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Abstract—Reinforcement learning algorithms and particularly
those based on temporal-difference learning are widely adopted
and have been successfully applied to a number of problems as
well as used to model animal learning. However, they are based
on neural pathways involved in reward-seeking behaviour since
little is known about punishment-driven learning and less still
about the combined effects of both types of reinforcement on
learning. This may not only be a shortcoming for computational
models of human and animal learning but we have recently shown
that it may also carry detrimental effects for machine learning
applications, with respect to task performance and convergence
speed. Here, we further explore our original results and compare
the effects of different functions, i.e. binary, linear, exponential
with different variance, for punishment on learning. Our experi-
ments confirm the original finding of punishment signals reducing
learning speed. It appears this result generalizes across a number
of different functions of punishment reinforcement.

I. INTRODUCTION

We have recently presented evidence that suggests that
conventional reinforcement learning algorithms should not
underestimate the importance of modelling the interplay
between reward- and punishment-driven learning [1]. Failing
to adequately account for this interplay may not only constitute
an inadequacy for computational models of human and animal
learning but our results suggest that it may also carry detri-
mental effects to machine learning applications, with respect
to task performance and convergence speed [1].

Based on the neuroscientific and computational identification
of the problem for conventional reinforcement learning regard-
ing the loss of predictive power of reinforcement signals that
conflate punishment and reward information into a scalar value
[2], we proposed the use of nociceptive units – interoceptive
inputs to the network predictive of damage – as a way to
increase the agent-environment interactive state space with the
information typically used as punishment signals. Punishment
being a damage indicator used as external reinforcer signals
(rather than interoceptive inputs) [1]. We showed that the use of
nociceptive units can benefit task performance (object reaching
precision) during and after learning while not negatively
affecting convergence speed. This can be understood when
compared to either our baseline (devoid of any negatively
valenced signal) or agents trained with reward and punishment.
Furthermore, when nociceptive units were combined with

punishment signals, the nociceptive units seemed to counteract
the detrimental effects on convergence speed inherent in
punishment signals.

Although in our original work [1] we perform hyperparame-
ter optimization on all tested conditions, we did not test for the
effect of different activation functions in either the punishment
or the nociceptive units. Thus, in this paper we present such
analysis for punishment and nociception on three metrics, i.e.
the task performance (here positioning error), the potential for
damage and the positioning speed.

II. RELEVANCE OF NEGATIVELY VALENCED SIGNALS IN
ADAPTIVE BEHAVIOUR

Just like rewarding stimuli, negatively valenced signals are
essential feedback mechanisms for informing self-preservative
behaviours and can heavily shape agent behaviour [3]. For
instance, pain is often used as a trigger of protective reflexes to
protect the body from injury. Although protective reflexes are
essential to any autonomous agent, they are not enough to cope
with a highly dynamic environment, thus nocifensive responses,
such as avoidance, motivated and affective behaviour, memory
formation and learning, are also needed. Adaptive nocifensive
responses are critical to cope with the changes in the organism’s
body due to ageing, to lesions, to environmental constraints
or to extraordinary events. For instance, changes in the gait
may be required to prevent further injury or sometimes it may
be required to experience pain to escape from life-threatening
situations; how and when these changes in behaviour happen
cannot be predetermined and need to be designed according
to the problem at hand.

It is typically assumed that reward and punishment are
opponent systems and that their interaction can be modelled
by simply additively combining the external reward and pun-
ishment signals [4], [5], [2], [6]. However, there is substantial
evidence in favour of separate systems for reward-related
(positivity) and punishment-related (negativity) processing
[7], [6]. Presently, their functioning as standalone systems
is only partially understood, and even less is known about their
interactions, which are considerably more complex [8], [3].
The interaction between reward and punishment processing
gives rise to a mix of highly non-linear dynamics including



competitive and cooperative about which we still know little
[4], [8]. Conversely, computational modeling of the relationship
between such reward and punishment (negatively valenced)
systems is relatively lacking.

Interoceptive processing – including sensations of pain,
temperature, itch, sensual touch, muscle tension, air hunger,
intestinal tension, etc. – provides the means to convey signals
of affective significance (value) to areas of the brain that
simultaneously encode exteroceptive (external) and propriocep-
tive information [9], [10]. Such signalling has been suggested
to be indispensable to action selection (e.g. [11], [9], [8],
[12]) by effectively increasing the state space with which to
modulate actions and the sensitivity to reinforcers. Without such
interoceptive processing, action selection is not just maladaptive
but in some cases seemingly not possible at all [13].

III. METHODOLOGY

We use the exact same methodology as in our original
work [1]. Here, however, we further explore the effect of
different activation functions for punishment (Section III-C)
and nociception (Section III-D) to understand better the
generalizability of our results. Thus, the description of the
methodology overlaps to a great extent with that of [1].

We decided to use an inverse kinematic learning scenario,
because it is a task actively studied (e.g. [14], [15], [16]),
due to the high number of applications for industrial and
domestic robots. Nevertheless, it is still challenging and many
aspects remain to be studied such as self-calibration, adaptation,
learning of speed and force control.

Evidence from both child development research [17] and
adult novel sensorimotor task learning [18] suggests that
learning to reach does not require visual feedback, but seems
to be useful for fine corrections at the end of a reaching
movement. Moreover, in early infancy, motor programs for
reaching are not explicitly planned ahead of a movement
(trajectory planning), which points at a trial-and-error learning
paradigm. Reinforcement learning methods are particularly
suitable for this type of learning.

Actor-Critic architectures are powerful TD-learning methods
that model phasic changes in dopamine neuron activity [19].
The Critic guides the learning of action sequences generated
by the Actor in order to maximise the accumulated reward.
The dual memory structure, one for the Critic and one for
the Actor, allows storing the learned policy explicitly, which
significantly reduces the computation of action selection of
large state and action spaces when compared to other TD-
learning methods [20, p. 153]. Moreover, Actor-Critic methods
are thought to be consistent with biological evidence [19].
This is due to the fact that the reward prediction signal of
TD-learning resembles the dopamine neuron activity in the
striatum. Also, the Actor typically connects a high-dimensional
sensory input to a smaller action space, which resembles its
neural equivalent, i.e. projections from the striatum to the basal
ganglia output nuclei [19].

A. Experimental set up

We focus on the problem of autonomous learning or inverse
kinematics of a single robot arm. The robot’s objective is to
move the geometrical centre of its end effector towards a target
as precisely and as quickly as possible. Arm movements are
controlled using motor commands relative to the current joint
position, but no inverse or direct model of the arm dynamics
is provided to the agent.

Because our main interest lies in the effects of punishment
and nociception on the learning of motor skills, a number of
simplifications are made. A simplified 2-degrees-of-freedom
model of a NAO robot arm is used, i.e. restricted to only one
shoulder and one elbow joint. The link lengths are 105mm
for the upper arm, and 113.7mm in total for the lower arm
and hand1. The shoulder joint is limited to the range [−18, 76]
degrees and the elbow joint is limited to the range [−88.5,−2]
degrees2. The robot is able to precisely perceive the target’s
position in an egocentric reference frame, i.e. exteroception.
It can also precisely perceive the absolute angular position
of its joints, i.e. proprioception. The robot can perceive when
the joints are at or close to their upper or lower limits, i.e.
interoception (nociception) [21]. Nociceptive input is maximal
when a joint is at the mechanical limit and decreases based on
one of four activation functions, see Section III-D. Nociception
is perceived only when the current joint position is within the
upper or the lower 10% of its mechanical range. Reaching is
considered successful when the robot’s hand is at most 10mm
away from the target.

Fig. 1. Top view of the NAO robot facing right. The left arm is depicted in
different positions and a blue line is superimposed to indicate the boundaries
of the end-effector workspace.

To compare all different learning conditions a unique training,
test and validation set for all conditions was used of sample
size 1000, 100 and 1000 respectively. Each sample consists of a
target in Cartesian coordinates and an initial joints configuration
in degrees. Samples are randomly generated and the resulting
end-effector positions are at least twice the reaching threshold

1http://doc.aldebaran.com/2-1/family/nao h25/links h25.html
2http://doc.aldebaran.com/2-1/family/nao h25/joints h25.html

http://doc.aldebaran.com/2-1/family/nao_h25/links_h25.html
http://doc.aldebaran.com/2-1/family/nao_h25/joints_h25.html


of 10mm apart. Training, test and validation samples are
always presented in the same order. A complete presentation
of the training set is termed “epoch”. Before any learning
is performed, the agent is tested on the test set, and after
each epoch afterwards. The test set is used to determine a
winning set of hyperparameters for all conditions used, whereas
the validation set is used for a detailed comparison between
conditions.

Here, we compared three learning conditions. The first
condition, reward+punishment (R+P), used the target and the
current joint position information as state space. It received
a binary reward once the desired goal state was reached
and a punishment term directly derived from the perceived
nociception. We tested this condition with four different
activation functions for punishment as described in Section
III-C. The second condition, reward+nociception (R+N), used
only a binary reward once the desired goal state was reached,
but extended the state space of the R+P condition by including
one nociceptive unit per joint. We also tested this condition with
four different activation functions as described in Section III-D.
The last tested condition, reward+punishment+nociception
(R+P+N), used the same state space as the R+N condition
and the reward and punishment of the R+P condition. We also
tested this condition with four different activation functions
for both nociception and punishment.

B. Continuous Actor-Critic Learning Automaton (CACLA)

CACLA [22] is a model-free reinforcement learning al-
gorithm with Actor-Critic architecture. This algorithm was
designed to work with large and continuous state and action
space, thus an excellent alternative to learn the problem
described in Section III-A. These characteristics are obtained
through the use of function approximation techniques such
as feed-forward multilayer perceptron neural networks (MLP)
that allow generalisation, for instance, see [15].

Actor-Critic methods are on-policy temporal-difference (TD)-
learning methods that have two memory structures, i.e. a
dedicated memory for policies and another for value functions.
The Actor represents the policy and this is denoted as A(s).
The Critic provides a state-value function V (s). The Critic
evaluates the outcome of the selected action against its existing
value estimate (expectation) and generates a TD-error to the
extent that it differs, see Eq. (1). The TD-error is then used to
update both the Actor and the Critic. If the error is positive, the
selected action should be strengthened, whereas a negative error
suggests the opposite [20, p. 152]. The TD-error is defined as:

δt = rt + γV (st+1)− V (st) (1)

where rt is the reward received at time t, γ is the discount
factor of future rewards, V (st+1) is the expected reward at the
state st+1 and V (st) is the expected reward for state st.

Action selection is based on the current policy but in order
to discover new and better policies, i.e. to learn, exploration is
required. We use Gaussian exploration, where the performed
action is sampled from a Gaussian distribution centred at the

Actor’s output A(st). So the probability of selecting action a
in time t is:

pt(st, a) =
1√
2πσ

e−(a− A(st))
2/2σ2

(2)

where π denotes the mathematical constant and σ denotes
the standard deviation and is here also called exploration rate.
Finally, the performed action is determined by Eq. (2) and
called a∗, see Figure 2 for a graphical representation of our
implementation of CACLA.

CACLA differs from conventional Actor-Critic systems
[20, p. 152] in the magnitude of the Actor’s update being
independent of the size of the TD-error. The Actor is instead
updated towards the explored action only when the sign of the
TD-error is positive. This idea originates from the fact that
punishing or moving away from an action that does not lead
to a higher reward does not guarantee a better solution [22].
Thus, the Actor is only updated towards actions that improve
the agent performance instead of pulling the weights around
without a destination. To control how strongly actions will
be reinforced a derived algorithm called CACLA+var is used
[22]. CACLA+var keeps a running average of the TD-error’s
variance, so actions leading to unusual higher rewards are
reinforced more:

vart+1 = (1− β)vart + βδ2t (3a)
number of updates = dδt/

√
vart e (3b)

CACLA+var requires two additional parameters to be tuned,
i.e. var0 which should be comparable to the typical value of
δ. This is important to avoid high reinforcement rates early in
learning when the agent behaviours are mostly random, and β.

Then the Actor’s policy update can be expressed in pseudo-
code as:

Algorithm 1 Actor’s update
1: if δt > 0 then
2: for i := 1 to dδt/

√
vart e step 1 do

3: θAi,t+1 = θAi,t + α (a∗t −A(st))
∂A(st)

∂θAi,t
4: end for
5: end if

where θAi,t is the ith item of the parameter vector of the Actor
at time t, st is the state vector at time t and α is the learning
rate for the Actor’s function approximator. Unlike the Actor,
the Critic is updated every time step as follows:

θVi,t+1 = θVi,t + ηδt
∂V (st)

∂θVi,t
(4)

where θVi,t is the ith item of the parameter vector of the Critic
at time t, and η is the learning rate for the Critic’s function
approximator.



C. Reward function

The reward function consists of two parts, i.e. a rewarding
component depending on the end-effector position and a
punishing component used only in the R+P and R+P+N
conditions depending on the joints’ position. When both
feedbacks are used there are additively combined into a single
scalar value after every step. The rewarding component is
computed as follows:

r+t =

{
R : dt ≤ 1.00cm
0 otherwise.

(5)

where R is the highest reward value, and dt the distance from
the end-effector to the target at time t.

Joint positions close to the lower or upper limit are
considered harmful and a punishment signal is used to signal
this. The amount each joint contributes to the total punishment
per time step is determined by one of four functions, i.e. binary,
linear, abrupt exponential (used in [1]) and smooth exponential.
The difference between the abrupt and smooth exponential
is the size of the variance which results in a discontinuity
between the region with and without punishment for the abrupt
exponential.

r−t =

{
−P : ξi = ξmini ∨ ξi = ξmaxi

0 otherwise.
(6)

r−t = − P

dof
×


−ξlnbi

ξlnbi −ξmini

ξi +
1

ξlnbi −ξmini

: ξi ≤ ξlnbi

−ξunbi

ξmaxi −ξunbi

ξi +
1

ξmaxi −ξunbi

: ξi ≥ ξunbi

0 otherwise.

(7)

r−t = − P

dof
×


e
−0.5

(
ξi−ξmini

mi

)2
: ξi ≤ ξlnbi

e
−0.5

(
ξi−ξmaxi

mi

)2
: ξi ≥ ξunbi

0 otherwise.

(8)

r−t = − P

dof
×


e
−0.5

(
ξi−ξmini

3mi

)2
: ξi ≤ ξlnbi

e
−0.5

(
ξi−ξmaxi

3mi

)2
: ξi ≥ ξunbi

0 otherwise.

(9)

where P is the maximum magnitude of punishment, dof the
total number of degrees of freedom, ξi the absolute angular
position of the i-th joint at time t. ξmini and ξmaxi are the
minimum and the maximum possible angular position of the
i-th joint, ξlnbi = ξmini + mi and ξunbi = ξmaxi − mi are
the lower and upper nociceptive boundary of the i-th joint,
and mi = 0.1 × |ξmaxi − ξmini | is the margin of safety for
a safety factor of 0.1 for the i-th joint. The punishment per
joint is scaled by the number of degrees of freedom so that
the total amount of punishment when all joints are at their
boundary angular position is equal to the maximum magnitude
of punishment P .

D. Neural architecture

We use two MLPs, one for the Actor and one for the Critic,
see Figure 2. Both share the same input layer. The output
layer for the Actor has two units that control the change in
angular position, one per degree of freedom of the robot arm.
The Critic has a single output unit to encode the expected
reward. The rest of the layout is determined separately. The
input layer is divided into three perceptual modalities. Firstly,
there are two exteroceptive units which encode the Cartesian
coordinates of the target in a 2-dimensional task space relative
to the robot. Secondly, there are two proprioceptive units that
encode the angular position of each of the joints of the robot’s
arm, i.e. the absolute joint value of the shoulder and elbow
joint. Finally, there are two nociceptive units used only in the
R+N and R+P+N conditions which are associated with each
robot joint, with an activation almost identical to the function
of punishment, see Equations (6)–(9).

All input values are scaled to the range [−1, 1]. The
squashing function for the output units is linear, and for all other
units, a custom hyperbolic tangent as defined by [23], [24] is
used. Weight initialization is also performed as defined by [23],
[24]. Bias units with value −1 are always used. Momentum
and learning rate decay are not used. Both networks, the one
for the Actor and the one for the Critic, are trained using
back-propagation.

Exteroceptive
Units

Proprioceptive
Units

backpropbackprop

Nociceptive
Units

Exploration

Fig. 2. The neural architecture used for inverse kinematics learning. For
clarity, only one connection weight is shown (arrow between neuron layers).
The hidden layers for both the Actor (left-hand side) and the Critic (right-hand
side) are independently tuned. Solid units and connection weights in black
correspond to the baseline, i.e. the R condition, and are extended by the 3
tested conditions. The punishment feedback given to the critic and depicted
in red is only used for the R+P condition. Blue dashed units and connection
weights are only considered under the R+N and R+P+N conditions. During
training a∗ is performed. a∗ is determined based on the exploration of action
a as described in Eq. (2). The Critic is trained every time step based on the
TD-error δ, while the actor is trained only if the TD-error is positive.

Unlike punishment, the nociceptive units are able to dis-
criminate between the upper and lower range of each joint,
and the magnitude of the activation of each unit is not limited
by the maximum punishment value and is not affected by the
number of degrees of freedom of the arm. The activation of



each nociceptive unit is determined by one of four functions,
i.e. binary, linear, abrupt exponential (used in [1]) and smooth
exponential.

nt =


−1 : ξi = ξmini

1 : ξi = ξmaxi

0 otherwise.
(10)

nt =


ξlnbi

ξlnbi −ξmini

ξi − 1
ξlnbi −ξmini

: ξi ≤ ξlnbi

−ξunbi

ξmaxi −ξunbi

ξi +
1

ξmaxi −ξunbi

: ξi ≥ ξunbi

0 otherwise.

(11)

nt =


−e
−0.5

(
ξi−ξmini

mi

)2
: ξi ≤ ξlnbi

e
−0.5

(
ξi−ξmaxi

mi

)2
: ξi ≥ ξunbi

0 otherwise.

(12)

nt =


−e
−0.5

(
ξi−ξmini

3mi

)2
: ξi ≤ ξlnbi

e
−0.5

(
ξi−ξmaxi

3mi

)2
: ξi ≥ ξunbi

0 otherwise.

(13)

E. Hyperparameter optimization

Due to a large number of possible combinations of hyper-
parameters the systematic and exhaustive testing of them is
impractical. Thus, we use an automated way to explore the
hyperparameter space, in this case a genetic algorithm (GA),
which helps to discover novel and better solutions than even
an experienced human would be able to find [25], [26], [27].
We optimize the same hyperparameter and we use the same
search space per hyperparameter as in [1]. The population per
condition and per generation is 32 individuals. Evolution is
carried out for 50 generations after which convergence was
observed for all tested conditions.

We optimized the hyperparameters for all three condi-
tions, i.e. reward+punishment, reward+nociception and re-
ward+punishment+nociception, four times one per activation
function with respect to the total distance between the robot’s
end-effector and target on the testing set after learning, i.e.
after the last epoch. Thus, here, the lower the fitness values,
the better. Eq. (14) shows the mathematical formulation of the
fitness function:

D =

p∑
i=1

d(hi, ti) (14)

where p represents the total number of testing pairs, hi
corresponds to the initial joint positions of the arm for testing
pair i, ti corresponds to the coordinates of the target for testing
pair i and d is the final Euclidean distance between the arm’s
end-effector and the corresponding target.

IV. RESULTS

Table I shows the summary of fitness values at the last
generation. All conditions reach a comparable best fitness value.
However, when comparing the results for a given activation
function, the R+N condition reaches a considerably lower
average and standard deviation than the R+P or the R+P+N
conditions. The only exception is for the smooth exponential
where the R+P reaches a slightly lower average and standard
deviation.

TABLE I
SUMMARY OF THE FITNESS VALUES AT GENERATION NUMBER 50. THE

FITNESS IS THE TOTAL REACHING DISTANCE, IN METERS, ON THE TESTING
SET, THUS THE SMALLER, THE BETTER.

Binary Linear e ∝ σ e ∝ 3σ

R+P
Best 1.563 1.533 1.551 1.512

AVG 10.766 7.382 8.939 4.874

SD 7.650 6.930 6.492 4.951

R+N
Best 1.497 1.453 1.425 1.418

AVG 6.711 4.665 4.765 5.833

SD 5.999 4.314 5.365 5.481

R+P+N
Best 1.595 1.489 1.378 1.552

AVG 8.101 7.333 8.864 11.556

SD 6.304 5.971 7.055 6.606

In the following sections the results for all conditions tested,
i.e. R+P, R+N, and R+P+N, and the 4 different functions for
punishment and nociception are presented. In all cases, the
results presented are computed using multiple comparison tests
using the ‘Tukey-Kramer’ procedure for a confidence interval
of 95% on a two-way ANOVA, in Matlab version 2015a. The
raw data and additional results are available as supplementary
material [28]. The data was collected following the procedure
used in [1], i.e. we used a genetic algorithm to search good
hyperparameter sets for each condition [29, pp. 90–108]. Then
the 4 best hyperparameter sets for each condition was tested
10 times with different random initializations on the validation
set. For all presented metrics we provide the results for the
performance after learning and the cumulative performance
during learning. The value after learning provides a metric of
the final behavioural performance of the agent, whereas the
cumulative value provides an estimation of the convergence
speed.

A. Positioning Error

Table II shows the estimated mean and the standard error of
the positioning error after and during learning. The estimated
mean of the positioning error of our baseline [1], the reward
only (R) condition, is 0.0390m after learning and 1.1696m
during learning or cumulative.

The best performance on the task is achieved when using
smooth exponential activation of punishment, closely followed
by the abrupt exponential function used as nociceptive input,
see Table II. With all activation functions, punishment leads to a
better performance than our baseline. Similarly, for nociception,
all but the binary activation leads to better performance than



our baseline. When looking at the cumulative values, however,
it can be seen that no matter what activation of punishment is
used, punishment always converges slower than our baseline.
By contrary, both exponential functions used as nociceptive
inputs converge faster than our baseline.

TABLE II
ESTIMATED VALUES OF THE MEAN AND STANDARD ERROR FOR THE

POSITIONING ERROR AFTER AND DURING LEARNING.

Punishment Nociception
Mean std Mean std

A
ft

er
L

ea
rn

in
g Binary 0.0364 0.0036 0.0475 0.0043

Linear 0.0334 0.0036 0.0330 0.0043

e − 1/σ 0.0362 0.0036 0.0268 0.0043

e − 1/3σ 0.0241 0.0036 0.0322 0.0043

C
um

ul
at

iv
e Binary 1.4315 0.0600 1.4893 0.0422

Linear 1.3510 0.0600 1.2332 0.0422

e − 1/σ 1.6876 0.0600 1.1523 0.0422

e − 1/3σ 1.9943 0.0600 1.1150 0.0422

Table III shows the p-values and effect size in percentage
of all 4 activation functions of punishment and nociception
in direct comparison to the other conditions. It terms of
performance after learning all three conditions show com-
parable results. However, the combination of punishment
and nociception with the smooth exponential is significantly
detrimental. For the abrupt exponential, nociception seems to
outperform punishment. The results for performance during
learning are more categorically in favour of the use of
nociceptive units instead of punishment. Here, both exponential
functions used as nociceptive input are significantly better
than when used as punishment. Also the linear function of
nociception seems slightly better than punishment. When
combined, nociception improves the agent’s performance (R+P
versus R+P+N) whereas punishment reduces performance
(R+N versus R+P+N).

B. Perceived Nociception or Potential for Damage

The potential for damage was measured to understand the
effects of the different activation functions on learning but this
metric has no influence on the hyperparameter optimisation
procedure. As defined in [1], the mean perceived nociception
(potential for damage) is defined as the cumulative absolute
value of nociception per joint, as defined in Equations 10–13,
and per time step for all samples on the validation set after
learning. The maximum number of steps allowed per action
sequence is 10. Thus, the maximum possible value for the
potential for damage per sample is 20. The estimated mean
of the perceived nociception of our baseline is 3.9474 after
learning and 95.4031 during learning or cumulative.

Table IV shows the estimated mean and the standard error
of the perceived nociception (potential for damage) after and
during learning. Both exponential functions of punishment
also perform the best when observing the performance only
after learning. Both exponential functions of nociception also

TABLE III
PAIR-WISE COMPARISON. P-VALUES AND EFFECT SIZE FOR THE DIFFERENT

ACTIVATION FUNCTIONS FOR BOTH THE AVERAGE POSITIONING ERROR
AFTER LEARNING AND THE AVERAGE CUMULATIVE POSITIONING ERROR
DURING LEARNING. POSITIVE PERCENTAGE (SIGNIFICANT: BLUE) IN THE

EFFECT SIZE INDICATES THAT GROUP 2 IS BETTER THAN GROUP 1 AND
NEGATIVE PERCENTAGE (SIGNIFICANT: RED) INDICATES THAT GROUP 1 IS

BETTER THAN GROUP 2.

G 1 G 2 Binary Linear e ∝ σ e ∝ 3σ

R+P R+N

A
ft

er
L

ea
rn

in
g

0.1401 0.9860 0.0742 0.4958

−30.49% 1.20% 25.97% −33.61%

R+P R+P
+N

0.9949 0.8151 0.9829 0.0011

1.37% 5.09% 2.21% −108.30%

R+N R+P
+N

0.1150 0.8945 0.1095 0.0345

24.42% 3.94% −32.09% −55.90%

R+P R+N

C
um

ul
at

iv
e

0.7141 0.0921 0.0000 0.0000

−4.04% 8.72% 31.72% 44.09%

R+P R+P
+N

0.0065 0.0002 0.0016 0.5804

−16.09% 17.36% 17.46% 4.27%

R+N R+P
+N

0.0550 0.0961 0.0124 0.0000

−11.58% 9.46% −20.89% −71.23%

perform better than the baseline. Surprisingly, the binary
function of punishment also performs better than the baseline.

Similar to the task performance metric, once we observe the
performance of punishment during learning a different picture
arises, i.e. punishment performs worse than nociception in all
but the binary function. Consistent with the results on task
performance in both after and during learning, both exponential
functions of nociception perform better than the baseline.

TABLE IV
ESTIMATED VALUES OF THE MEAN AND STANDARD ERROR FOR THE

POTENTIAL FOR DAMAGE AFTER AND DURING LEARNING.

Punishment Nociception
Mean std Mean std

A
ft

er
L

ea
rn

in
g Binary 3.1722 0.4073 4.0656 0.3894

Linear 4.1635 0.4073 4.2963 0.3894

e − 1/σ 4.8514 0.4073 3.0847 0.3894

e − 1/3σ 1.7005 0.4073 3.6006 0.3894

C
um

ul
at

iv
e Binary 90.5132 3.4787 96.5160 2.6107

Linear 119.0987 3.4787 102.9289 2.6107

e − 1/σ 142.9666 3.4787 92.4481 2.6107

e − 1/3σ 135.9239 3.4787 88.1168 2.6107

Table V shows the p-values and effect size in percentage
of all 4 activation functions of punishment and nociception in
direct comparison to the other conditions.

Similar to the positioning error, the results after learning
for all conditions are comparable for the binary and linear
activation functions. The abrupt exponential function seems
beneficial to nociceptive units and detrimental for punishment,
while the smooth exponential leads to the opposite result.

During learning, however, the linear and both exponential
activation functions of nociception are significantly better
than punishment. Also, the combination of nociception and
punishment leads to significant better results than when



punishment is used alone. The binary function seems to be
detrimental for nociception.

TABLE V
PAIR-WISE COMPARISON. P-VALUES AND EFFECT SIZE FOR THE DIFFERENT
ACTIVATION FUNCTIONS FOR BOTH THE AVERAGE POTENTIAL FOR DAMAGE

AFTER LEARNING AND THE AVERAGE CUMULATIVE POTENTIAL FOR
DAMAGE DURING LEARNING. POSITIVE PERCENTAGE (SIGNIFICANT: BLUE)
IN THE EFFECT SIZE INDICATES THAT GROUP 2 IS BETTER THAN GROUP 1
AND NEGATIVE PERCENTAGE (SIGNIFICANT: RED) INDICATES THAT GROUP

1 IS BETTER THAN GROUP 2.

G 1 G 2 Binary Linear e ∝ σ e ∝ 3σ

R+P R+N

A
ft

er
L

ea
rn

in
g

0.3259 0.9745 0.0113 0.0009

−28.16% −3.19% 36.42% −111.74%

R+P R+P
+N

0.5912 0.6319 0.9461 0.0032

−19.20% 13.48% 3.93% −100.83%

R+N R+P
+N

0.8914 0.4968 0.0271 0.9301

6.99% 16.16% −51.08% 5.15%

R+P R+N

C
um

ul
at

iv
e

0.3618 0.0001 0.0000 0.0000

−6.63% 13.58% 35.34% 35.17%

R+P R+P
+N

0.0000 0.0000 0.0000 0.0665

−27.42% 22.36% 15.37% 8.28%

R+N R+P
+N

0.0001 0.0201 0.0000 0.0000

−19.49% 10.16% −30.88% −41.49%

C. Positioning Speed

The estimated mean of the positioning speed of our baseline,
the R condition, measured as the length of the action sequence
in the validation set is 8.3853 after learning and 175.4069
during learning or cumulative.

Table VI shows the estimated mean and the standard error
of the positioning speed after and during learning. Similar to
both previous metrics, the smooth exponential function for
punishment is the only function of punishment performing
better than the baseline after learning. Also, the abrupt
exponential function for nociception performs better than the
baseline and also better than all reward+punishment conditions.
All cumulative results of punishment perform worse than the
baseline and also each punishment function performs worse
than its nociception equivalent. Both exponential functions of
nociception perform better than the baseline.

TABLE VI
ESTIMATED VALUES OF THE MEAN AND STANDARD ERROR FOR THE

POSITIONING SPEED AFTER AND DURING LEARNING.

Punishment Nociception
Mean std Mean std

A
ft

er
L

ea
rn

in
g Binary 8.5183 0.0865 8.5854 0.0899

Linear 8.5174 0.0865 8.4904 0.0899

e − 1/σ 8.6402 0.0865 8.0946 0.0899

e − 1/3σ 8.2218 0.0865 8.4637 0.0899

C
um

ul
at

iv
e Binary 179.0809 0.5992 178.6586 0.5364

Linear 178.8567 0.5992 176.2517 0.5364

e − 1/σ 181.4559 0.5992 172.8615 0.5364

e − 1/3σ 184.0022 0.5992 174.5387 0.5364

For this metric, the effect size of all of the tested conditions
and functions is rather modest, as shown is Table VII. The
performance after learning for the binary and linear activation
function is comparable for all conditions. However, there are
some differences for both exponential activation functions.
When the abrupt exponential is used nociception outperforms
punishment, whereas when the smooth exponential is used
punishment seems to be slightly better than nociception.

For the linear and both exponential functions, the perfor-
mance during learning of the conditions using nociception
is significantly better than the conditions using punishment.
Results for the binary activation function are mixed.

TABLE VII
PAIR-WISE COMPARISON. P-VALUES AND EFFECT SIZE FOR THE DIFFERENT

ACTIVATION FUNCTIONS FOR BOTH THE AVERAGE POSITIONING SPEED
AFTER LEARNING AND THE AVERAGE CUMULATIVE POSITIONING SPEED

DURING LEARNING. POSITIVE PERCENTAGE (SIGNIFICANT: BLUE) IN THE
EFFECT SIZE INDICATES THAT GROUP 2 IS BETTER THAN GROUP 1 AND

NEGATIVE PERCENTAGE (SIGNIFICANT: RED) INDICATES THAT GROUP 1 IS
BETTER THAN GROUP 2.

G 1 G 2 Binary Linear e ∝ σ e ∝ 3σ

R+P R+N

A
ft

er
L

ea
rn

in
g

0.8685 0.9690 0.0001 0.1335

−0.79% 0.32% 6.31% −2.94%

R+P R+P
+N

0.5025 0.9988 0.2311 0.0002

−1.75% 0.06% 2.34% −6.27%

R+N R+P
+N

0.8117 0.9798 0.0163 0.0773

−0.95% −0.26% −4.25% −3.23%

R+P R+N
C

um
ul

at
iv

e
0.8461 0.0016 0.0000 0.0000

0.24% 1.46% 4.74% 5.14%

R+P R+P
+N

0.0046 0.0000 0.0000 0.1490

−1.38% 2.33% 2.35% 0.89%

R+N R+P
+N

0.0007 0.0867 0.0000 0.0000

−1.62% 0.89% −2.50% −4.49%

V. DISCUSSION

With respect to the three learning metrics under investigation:
task performance, the potential for damage and the positioning
speed, all conditions perform similarly when using the binary
and the linear activation function. The abrupt exponential seems
to be more beneficial for the conditions with nociception,
whereas the smooth exponential seems to be more beneficial
for punishment. The combination of both nociception and
punishment lead to mixed results. Overall, the performance
after learning for all conditions and activation functions is
comparable (no statistically significant differences) to the
baseline condition, see the supplementary material [28].

The performance during learning in all three metrics, on the
other hand, emphatically supports the use of nociceptive units
instead of punishment. The only exception seems to be for
the binary activation function. However, the binary function
is the lowest performing function in almost all metrics and
conditions, see the supplementary material [28]. Paradoxically,
it is the most common punishment function (e.g. [16], [15]).

During learning, punishment converges more slowly and
leads to higher potential for damage than our baseline and



than the R+N condition. The higher potential for damage
may be a direct consequence of the slower convergence speed.
This, however, contradicts the findings reported in [16] where
punishment seems to improve convergence rate and speed.
However, we hypothesise that the results reported in [16]
represent a “lucky” case, because they did not perform any
systematic hyperparameter optimisation procedure and they
only examined a single target-starting position pair for training
and testing at any given time.

Considering the reported results and in agreement with the
concept that for real-world applications, the most important
metrics are convergence and positioning speed [16], we
suggest that punishment should be used prudently, because
reinforcement learning algorithms in general cannot account
for an adequate incorporation of both types of reinforcement
signals. This is due to the inevitable loss of information when
both reinforcement signals are conflated into a single scalar
value [2]. Additionally, we suggest to further study the effect of
nociceptive units [1], which may become a viable alternative to
the use of punishment signals without comprising convergence
ratio or speed as punishment does.

As future work, we would like to develop other ways
of incorporating punishment feedback into reinforcement
learning without being detrimental to the convergence rate,
the convergence speed or the potential for damage. We
would also like to further develop the embodied approach
of using punishment signals as nociceptive units. Our results,
albeit mixed, show that the concurrent use of nociception
with punishment can counteract the detrimental effects of
punishment during learning.
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