. The performance curves are roughly concave and shift towards
stronger noise with less available labels because the network overfits easily with
fewer labels which is prevented by the higher noise. Performance degrades for
higher σ because the network needs to be trained significantly longer to remove
the noise which the chosen training parameters do not allow.
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Recurrent noise injection was expected to achieve better regularisation due to
the additional noise at the recurrent layer but does not. By observing the encoder
layers we found that their outputs often differed significantly which causes un-
recoverable perturbations in the recurrent layers when applying equally strong
noise to all layers instead of noise relative to each layer’s output. Employing
batch normalisation might solve this, as hypothesised in related work [12]: nor-
malising the preactivation of each layer to unit variance before adding noise
makes the change in variance relative to the preactivation, therefore coupling
noise and layer activation strength with the benefit of reducing the search space
for σ significantly. We predict that this will lead to an increase in performance
when using fewer labels.

Even though our best results for the RLN are slightly lower ranked when
compared with related approaches, our model has significantly fewer parameters
(e.g. differing by a factor of 160 when compared to SSSAE [4]). We therefore
hypothesise that an increase of parameters and more complex layer architec-
tures will result in even better performance. This is indicated by our best RLN
achieving similar results (31.66% PER, 175k parameters) as the Bi-directional
Long Short-Term Memory (BLSTM) ([6]; 31.25% PER, 114k parameters) while
using only half of the labels.

Table 1. Best results in phoneme error rate (PER), achieved by the proposed RLN
modelling options: No decoder (ND, baseline), recurrent decoder (RD), feedforward
decoder (FFD), feedforward noise (FFN), and recurrent noise (RN). †: linear inter-
polation between 10% and 30% labels. ††: Graves et al. [7] have shown significantly
improved results with more parameters (17.7% PER, 4.3m param.).

labels ND-FFN RD-FFN FFD-FFN ND-RN RD-RN FFD-RN SSSAE [4] BLSTM [6]

25% 40.65 36.40 37.13 39.90 38.82 36.41 31.0† -
50% 34.22 31.66 32.06 34.07 33.07 33.39 - -
75% 30.96 29.16 30.31 31.17 30.84 30.42 - -

100% 29.11 28.02 28.08 29.26 29.67 29.26 - 31.25††

param 0.134m 0.177m 0.159m 0.134m 0.177m 0.159m 28.7m 0.114m

6 Conclusion

We have shown that the recurrent ladder network is able to perform as good as
similarly parametrised BLSTM models while using only 50% of the labelled data,
demonstrating the RLN’s ability to effectively regularise itself using unsupervised
training data. Current state-of-the-art methods performed better overall but this
does not come as a surprise given that these models use up to 160 times more
parameters. We argue that this gap could potentially be closed by scaling up
our models, as demonstrated for BLSTM models by Graves et al. [7].
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The proposed recurrent decoder proved to be better at denoising than the
feed-forward decoder. Additionally, we found that recurrent noise injection does
not perform as expected and we hypothesise that it needs the help of normali-
sation (e.g. batch normalisation) to work efficiently.

In the future, we would also like to take advantage of the semi-supervised
learning abilities of the RLN in conjunction with more complex recurrent mod-
els such as bidirectional and attention-based RNNs to utilise unlabelled data
even more effectively and explore how the learning framework scales with more
complex temporal dynamics in more challenging tasks such as end-to-end speech
recognition or question answering.
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