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Abstract—The brain integrates information from multiple
sensory modalities to form a coherent and robust perceptual
experience in complex environments. This ability is progres-
sively acquired and fine-tuned during developmental stages in
a multisensory environment. A rich set of neural mechanisms
supports the integration and segregation of multimodal stim-
uli, providing the means to efficiently solve conflicts across
modalities. Therefore, there is the motivation to develop efficient
mechanisms for robotic platforms that process multisensory
signals and trigger robust sensory-driven motor behavior. In
this paper, we implement a computational model of crossmodal
integration in a sound source localization task that accounts
also for audiovisual conflict resolution. Our model consists of
two layers of reciprocally connected visual and auditory neurons
and a layer with crossmodal neurons that learns to integrate (or
segregate) audiovisual stimuli on the basis of spatial disparity.
To validate our architecture, we propose a spatial localization
task in which 30 subjects had to determine the location of the
sound source in a virtual scenario with four animated avatars.
We measured their accuracy and reaction time under different
conditions for congruent and incongruent audiovisual stimuli.
We used this study as a baseline to model human-like behavioral
responses with a neural network architecture exposed to the same
experimental conditions.

I. INTRODUCTION

The ability of the brain to integrate information conveyed by
multiple sensory sources is crucial for the efficient interaction
with the environment [1]. A vast body of behavioral studies
has reported on a large set of phenomena showing the ability
of humans to perceptually integrate multisensory information,
e.g., localizing objects and events from audiovisual stimuli
such as light blobs and sound clicks [2, 3].

A widely studied effect of multimodal integration is the
ventriloquist illusion, which refers to perceiving sounds as
coming from a different location than their actual location due
to perception being strongly biased by visual stimuli [4, 5].
This form of audiovisual integration has been argued to be
the result of a near-optimal bi-modal integration strategy in
the brain for stimuli exhibiting a small spatial or temporal
disparity [6]. Multimodal processing also involves the segre-
gation of sensory inputs that are assumed not to be caused by
the same source [7]. Audiovisual stimuli exhibiting a lower
stimulus-response compatibility are expected to have less
influence on each other. In psychology, audiovisual conflicts
have been commonly studied in the context of crossmodal
processing [8]. For instance, it has been shown that increasing

spatial disparity leads to decreasing visual bias on auditory
localization [2, 3, 5]. However, the problem of inferring
whether a bi-modal stimulus is caused by a common source
has been shown to depend on a larger number of factors
such as spatial and temporal congruency, prior knowledge, and
expectations [9].

From a neurophysiological perspective, a large number of
brain areas have been associated with the processing of mul-
tisensory information. An example is the superior colliculus
(SC), a subcortical area of the mammalian brain that exhibits
multimodal behavior for target selection and producing reflex-
ive motor responses such as head-eye movements [1]. Neurons
selective to complex audiovisual patterns have been found,
e.g., in the superior temporal sulcus (STS) which is argued to
link unimodal representations from cortical areas (visual and
auditory cortex) and to account for the association of highly
correlated visual and linguistic stimuli [10]. Cortical and
subcortical areas are known to interact resulting in perception
and behavior being driven by the interplay of low-level sensory
stimuli and higher-order spatial-semantic cues [3, 9]. While
low-level stimuli may be integrated or segregated on the basis
of their spatial and temporal alignment, the experience-driven
development of internal representations in associative areas
of the brain modulates multimodal interaction on the basis
of semantic congruence. Thus, our ability to integrate multi-
modal stimuli and solve crossmodal conflicts is progressively
acquired and fine-tuned through the exposure to multimodal
events, with critical periods during early developmental stages
playing a crucial role for cortical and subcortical organiza-
tion [11]. This learning process endows the brain with the
ability to better adapt to difficult perceptual conditions met
during our daily experience, e.g., weak or noisy external
stimuli.

Artificial systems embedded with multimodal processing
capabilities may result in a more robust perceptual experi-
ence [12], especially in the case of sensory uncertainty [13].
The task of causal inference is crucial for triggering sensory-
driven motor behavior, e.g., computing a single spatial posi-
tion from audiovisual input to produce eye-head movements.
However, learning models that address multisensory causal
inference for the resolution of conflicts have remained an
open issue for artificial systems and robots. Neural network
models have been proposed that implement Bayesian inference
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principles fitting behavioral data from different multimodal
tasks (see [14] for a recent review). In particular, it has been
shown that two layers of unisensory neurons with recipro-
cal connections trained on multimodal data are sufficient to
account for the ventriloquist effect [15]. Nevertheless, the
problem of computing one single cause (position) to drive
behavior requires an additional layer of crossmodal neurons
that process the output of the two unisensory layers [16].

In this paper, we implement a computational model that
accounts for audiovisual conflict resolution. In line with recent
neural network architectures for multimodal integration and
conflict resolution [15, 16], our learning model consists of
three layers: two upstream layers of visual and auditory
neurons, and a downstream layer with crossmodal neurons that
learns to integrate (or segregate) audiovisual stimuli. For the
validation of our model, as an extension to previous studies
conducted on light blobs and sound clicks [2, 3], we propose
a spatial localization task in a virtual scenario with four
animated avatars with lip movement as visual patterns and
spoken words as auditory patterns. We conducted a behavioral
study with 30 subjects to evaluate their accuracy and reaction
time in localizing the sound source under different conditions
for congruent and incongruent audiovisual patterns. Consistent
with previous studies showing the effects of visual bias over
auditory stimuli for simple audiovisual stimuli, the analysis of
the data from our four-figure scenario resulted in a decreased
localization accuracy and higher reaction time for incongruent
audiovisual patterns. Experimental results show that our model
accounts for fitting behavioral data from the proposed spatial
localization task, thus providing a prominent baseline for
triggering human-like responses on a humanoid robot exposed
to similar conditions.

II. BEHAVIORAL STUDY

Thirty volunteers participated in the experiment (14 males
and 16 females, aged between 17 and 30, and right-handed).
All participants declared normal or corrected-to-normal hear-
ing and visual acuity and no history of neurological or
psychiatric disorder. The task consisted of a spatial location
task in which the participants have to choose the source of
the sound given a set of congruent and incongruent audio-
visual patterns. Two of them (one male and one female)
were excluded from further analysis for the low accuracy
(29% and 30% respectively), which was lower than the 95%
confidence interval of the sample (30.6%-82.4%). We suppose
the low accuracy may be caused by the inability of normally
discriminating audiovisual location. The other 28 participants
were in the range 38%-79% accuracy (mean: 56%, standard
deviation: 13%).

A. Apparatus, Stimuli and Procedure

We used the four-figure scenario background (Fig. 1) with
videos containing lip movement for one of the figures as
visual stimuli and short words (i.e. ”la”, ”wa”, ”ha”) from a
synthesized voice as auditory stimuli. The visual stimuli were
displayed on a 17-inch LCD monitor with the viewing distance

Fig. 1. Illustration of the scenario with four virtual avatars sitting around a
table. Lip movements and short spoken words from a synthesized voice are
used as audiovisual stimuli.

of approximately 60 cm and the spoken words were presented
via a headphone set.

The visual stimuli were generated in a virtual environment
(VREP)1 using a set of modified human avatars. Different
3D meshes for the face area (with varying jaw angles) were
used during recording to create the impression of lip and
mouth movement during speech. The videos were rendered
with OpenGL with a 1024 × 1024 pixel resolution, and the
virtual camera had an 80◦ opening angle (Fig. 2). Videos
were recorded from the screen and cut to 1-second clips for
each of the four figures moving and not moving its lips. The
binaural auditory stimuli were synthesized with two head-
related transfer functions (HRTFs) for the left and right audio
channel. These functions emulate the temporal and the level
differences of perceived sounds by the left and right ear due
to different traveling times and damping when a sound comes
from different points in space.

The task started with a static four-figure background for
500 ms, followed by a video with lip movement for 1000
ms, and then another 500 ms of static background. Only one
figure would move its lips during each trial, which conveys the
visual spatial information with four possible locations: Left2
(L2), Left1 (L1), Right1 (R1) and Right2 (R2). The visual
angle between each two-figure pairs from the participants’
perspective was about 10◦. The pitches of the two auditory
channels were edited so that the sounds were perceived with
spatial location from different angles: -60◦ (L2), -20◦ (L1),
20◦ (R1), and 60◦ (R2), with these angles being amplified to
create more distinct auditory stimuli.

We created a set of 16 (4×4) conditions which were further
classified into 5 combined conditions as follows:

• Condition 0: congruent condition, such as visual L1-
audio L1 (L1L1);

• Condition 1a: conflict occurred on the same side, such
as L2L1;

• Condition 1b: conflict occurred between the central two
locations, such as L1R1;

1VREP - http://www.coppeliarobotics.com/
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Fig. 2. Illustration of the rendered video in our virtual environment (VREP).
It is possible to see the camera angles for each virtual avatar.

• Condition 2: conflict occurred between the locations with
a one-figure interval, such as L2R1;

• Condition 3: conflict occurred between the locations with
a two-figure interval, such as L2R2.

We expect to observe increased congruency effects in Condi-
tion 1 (including 1a and 1b) with respect to Condition 3.

Participants first took part in two pre-task studies with
10 trials each to become familiar with the auditory stimuli
and the cross-modal scenario. The formal test consisted of
four blocks, each containing 120 trials of randomized visual-
auditory combinations. We asked the subjects to produce a
four-key response to the locations of sound regardless of the
lip movement. During the task, they were instructed to watch
the screen attentively to ensure the effectiveness of visual
information.

B. Data Analysis

The obtained behavioral data were analyzed with dependent
variables of both the reaction time (RT) and the error rate
(ER) of localization. Error trials and trials with RT beyond
three standard deviations were excluded. We conducted one-
way repeated measures analysis of variance (ANOVA). Results
are shown in Fig. 3. A significant difference among the five
conditions was observed in both RT (F (4, 108) = 18.478, p <
0.001, η2p = 0.406) and ER (F (4, 108) = 9.477, p < 0.001,
η2p = 0.260).

In comparison with Condition 0, subjects responded with
significantly higher ER in Condition 1a (45%, p < 0.001),
Condition 1b (46%, p < 0.01) and Condition 2 (45%,
p < 0.001). In comparison with Condition 3 (ER=33%), par-
ticipants responded with significantly higher ER in Condition
1a (p < 0.05) and Condition 2 (p < 0.01) respectively.

In comparison with Condition 0 (RT=935 ms), participants
responded slower in Condition 1a (980 ms, p < 0.01),

Fig. 3. Stimulus-Response Conflict effect during the sound source localization
task from audiovisual stimuli in terms of error rate (ER, upper plot) and
reaction time (RT, bottom plot).

Condition 1b (1066 ms, p < 0.001) and Condition 2 (1009
ms, p < 0.001) respectively. In comparison with Condition 3,
participants responded slower in Condition 1a (p < 0.05),
Condition 1b (p < 0.001) and Condition 2 (p < 0.05)
respectively. Moreover, Condition 1b shows a slower response
than Condition 1a (p < 0.01).

C. Discussion

In terms of accuracy, the data suggest that the task of
selecting the correct target audio location is disrupted by
the visual distractor. This result is consistent with behavioral
studies using simpler audiovisual stimuli such as light blobs
and clicks (e.g. [3]), in which a small spatial disparity between
the visual and auditory stimuli leads to a strong visual bias that
shifts the perception of the auditory stimulus towards the visual
one (i.e. the ventriloquism effect [4]). Therefore, although our
scenario conveys more semantics with respect to light blobs
and clicks, subjects were much more inaccurate to locate the
position of the sound from the exposure to incongruent lip-
word pairs. In this context, additional studies are required
to measure whether a scene conveying more semantics (e.g.,
more realistic and animated avatars with human voices) leads
to attenuate the ventriloquism effect, e.g., due to the bias
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of semantics and prior expectations modulating the low-level
localization task.

In terms of reaction time, the responses obtained in this
study are generally slower (about 1000 ms) compared to our
previous conflict experiments (about 400-600 ms) [17, 18],
suggesting that this task is relatively difficult. One possible
reason is that the subjects needed to produce a response by
using four keys for different locations in the current study,
which leads to a longer reaction time. We found robust conflict
effects in Condition 1a, 1b and 2 but not in Condition 3 (al-
though Condition 3 contains the largest spatial inconsistency).
It is possible that the conflict could be well resolved when
the interference information comes from a location relative
far from the actual one, as there is enough time to produce
a response. Thus, the attention was shifted back to the sound
location from the inconsistent visual cue before a decision
was made. Furthermore, although conflicts in Condition 1a
and 1b both occurred between adjacent locations with the
same auditory-visual angle (40◦), we observed a significantly
slower reaction time in Condition 1b, indicating that it is more
difficult for people to discriminate the sound location at the
center than at the lateral sides. This is consistent with the fact
that visual spatial resolution is higher at the center while the
auditory resolution is higher at the sides [19].

III. COMPUTATIONAL MODEL

The computational model learns to integrate (or segregate)
audiovisual input from the exposure to a set of unisensory
and multisensory stimuli during a training session. The neural
architecture consists of two upstream layers of N visual and N
auditory neurons and a downstream layer with N crossmodal
neurons (Fig. 4). This architecture is based on the two-layer
architecture proposed by Magosso et al. [15] for audiovisual
integration, extended with a third layer for the causal inference
problem [16]. Neurons are topologically aligned and each
neuron codes for a specific position of space. We set N = 180
so that the distance between each neuron is 1◦, covering an
area of 180◦ in the visual and the auditory space.

A. Audiovisual Input and Neural Receptive Fields

The visual and auditory input is represented as Gaussian
functions resembling spatially localized external stimuli fil-
tered by the receptive fields of unisensory neurons. The mean
of the Gaussian (pv and pa for the visual and the auditory
modality respectively) corresponds to the position of the
stimulus in the external world, while the standard deviation
(σv , σa) corresponds to the width of the receptive fields of the
neurons. The model assumes that the auditory and visual area
are spatially organized, with the spatial resolution of auditory
neurons being smaller than the spatial resolution of visual
input. This difference in the spatial resolution of the auditory
and visual neurons is introduced by setting σa < σv . The
output activity of neurons is computed from the weighted sum
of its inputs and normalized to 0 and 1, i.e., 1 is the maximum
activity.

. . . . . .

. . .
Cross-modal

Visual input Auditory input

Fig. 4. Neural network architecture for multimodal integration. The ar-
chitecture consists of two upstream layers of visual and auditory neurons
and a downstream layer with crossmodal neurons for the causal inference
problem. Neurons are topologically aligned and each neuron codes for a
specific position of space. Each unisensory layer comprises lateral connections
(orange lines) and reciprocal inter-layer connections (green lines). Neurons in
the crossmodal layer receive input from the two unimodal neurons located at
the same spatial position (purple arrows).

Neurons in each unimodal layer are connected through
lateral synapses that include both excitatory and inhibitory
effects (Fig. 4, orange lines). The neurons are arranged with a
Mexican-hat disposition to excite proximal neurons and inhibit
distal neurons, yielding a competitive mechanism between
stimuli within a unisensory layer.

B. Multimodal Processing

Neurons in the two unimodal layers are reciprocally con-
nected through inter-area excitatory synapses (Fig. 4, green
lines), so that each neuron receives input only from the neuron
of the other modality at the same spatial position. These
connections modulate the influence of one modality over the
other. Therefore, each output umj (t) of a neuron within a
modality m (with m = v or m = a) processes input as the
sum of the external input emj (t), the intra-area lateral input
lmj (t), and the crossmodal the from inter-layer input cmj (t).

Different to the intra-layer connections defining neural
receptive fields and that we assume to be pre-defined, we
train crossmodal connections with a percentage of unimodal
and multimodal input. The learning of connectivity patterns is
carried out via Hebbian training rules for synaptic potentiation.
It has been shown that the Hebbian-like development of
inter-layer connections accounts for the ventriloquism effect,
where the perception of the auditory stimulus is shifted in the
direction of the visual one provided that the spatial discrepancy
between the two stimuli is smaller than 20-25 degrees [15].
Conversely, when the spatial discrepancy is higher, the effect
of the integration of the two stimuli is negligible. This behavior
is consistent with a Bayesian estimator that sub-optimally
computes the prior and likelihood probabilities for inferring
the position of multimodal stimuli [16].
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Each neuron provides a two-dimensional vector according to
the population vector metric, i.e. its length is equal to the firing
rate and the phase equal to twice its label. The output zmvet
of the model (m = v, a) is the perceived stimulus location,
summing up all vectors such that

zmvet =
1

2
arctan

(∑N
k=1 y

m
k · sin(2k)∑N

k=1 y
m
k · cos(2k)

)
, (1)

where ymk represents the activity of the neuron at position k.
In the crossmodal layer, a single position is computed using

the maximum activity within this layer. Each crossmodal neu-
ron receives input only from the two unimodal neurons located
at the same spatial position via identical weights (Fig. 4, purple
arrows), in line with the assumption that the sum of population
codes account for the optimal Bayesian inference [16]. The
output of the crossmodal neurons is computed as:

yck = φ (wcayak + wcvyvk) , (2)

where yck is the activity of the crossmodal neuron at position k,
wcm are the synapse weights from the neurons of modality m
to the crossmodal layer, and φ is a monotonically decreasing
function.

C. Experimental Results

We trained the neural architecture to a basal state and used
it to test stimulus-response conflicts for our spatial localization
task. The architecture was trained with a set of unimodal
and congruent-incongruent multimodal stimuli containing all
possible audiovisual spatial combinations (for 180 possible
positions for each layer). We set equal input strength for the
visual and auditory input (Em

0 = 15) with σv = 4◦ and
σa = 32◦, thus yielding a higher spatial resolution for the
visual modality. Training sessions were conducted assuming a
set of model parameters reported in [15, 16]. For testing the
basal networks, we created input reproducing the experimental
conditions from our behavioral study, i.e. comprising 16 (4×4)
congruent-incongruent audiovisual pairs (see Section II.A).
We validated the architecture by computing the accuracy for
the localization of the auditory target. As can be seen in
Fig. 5, the architecture reproduces behavioral measures for
the localization task in terms of accuracy (Fig. 3).

Responses from the model were instantaneous, yielding a
very similar reaction time (RT) for congruent and incongruent
stimuli. In this case, a comparison between the model’s RT and
the one from the subjects is not justified since higher RT in
humans may be caused by distinct neural processing pathways
(see Section II.C for discussion), whereas our architecture does
not consider this aspect.

For simplicity, we trained inter-layer connections and cross-
modal connections from the two unisensory layers, whereas
lateral connections defining the unisensory receptive fields
were pre-defined. Furthermore, for a more biologically re-
alistic experiment, the exposure of the networks to persis-
tent multimodal stimuli should modify connectivity patterns,
thereby accounting for the ventriloquism aftereffect, i.e. the

Fig. 5. Stimulus-Response Conflict effect during the sound source localization
task exposing the trained neural architecture to audiovisual stimuli.

responses to auditory stimuli are shifted towards the previously
presented visual stimulus [20]. In terms of the neural network
architecture, this can be seen as the on-line adaptation of the
connections between unisensory layers, which is possible by
training further inter-layer synapses via Hebbian learning [15].

To be noted is that we have focused on the spatial effects
of multimodal integration. Nevertheless, it is known that the
temporal component plays a very important role. It has been
shown that the current neural network implementation can
be extended to account for the spatiotemporal processing of
multimodal stimuli [21].

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a neural network model for
crossmodal processing and conflict resolution. The neural
architecture learns to integrate or segregate audiovisual input
from the exposure to a set of unisensory and multisensory
training stimuli. For validating our computational model, we
conducted a behavioral study on a sound source localization
task exposing the subjects to congruent and incongruent audio-
visual patterns. As an extension to previous studies using light
blobs and sound clicks, we proposed a scenario composed of
four animated avatars using lip movements as visual patterns
and spoken short words as the auditory ones. In line with these
studies using simple stimuli, our data suggest that subjects
were much more inaccurate to locate the position of the sound
from the exposure to incongruent lip-word pairs. Conditions
of conflict have also exhibited a higher reaction time. We
hypothesize that this may be caused by incongruent conditions
leading to a longer processing pipeline (in terms of neural
pathways) for integrating or segregating stimuli on the basis of
available scene semantics and knowledge-driven expectations.

The obtained results motivate further research in the di-
rection of behavioral data collection and the neural network
architecture. From a behavioral perspective, it would be inter-
esting to test whether a more complex scene, e.g., animated
avatars conveying additional information in terms of gender,
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face expressions, and body motion, have a significant impact
on the localization accuracy and reaction time under congruent
and incongruent conditions. Although it is known that prior
knowledge and expectations modulate multimodal processing
[9], behavioral studies have so far mostly focused on the pro-
cessing of simple stimuli that neglect the role of cortical areas
(e.g., visual and auditory cortex) and higher-level brain areas
(e.g., the STS) for the modulation of low-level crossmodal
processing (as in the SC). From a neural network perspective,
this extension would require the interaction between subcorti-
cal and cortical layers that model the interplay of bottom-up
and top-down crossmodal modulation. The learning and the
recognition of meaningful visual and auditory features from
complex audiovisual patterns can be implemented in terms of a
hierarchy of neural networks that tune internal representations
to process features with an increasing degree of complexity
and abstraction.

While the underlying mechanisms of the brain for cross-
modal conflict resolution are still to be fully investigated,
our work may be seen as a basis for the development of
complex artificial systems aimed at triggering human-like
behavioral responses driven by multimodal perception. In this
context, we argue that the interplay of behavioral studies,
neurophysiological findings, and neural network models is
crucial for achieving such a goal.
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