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Abstract

Emotions are related to many different parts of our lives: from the perception of the
environment around us to different learning processes and natural communication.
They have an important role when we talk to someone, when we learn how to
speak, when we meet a person for the first time, or to create memories about
a certain experience in our childhood. Because of this crucial role in a human’s
life, studies on emotions date from the first centuries of written history and until
today it is a very popular research field involving a lot of different disciplines: from
neuroscience and psychology to artificial intelligence and robotics.

The research field of affective computing introduces the use of different emo-
tional concepts on computational systems. Imagine a robot which can recognize
spontaneous expressions and learn with it how to behave in a certain situation,
or yet it uses emotional information to learn how to perceive the world around
it. This is among the hardest challenges in affective computing: how to integrate
emotion concepts in artificial systems to improve the way they perform a task,
like communication or learning. One of the most important aspects of affective
computing is how to make computational systems recognize and learn emotion
concepts from different experiences, for example in human communication. Al-
though several types of research were done in this area in the past two decades,
we are still far away from having a system which can perceive, recognize and learn
emotion concepts in a satisfactory way.

This thesis addresses the use of three models for emotion perception, recogni-
tion, and learning. The models proposed here use different computational concepts
to solve each of these problems and implement solutions which proved to enhance
the performance and generalization when recognizing emotion expressions. We
evaluate our models using different databases with multimodal and spontaneous
emotional information and proceed with a detailed analysis of each model. We
also developed a novel database for emotion behavior analysis, the KT Emotion
Interaction Corpus, which contains interactions from different human-human and
human-robot scenarios.

The first of our models, named Cross-channel Convolution Neural Network
(CCCNN), uses deep neural networks to learn how to represent and recognize
spontaneous and multimodal audio-visual expressions. We implement modality
specific channels to introduce particular feature representation and use shunting
inhibitory neurons to generate robust expression representations. We present the
Cross-channel architecture for high-level multimodal integration which makes the
model not only an expert on single-modality data, but also on multimodal infor-
mation. We evaluate our model using different corpora, for each modality and
in complex multimodal scenarios. During our experiments, we also show that
our model can deal with spontaneous expressions and performs better than state-
of-the-art approaches in the same tasks. We also introduce the use of different
mechanisms to visualize the learned knowledge of the network, showing how the
use of the shunting inhibitory fields, modality-specific channels, and cross-channel
integrations affect expression representations.
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Our second model uses self-organizing layers in conjunction of our CCCNN in a
way to learn different emotion concepts in an unsupervised manner. This improves
the recognition and generalization capabilities of the model and introduces the
ability to learn new expressions. In this model, we extend our CCCNN with the
capability to create neural clusters which identify similar emotion concepts and
show how these concepts relate to categorical and dimensional views on emotions.
Also, we show how our model learns new emotion clusters and how it can be used
for describing emotional behaviors in different scenarios.

Finally, our third model introduces concepts from emotional attention and
memory as modulators for the learning and representation models presented be-
fore. Such modulators improve the capability of the model to recognize expressions,
introduce visual selective attention for detecting emotion expressions in a large
visual field, and make use of different memory mechanisms to adapt the model’s
knowledge at various situations. We also propose a unified Emotional Deep Neural
Circuitry which integrates selective attention, emotion representation and recog-
nition, learning of emotion concepts and storage of different affective memories.
This system works on an online unsupervised learning manner, adapting its inter-
nal representation to different human-human and human-robot scenarios.

The models proposed and discussed in this thesis contribute to the field of affec-
tive computing by introducing a unified solution for selective attention, emotion
recognition, and learning. These models are competitive in each of these tasks,
and also provide an overview of learning mechanism which adapts its knowledge
according to a given situation. We also develop a novel interaction dataset with dif-
ferent spontaneous human-human and human-robot interactions and use it in the
evaluation of our models. This thesis introduces and discusses novel mechanisms
which inspire different research on affective computing and provide an adaptive
solution for various emotion tasks in a way that was not done before, and thus
serves as the basis for upcoming research.
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Zusammenfassung

Emotionen begegnen uns in vielerlei Lebensbereichen: von der Wahrnehmung un-
serer Umwelt bis hin zu verschiedenen Lernprozessen und natürlichsprachlicher
Kommunikation. Sie spielen eine bedeutende Rolle, wenn wir eine Konversation
führen, wenn wir das Sprechen lernen, wenn wir das erste Mal einer Person begeg-
nen oder wenn wir uns an ein Ereignis aus unserer Kindheit erinnern. Vorhandene
historische Studien sind schriftliche Zeugen der bedeutenden Rolle die Emotionen
im Leben der Menschen spielen, und bis zum heutigen Tag sind sie ein anerkanntes,
interdisziplinäres Forschungsgebiet, welches die Gebiete der Neurowissenschaften,
Psychologie, Künstlichen Intelligenz und Robotik vereint. Die Forschung innerhalb
des sogenannten “Affective Computing” beschäftigt sich mit der Verwendung emo-
tionaler Konzepte in computergestützten Systemen. So kann zum Beispiel ein Ro-
boter spontane emotionale Ausdrucksweisen erkennen und darauf basierend lernen,
wie er sich in einer bestimmten Situation verhalten kann, oder die emotionale In-
formation nutzen, um etwas über die umgebende Welt zu erfahren. Die größte Her-
ausforderung in “Affective Computing” ist, emotionale Konzepte so in künstliche
Systeme zu integrieren, dass diese in der Lösung von Aufgaben unterstützt wer-
den, z.B. in der Kommunikation und dem Lernen. Einer der wichtigsten Aspekte in
diesem Zusammenhang ist, computergestützte Systeme auf Grundlage verschiede-
ner Erfahrungen, z.B. in der zwischenmenschlichen Kommunikation, zu befähigen
jene emotionalen Konzepte zu erkennen und zu lernen. Obwohl diesbezüglich be-
reits viel Forschungsarbeit in den letzten zwei Jahrzehnten geleistet wurde, sind
wir noch immer weit davon entfernt ein hinreichend zufriedenstellendes System zu
haben, welches emotionale Konzepte wahrnehmen, erkennen und lernen kann.

Die vorliegende Dissertation beschreibt drei Modelle, die die beschriebenen Pro-
blematiken der Emotionswahrnehmung, der Emotionserkennung und des Lernens
addressieren. Die vorgeschlagenen Modelle implementieren verschiedene Berech-
nungsverfahren, welche in geeigneter Weise die Probleme lösen und zeigen, wie
sich die Performanz und Generalisierungsfähigkeit zur Erkennung emotionaler Aus-
drücke damit erhöhen lässt. Zur Evaluation unserer Modelle verwenden wir diverse
Datenbanken, welche multimodale und spontane emotionale Informationen bein-
halten, und geben außerdem eine detaillierte Analyse unsere Modelle. Wir ent-
wickelen außerdem eine neue Datenbank zur Analyse emotionalen Verhaltens, den
“KT Emotion Interaction Corpus”, der unterschiedliche Interaktionsszenarien zwi-
schen Menschen und zwischen Mensch und Roboter enthält.

Unser erstes Modell, welches wir “Cross-channel Convolution Neural Network”
(CCCNN) nennen, verwendet neuronale Netze mit einer underschiedliche verschie-
dener Anzahl an versteckten Schichten, die lernen, wie spontane und multimodale,
audio-visuelle Äußerungen repräsentiert und erkannt werden. Dazu wurden mo-
dalitätsspezifische Kanäle zur Bestimmung spezieller Merkmalsrepräsentationen
implementiert, sowie inhibitorische Neuronen zur Generierung robuster Repräsen-
tationen der emotionalen Ausdrucksweisen verwendet. Wir stellen unsere “Cross
Channel” Architektur zur multimodalen Integration vor und evaluier unser Modell
anhand verschieden er Datensätze, die sowohl einzeln Modalitäten beinhalten wie
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auch komplexere, multimodale Szenarien. Unsere Experimente zeigen, dass unser
Modell spontane Ausdrucksweisen bewältigen kann und außerdem eine ingesamt
bessere Performanz erzielt als bisherige Ansätze zur gleichen Aufgabe. Wir führen
außerdem eine Visualisierung trainierter Netze ein um aufzuzeigen, wie sich die
Verwendung von inhibitorischen Feldern und modalitätsspezifischen Kanälen und
die Integration aus den “cross channels” auf das Wissen im Netz bezüglich der
Ausdrucksrepräsentationen auswirkt.

Das zweite hier vorgestellte Modell verwendet das Konzept selbstorganisieren-
der Karten in Verbindung mit dem eingeführten CCCNN, sodass mehrere emo-
tionale Konzepte unüberwacht, d.h. ohne a priori Wissen, gelernt werden können.
Dies verbessert die Erkennung und Generalisationsfähigkeit des Modells und bie-
tet die Möglichkeit auch neue Ausdrucksformen zu erlernen. In der Konsequenz
wird das CCCNN um die Fähigkeit erweitert, neuronale Cluster zu generieren,
die ähnliche emotionale Konzepte identifizierbar machen und aufzeigen, wie sich
diese Konzepte zur kategorischen und dimensionalen Perspektive auf Emotionen
verhalten. Wir zeigen zusätzlich, wie unser Modell neue Gruppen emotionaler Aus-
drucksweisen lernt und wie sie benutzt werden können, um emotionales Verhalten
in verschiedenen Situationen beschreiben zu können. Zum Schluß führen wir ein
drittes Modell ein, das die Konzepte von Aufmerksamkeit und Gedächntisleistung
zur Modulierung des Lernens und der Repräsentation aufgreift. Diese Modulatoren
verbessern die Fähigkeit des Modells zur Emotionserkennung, behandeln visuelle
selektive Aufmerksamkeit zur Bewegungsdetektion in einem großen rezeptiven Feld
und verwenden verschiedene Arten von Gedächtnis um die Adaptivität des Modells
an neue Situationen zu gewährleisten. Wir schlagen ein vereinheitliches “Emotional
Deep Neural Circuitry” Modell vor, welches selektive Aufmerksamkeit, Emotions-
repräsentation und Emotionserkennung, das Lernen von emotionalen Konzepten
und das Speichern verschiedener affektiver Erinnerungen integriert. Dieses Sys-
tem arbeitet im sogenannten online-Modus und unüberwacht, welches ermöglicht
dass interne Repräsentationen auf Grundlage einer Reihe von Mensch-zu-Mensch
oder Mensch-zu-Roboter Interaktionen adaptiert werden. Die in dieser Disserta-
tion vorgeschlagenen und beschriebenen Modelle steuern einen wichtigen Beitrag
im Bereich des “Affective Computing” bei, in dem erstmals Erkenntnisse aus der
Forschung der selektiven Aufmerksamkeit mit den Aufgaben der Emotionserken-
nung und des Lernens von Emotionen vereinheitlicht werden. Die Modelle sind
jeweils performant zur gegebenen Aufgabe und bieten einen überblick Über Lern-
mechanismen die das Wissen adaptiv zur Situation nutzen. Wir haben außerdem
eine neue Datenbank entwickelt die spontane Mensch-zu-Mensch und Mensch-zu-
Roboter Interaktionen enthält und unsere Modelle anhand derer evaluiert.

Die vorliegende Dissertation stellt neuartige Mechanismen vor und diskutiert
diejenigen, welche im Bereich des “Affective Computing” zu inspierenden For-
schungsfragestellungen führen könnten.Die Arbeit bietet adaptive Lösungen fr die
diversen Aufgaben der Emotionserkennung, dabei kann diese Dissertation durch
den dargestellten, neuartigen Ansatz als Basis für weiterführende Forschung die-
nen.
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Chapter 1

Introduction

The most necessary skills of human-human communication are the capability
to perceive, understand and respond to social interactions, usually determined
through affective expressions [96]. Therefore, the application of emotion expres-
sion recognition in robots can change our interaction with them [246]. A robot
capable of understanding emotion expressions can increase its own capability of
solving problems by using these expressions as part of its decision-making process,
in a similar way as humans do [10]. A robot that develops this judgmental capa-
bility based on human interaction observation can realize complex tasks, enhance
its interaction skills and even create a certain discernment about the information
it is receiving.

Although much research was done in automatic emotion recognition and in-
terpretation in the past decades, still some problems exist. Most of the works on
emotion recognition are restricted to a limited set of expressions, do not take into
consideration spontaneous reactions and cannot be easily adapted to other users
or situations. Also, most of the research stops at the perception of expressions, but
much more is necessary to have a deep understanding and application of emotions
in HRI.

1.1 Motivation

How to give a robot the capability of recognizing spontaneous expressions in inter-
actions with a human? There is no consensus in the literature to define emotional
expressions [36]. However, Ekman et al. [84] developed a study that shows that
emotion expressions are universally understood, independent of gender, age and
cultural background. They established the six universal emotions: “Disgust”,
“Fear”, “Happiness”, “Surprise”, “Sadness” and “Anger”. Although they show
that these emotions are commonly inferred from expressions by most people, the
concept of spontaneous expressions increases the complexity of the expression rep-
resentation. Humans usually express themselves differently, sometimes even com-
bining one or more characteristics of the so-called universal emotions. Further-
more, several researchers built their own categories of complex emotional states,
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with concepts such as confusion, surprise, and concentration [3].
To define spontaneous emotions, the observation of several multimodal charac-

teristics, and among them, facial expressions, movement and auditory signals, has
been shown to be necessary [170]. It was shown that face expression alone may
contain misleading information, especially when applied to interaction and social
scenarios. The observation of different modalities, such as body posture, motion,
and speech intonation, improved the determination of the emotional state of the
subjects.

Another problem of most HRI research is that it is restricted to a certain
set of emotional concepts, such as the six universal emotions. Humans have the
capability to learn emotion expressions and adapt their internal representation to
a newly perceived emotion. This is explained by Hamlin [120] as a developmental
learning process. Her work shows that human babies perceive interactions into
two very clear directions: positive and negative. When the baby is growing, this
perception is shaped based on the observation of human interaction. Eventually,
concepts such as the six universal emotions are formed.

The developmental aspect of the emotion perception is also the focus of different
works [125, 188, 242], and the correlation of perceiving visual and auditory emotion
expressions and developing them through childhood is evident [115]. It was shown
that these modalities complement each other and are one of the foundations of
recognizing and understanding unknown emotional expressions.

Besides emotion perception and learning, attention and memory mechanisms
showed to be important for processing emotional information. There is a strong
selective attention mechanism which focuses on emotional events [295, 97], which
produces an attention modulation that improves spatial perception [229, 233]. Af-
fective memory is also an important part of perception, recognition and learning
process [250, 46], and is shown to modulate how these processes work. Such sys-
tems are part of a larger emotional circuitry, which affects most of the cognitive
processes in the human brain.

The emotional learning mechanisms presented in this thesis are related to these
three systems: perception, attention, and memory. Although very well studied,
such systems are very complex and affect and are affected by many other mecha-
nisms in the human brain. This is a multi-interdisciplinary study field involving
philosophy, psychology, neuroscience and recently, computer science. Studies on
decision making [63], emotion estimation [260], wisdom evaluation [137] and arti-
ficial intuition [7] have been made, and still present many open topics.

In computer science, several models for expression recognition [45], emotion
representation [284], affective states estimation [41], mood determination[66], and
empathy measurement [198] were proposed. Most of these works are complemen-
tary but do not integrate the developmental aspect of emotion learning, both in
relation to multimodal expressions and emotional concepts, with mechanisms such
as emotional memory and attention.

To have a complete artificial affective system we need to achieve three goals:
recognize multimodal emotion expressions, represent these expressions into emo-
tional concepts, which can be learned without constraints, and integrate memory
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and attention mechanisms as modulators for the learning framework. Each of
these problems is difficult enough alone, and thus the solutions presented so far
were very domain-dependent or not suitable for integration in a complete scenario
due to computational limitations, such as sensors, algorithms, and robust repre-
sentation.

1.2 Objectives

This thesis proposes an artificial affective system based on the developmental learn-
ing aspects of human emotion perception. Such a system uses different neural
architectures to represent different behaviors of emotional learning, and it is built
in three steps: perception, learning, and modulation.

The first step is to create, with a deep neural network, a perception model for
different modalities that preserves the information of each individual modality, but
also models the correlations within them. Such model should be robust enough to
deal with spontaneous expressions, and adaptive enough to be able to recognize
expressions from different users.

The second step builds a self-organizing network for developmental emotional
perception and gives the system the capability to adapt its own perception mech-
anisms to different persons and expressions. Such a model uses the unsupervised
learning characteristics to learn different emotional concepts based on the previous
model’s multimodal representations.

The last step builds an attention system and different emotional memory mech-
anisms to modulate what the network learned. Such mechanisms are implemented
as growing neural networks and deep localization models and contribute to mak-
ing the learning mechanism more adaptable to different subjects, situations, and
environments.

This thesis aims to address the following research questions:

• Can a deep neural network represent multimodal spontaneous human expres-
sions?

• How to learn different emotional concepts from multimodal spontaneous ex-
pression representations?

• How to adapt attention and memory mechanisms as modulators for emotion
perception and learning?

In contrast to existing research, the models described in this thesis aim to
demonstrate how different neural computational techniques can be implemented
and trained in a similar way as the human developmental process to identify and
learn emotional concepts.

The proposed models implement neural-inspired methods and are integrated
into a complex emotional neural circuitry. A series of experiments, motivated by
different neural-cognitive and psychological studies, are performed and analyzed.
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These experiments range from learning how to classify spontaneous expressions to
evaluating the emotional framework in different interaction scenarios.

1.3 Research Methodology

The work presented in this thesis is neurally inspired but only from a functional
point of view. No attempts are made to produce a detailed biological model.

The first step of our model deals directly with data representation. The most
successful way to represent data is the one done by the human brain [2]. The
human brain recognizes emotional expressions from visual and auditory stimuli,
correlating information from different areas. The brain also correlates past expe-
riences, movements and face expressions with perceived sounds and voices. It is
capable of integrating this multimodal information and generates a unique rep-
resentation of the visual and auditory stimuli. The simulation of this process in
computer systems can be achieved by neural models, particularly ones which are
able to create a hierarchy of feature representations such as Convolutional Neural
Networks (CNNs) [179].

The second step implements a self-organizing layer on top of the learned features
in order to establish separation boundaries to the perceived expressions. Our self-
organizing layer gives the model the capability to learn new expressions by creating
different emotional clusters. This approach allows us to validate how representative
the learned features are and gives us a powerful tool to understand how different
emotions are categorized.

The third step implements two different modulation mechanisms: First an at-
tention model is implemented with a deep neural network to improve the expres-
sion representation. This model uses shared representation to modulate what was
perceived in the perception model. The second mechanism implements growing
self-organizing networks to represent different memory modulations, which affect
how the model learn different emotional concepts.

The focus of this research is to use the proposed model in the evaluation of
different communication scenarios, with and without the presence of robots. Each
of the presented steps contains its own roles and constraints, where the first one is
used to identify the perceived expression, the second to model to learn emotional
concepts and the third to modulate the learning.

To help in the evaluation of the proposed models we make use of a set of corpora
presented and used in the literature. However, these corpora do not incorporate
interactions between humans and robots, therefore we created a new interaction
corpus. This corpus implements human-human and human-robot interactions and
we present several different analyses on different aspects of the corpus.

We also use different visualization techniques to demonstrate that our model
has a hierarchical emotion expression representation, where regions of neurons rep-
resent specific characteristics of each modality. Also, we visually demonstrate that
in the self-organizing layers, each neuron codes for different emotional concepts,
and how each region represents different ideas, such as perceived emotions, inner
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emotional representation, and affective states.

1.4 Contribution of the Work

The neural networks implemented in this thesis use concepts such as supervised
and unsupervised learning for emotion expression representations and emotional
concepts, respectively. Our models implement deep neural networks for perception
and localization and growing neural models for memory mechanisms. Such com-
bination of models, architectures and concepts contribute to artificial intelligence
and machine learning as a whole, while the application of such model in learning
emotional concepts introduces novelty in fields as Human-Robot Interaction (HRI)
and affective computation.

Besides the proposed model, deeper analysis, statistical measures and neural
visualization introduce different novelties in the understanding of different neural
networks. The design, recording, and processing of a novel emotional behavior
analysis corpus also contribute to the field of automatic emotion recognition and
introduces the use of such scenarios in an HRI environment. The main contribu-
tions of this work can be listed as follows:

• A new deep neural model based on Convolution Neural Networks for learning
multimodal emotion expressions is proposed. This algorithm applies shunting
inhibitory neurons in order to learn specific visual representations and the
concept of cross-learning to generate robust filters for different emotional
modalities. It is explained how the model creates a hierarchical emotion
representation and how this contributes to the final expression representation.

• A self-organizing-based model is proposed to create emotional concepts based
on perceived emotion expressions. It is demonstrated how this model rep-
resents different emotions in a non-categorical view and how these repre-
sentations enhance emotion recognition tasks. This model is also used for
behavioral analysis based on perceived expressions and it has the capability
to identify how different expressions are represented and what these repre-
sentations mean in a behavioral context.

• An emotional attention mechanism is proposed as a deep Convolution Neural
Network. Such networks are commonly used for classification tasks, however,
we adapt it for localization, and specify our architecture for emotional at-
tention. Such a model is integrated into our first model as a modulator and
improves the recognition and localization of different expressions. Also as a
modulator, we implement attention mechanisms with growing self-organizing
networks and introduce the use of such memories to improve emotional con-
cepts learning.

• A novel emotional expression analysis corpus is designed and recorded. The
corpus implements different scenarios for Human-Human- and Human-Robot-
Interaction, and we perform several analyses and statistics on the data. The
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corpus was designed to be used for different emotion-related tasks involving
Human-Human and Human-Robot interactions.

1.5 Structure of the Thesis

This thesis is structured into 8 chapters. The initial chapters place this thesis
within the field of emotion recognition in humans and in Human-Robot Interaction
scenarios. They provide an overview of the broad fields touched on by this thesis.

The current chapter, Chapter 1, introduces the motivation of this work and
provides the scope and objectives of the mentioned experiments.

Chapter 2 presents the conceptual and neural-biological foundations of emo-
tion perception and recognition in humans. These include basic mechanisms for
perception in different modalities and emotional concepts representation. Chapter
3 extends the discussion and describes complementary emotional concepts, such
as attention and memory, and shows the psychological concepts behind emotional
learning. At the end of chapter 3, the application of some of the presented concepts,
and the state of the art of artificial intelligence-based models are provided.

Chapter 4 introduces the neural network concepts necessary for the under-
standing of the proposed models and the corpora used for the experiments. The
novel corpus is presented and the details of its design, recording and analysis are
presented. In Chapter 5, the emotion perception model based on deep neural
networks is introduced and evaluated in different scenarios. A discussion of the
results and the model itself are presented. In Chapter 6, the self-organizing archi-
tecture for learning emotional concepts is presented. The idea of how the model
understands different expressions is introduced in the discussions of this chapter.
Chapter 7 introduces the emotional attention and different memory mechanisms,
which modulate the learning of the model.

A general discussion is provided in Chapter 8 resuming not only the outcomes
of the individual chapters, but also the contribution of this thesis in the field of
cognitive robots.
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Chapter 2

Emotion Perception

Emotions are part of human life and have received attention since the first philoso-
phers started to study the human behavior. In one of the earlier references on
emotions, Plato [239] defined that the human soul consists of three basic energies:
reason, emotion, and appetite, where reason should rule and control the emotions
if a person wants to have a balanced life. In his allegory, a chariot, represent-
ing the journey of the soul, is driven by reason and pulled by two winged horses:
a white one, representing positive passions (or emotions) and a black one rep-
resenting negative ones. Similarly, philosophers like Aristotle [166], Spinoza and
Humes [217], and Descartes [102] created theories about emotions. Through the
centuries, emotions were discussed and explained as feelings [145], intentions [168],
morality modulators [59] and cognitive mechanisms [59]. However, it was not until
the 20th century that the study of emotions, both as a biological and psycholog-
ical mechanism, became very prominent and several important types of research
were made which changed how we understand the role of emotions in human life
[255, 280, 221, 219, 48].

In this chapter, the concepts of emotional representation and perception will
be discussed. Firstly, several philosophical concepts of emotions and how to rep-
resent them will be exhibited. Then, the basic principles behind unimodal and
multimodal emotion perception in humans will be discussed in the light of neural
aspects.

2.1 Emotion Representation

There is no consensus in the literature to define emotions. According to Dixon et
al. [71], the term emotion replaced the idea represented by the word passion around
the 16th century. Depending on different researchers emotions can be defined as
intense feelings directed at someone or something [140], the state of the mind of
a person [95] or even as responses to internal and external events which have a
particular significance for the organism, as described by Fox et al.[98].

In their work, Fox et al. differentiate emotions into three constructs:

• Feelings are a subjective representation of emotions which are experienced
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by one individual and are short-longing and intense.

• Moods are affective states, which last longer than feelings, but are less
intense.

• Affect is a term which relates feelings and moods to persons, objects, events
or memory in general.

These constructs relate to the perception mechanisms only, and how to cat-
egorize different concepts of emotions. The feelings concept is usually the one
which receives the most attention, as the other two are closely related to it. The
representation of these feelings is another big problem, as there is no consensus
on how to group or identify different feelings. One of the first ones to deal with
that in a scientific manner was Descartes [102], who stated that feelings can be
described as the combination of a few basic emotional concepts, such as irritation
or excitement.

Contemporary psychologists base their work on the concept which here we name
Categorical Models and was described by Descartes. Others describe every feel-
ing as irreducibly specific components divided into finite dimensions, as intensity,
pleasure, self-directness among others, which we name here Dimensional Models.
Yet other models were evaluated as for example the ones based on the evolutionary
psychology which relates emotions to the fulfillment of basic needs, such as mat-
ing, affiliation, defense and avoidance of predators [223, 54]. In this section, we
will discuss two of these views: the categorical models and the dimensional ones,
which are the two most common in several approaches and present valid theories
on emotion perception and learning, which are the basis of this thesis.

2.1.1 Categorical Models

In the past fifty years, many researchers tried to identify and categorize emotions.
One of the most important works in this area was done by Ekman and Friesen
[81]. They identified certain emotions which appeared to be universally recognized,
independent of cultural or geographical background, which they called universal
emotions. Only the face expression was used to create these emotional concepts,
however, they evaluated their research with persons belonging to different cultures,
including subjects which have no access to any kind of media, giving their evidence
a strong claim. They found six universal emotions: “anger”, “disgust”, “fear”,
“happiness”, “sadness” and “surprise”, as illustrated in Figure 2.1.

The concept of universal emotions from Ekman and Friesen successfully iden-
tified some cross-cultural characteristics on emotion perception, but still some
emotional concepts are too complex to be understood easily. Based on their work,
Robert Plutchik [240] developed the Wheel of Emotions. He suggested eight pri-
mary emotions aligned in two axes: a positive and a negative one. Differently from
Ekman and Friesen, he states that the emotions are not only the feeling but the
mood and affect as well. This way, he defines his eight basic emotions as “joy“,
“trust”, “fear”, “surprise”, “sadness”, “anticipation”, “anger”, and “disgust”. In
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Figure 2.1: Six universal emotions described by Ekman and Friesen [81]. According
to their research, these emotions could be perceived and understood independently
of the person’s cultural background. Based on Ekman and Friesen [81].

his Wheel of Emotions, “joy” is opposite to “sadness”, “fear” to “anger”, “antici-
pation” to “surprise” and “disgust” to “trust”. Figure 2.2 illustrates the Wheel of
Emotions.

Ekman and Friesen’s model identifies what we perceive from what another
person is feeling according to one’s individual perception. Plutchik’s model goes
further and identifies an emotional concept, which could be specified or generalized
depending on different contextual situations. As an example, in his model “happy”
could be a state of “joy” or “happiness”. In his work, he describes emotions as
an evolving mechanism, which does not only adapt but evolve based on one’s
own perception, life experience, and even environment. The Emotion Wheel has
important characteristics, which describe the emotional aspect of human behavior:

• Basic emotions. Similarly to Ekman and Friesen’s model, the Plutchik
model uses the concept of basic emotions. These concepts are the ones which
have the most probability to be identified or felt by any person, independent
of their cultural background.

• Combinations. The combination of the basic emotions generate all other
emotions, which is a concept defended by Descartes. In this case, “love”
could be expressed as a combination of “trust” and “joy”.

• Idealized states. The basic emotions are idealized states, which means that
it is not possible that they exist by themselves. Only through the observation
of several different pieces of evidence (perception mechanisms, context, other
emotions) it is possible to describe them.
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Figure 2.2: Wheel of Emotions proposed by Plutchik [240]. In this model, there
are eight basic emotions which are aligned with a positive-negative axis creating
opposite relations such as “joy” and “sadness”, “fear” and “anger”, “anticipation”
and “surprise”, and “disgust” and “trust”. Based on Plutchik [240]

• Opposites. The primary emotions have opposite axes, so “joy” and “sad-
ness” are different instances of the same emotion.

• Similarity. All emotions have different degrees of similarity to one another,
meaning that border concepts of “sadness” and “disgust” can be blended as
“remorse”, for example.

• Intensity. Each basic emotion can vary in intensity, besides the positive and
negative axis. In the Emotion Wheel, the intensity increases as you move
towards the center. That means that “boredom” can be understood as a less
intense “disgust” and “loathing” as a very intense “disgust”.

The contribution of Ekman and Friesen’s model is enormous because they in-
troduce the idea that every human can understand a set of emotions. The work of
Plutchik developed this concept and extended the way we can categorize very spe-
cific emotions. With the Wheel of Emotions, it is possible to identify very abstract
concepts, like love or optimism, and very basic instincts like rage or terror. Other
models were proposed, with several variants of these two models, but they tend
to be more complex and more specific, pushing away from the idea of universal
description from Ekman and Friesen.
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These models are supported by researchers which state that the basic emotions
are not learned, but produced by dedicated circuits in the brain, although they
are the result of an evolutionary process [182]. That explains why persons with
a different cultural background can identify the basic emotions and why they can
learn to identify or describe different emotions. Following this theory, the Wheel of
Emotions can be expanded infinitely, depending on the person’s own experience.

2.1.2 Dimensional Models

One of the problems of the categorical models is that different persons can identify
and relate emotions in different ways. Some of them can relate optimism with
joy and surprise or with joy and anticipation. Besides that, it is not possible
to measure how interconnected these emotions are, and the Wheel of Emotions
will change depending on the person who is describing them based on personal
experiences or even the current mental state of the person [144].

A different way to represent these emotions is to identify and give values to
components which the emotions are made of. One of the most influential works in
this area is the work of Russel et al. [261]. In their model, an emotional experience
is described by two dimensions: valence and arousal. Valence measures how posi-
tive or negative that experience feels, and arousal how active the experience was.
These two dimensions create a 2D coordinate system, which can describe feelings,
moods and affect.

These two dimensions are the basis to identify the core affect [262]. The core
affect is the main component of the conceptual act model of emotion, proposed by
Barret [12]. This theory tries to solve what was called the emotion paradox: How
to measure, with consistent validity, how a person describes his or her emotional
experiences? In her experiment, several persons tried to describe an emotional
experience using categorical models. No consistency was found, and in addition to
this, the same person described the same experience differently in different time
periods.

The conceptual act model of emotion claims that the perception of emotional
experiences is not discrete. An opposite effect happens when describing colors.
The physical colors are continuous, but when a person describes a color as blue,
he or she is using his or her knowledge of colors to give the perceived wavelength.
What differs is that independent of other factors, the same wavelength will always
be perceived as blue by the person. With emotions, this perception is different.
In her experiments, Barret found out that a person will change the category of an
emotional experience (from excitement to fear when seeing a snake, for example)
depending on her mood and affect. That means that instead of having dedicated
circuits in the brain for the basic emotions, the brain identifies some aspects of
what is being perceived and how (the most important of them is the core affect)
and based on that approximates to the person’s own experience.

Based on the conceptual act model of emotions, if we can identify the core
affect properly, we can identify an emotion. Using the two dimensions described
by Russel, the core affect could be measured easily. Figure 1 illustrates the arousal
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Figure 2.3: Dimensional representation of the core affect into two dimensions:
Arousal and Valence. The core affect is the main component when identifying an
emotional event. By determining the core affect precisely, it is possible to generate
emotions based on the person’s own emotional knowledge. Based on Barret et al.
[13]

and valence coordinate system representing the core affect.

Using the idea of describing the core effect, two different persons can describe an
emotional experience the same way, but give different names to it. As an example,
if a person sees someone crying, what could identify this emotional experience as
a very negative valence (crying) and with very positive arousal (high intensity),
but identify it as a sad emotion. Another person would identify the valence and
arousal the same way, but interpret it as a surprised emotion.

Several other researchers introduced different dimensional models, including
dimensions such as self-directness and power were developed. However, most of
them introduce an extra complexity in the development and description. Also,
most of these models do not show any relation with neural-biological finds [258]
and the arousal/valence model still showed to be the most reliable one, with strong
neural-biological evidence.
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2.1.3 Cognitive Emotions

The relation between cognition and emotion is still not clear. Historically, they
were treated separately, but in the past two decades this area received a lot of
attention and many researchers describe different integrative models.

Cognition can be understood as the mental action or process of acquiring knowl-
edge and understanding through experience and the senses [292]. It comprises
processes like memory, attention, language, problem-solving, planning, judgment
and reasoning. Many of these processes are thought to involve sophisticated func-
tions and mechanisms which are still not fully understood, including emotional
processes.

Most of the cognitive processes happen in the cortical regions of the brain, con-
nected directly to a higher evolutionary state, and some of them are found mainly
in primates [103]. On the other hand, some researchers believe that many emo-
tional processes are related directly to subcortical regions, such as the amygdala,
the hypothalamus and the ventral striatum, which are often considered primitive
in an evolutionary point of view [103], and are present in other mammals, for exam-
ple. These regions are described as being responsible for some emotional processes
such as the ones driven by rewards and punishment [253], the basic, or primary,
emotions [80, 240] and unconscious body reactions [58]. For example, a dog could
be conditioned to react to an action based on an emotional punishment (fear, for
example), but will still have the white of the eyes very prominent.

Although some emotional processes are subcortical, the cognitive processes like
perception, attention, learning, and memory have been connected with emotional
characteristics [181, 228, 180]. Current thinking emphasizes the interdependence
of emotional and cognitive processes, and the view of the cortical-cognitive and
subcortical-emotional area is now viewed as largely simplified especially when the
brain is looked at in detail.

Based on the interdependence view between emotion and cognition, the idea of
cognitive appraisal has been developed in the past decades. This theory explains
why persons react differently to the same things. The works of Magna Arnold
[6] and Richard Lazarus [178] model the idea that the first step of an emotion is
an appraisal of the situation, that means that the person’s environment, current
mental state, and memory will determine how he or she will describe the emotional
experience.

Lazarus explains the appraisal theory using a structural model. In this model,
emotions involve a relational, a motivational and a cognitive aspect [177]. The
relational aspect describes the relation between the person and the environment,
mostly using memory modulated by current perception. The motivational aspect
deals with the person’s goal, and how important the emotional experience is for
the person to achieve the goal. The cognitive aspect evaluates how important
the emotional experience is for the person’s life, and how the person behaved
in a similar experience in the past. This way, the same emotional event can be
experienced differently if the person is in a good mood, or has good memories
related to the situation, for example.
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Lazarus’ structural model is also divided into two categories: the primary ap-
praisal and the secondary appraisal. The primary appraisal is where the person
evaluates the motivational relevance and the motivational congruence. The mo-
tivational relevance indicates how relevant this situation is to the person’s own
needs, and the motivational congruence evaluates if the situation is consistent
with the person’s goals. The secondary appraisal evaluates the person’s resources
and options for coping with the situation. It involves the determination of who
should be held accountable for the experience, the person itself, another person or
entity or a group of persons, and this is determined by blame or credit values. The
person also determines the coping potential and separates it in problem-focused or
emotion-focused. Problem-focused coping refers to the person’s ability to change
the situation to be congruent to the person’s goal, while emotional-coping refers
to the ability of the person to deal with the situation if it cannot be changed to
be congruent to the person’s goal.

The structural model received some critics, especially for failing to capture
the dynamic nature of emotions. To deal with that, the model was transformed
into a cyclic model: after the secondary appraisal, a reappraisal mechanism was
included in the attempt to capture long-term emotional responses [281]. Still, the
model fails to capture the rapid or automatic emotional responses [205]. To solve
that, several models based on dynamic emotional updates were proposed, the most
prominent among them was the multi-level sequential process model of Scherer et
al. [270].

The multi-level sequential process model describes an emotional experience in
three processing levels: innate, learned and deliberate. They describe a strictly
ordered step-by-step progression, in which these processes are carried out:

• Cognitive Appraisal evaluates events and objects, giving the personal ex-
perience an individual value.

• Bodily Symptoms define the physiological component of emotion experi-
ence, comprising neural and bio-chemical mechanisms.

• Action Tendencies describe the motivational component, giving a context
of direction and motor responses.

• Expressions exhibit the internal intentions of an individual, using facial
expressions, vocalization and body movements.

• Feelings describe how the subject experiences the emotional state once it
has occurred, related to emotional memory.

There are various evaluation checks throughout the processes, but four of them
have an important role: a relevance check, to define novelty and relevance of the
experience; implication check, measure the cause, urgency and how it affects the
goal; coping check, which determines how to deal with the situation and finally the
check for normative significance, which evaluates how the experience is compatible
with the person’s standards, including moral and survival ones.
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To illustrate the difference between these two models, imagine the following sit-
uation: a student is giving a speech for the first time in his life, while he is talking
he looks at the audience and sees someone laughing. Dealing with this situation
with the structural model from Lazarus [177] the following would happen: First,
the primary appraisal mechanisms identify the motivational relevance and congru-
ence of the situation. The student identifies that someone in the audience does not
like him and this will affect his speech. The secondary appraisal mechanisms then
derive that the student is not good enough (he is to blame for the situation), and
as coping mechanism his mouth gets dry. In the reappraisal cycle, this situation
will be always related to discomfort and failure.

In the multi-level sequential process model from Scherer et al. [270], first the
situation will pass through a cognitive appraisal check, and a sequence of processes
are carried out. In the cognitive appraisal check, it is perceived that the situation
is new (relevance check), someone laughs (implication check), that the student
himself is not good enough (coping check) and it is the first time that this situation
happens (normative check). The cognitive appraisal will drive the other processes
starting with the innate bodily symptom, basically, the perception that someone
is laughing and the attention focus on that person. The learned process of action
tendency will indicate that the student will look at the person who is laughing.
Then, the expression process will be triggered, and it will make the student’s
mouth dry. Finally, this experience will be connected with a bad memory or even
a trauma.

Figure 2.4 illustrates both the structural model and multi-level sequential pro-
cess model. It is possible to see that the structural model derives information
early on, and thus does not have the capability to adapt to changes happening in
the process, while the multi-level sequential process model can adapt to different
things happening. For example, if someone else is laughing in the same situation,
the bodily symptoms process will depict that as well, and the whole process gets
updated.

2.2 Emotional Experience Perception

Emotional experiences are perceived through visual, auditory and physiological
sensory processes, however, mechanisms such as memory modulate what was per-
ceived [72]. This idea was different for many years when research believed that
perception and emotions were separate study domains. Only recently relevant stud-
ies were made in this area, and nowadays the consent is that emotions modulate
perception, and perception influences directly the emotional experience [8, 304].

The human perception system integrates diverse senses and different brain ar-
eas. Cortical regions usually deal from low to high-level information, integration
and also memory. Sub-cortical regions, such as the amygdala, have an important
role on localization and unseen emotion determination, meaning experiences which
are perceived but not yet processed by cognitive regions, like extreme fear or anger.
All these processes start with sensory perception, for example when a person sees
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Figure 2.4: Illustration of how the two different emotional appraisal theories, struc-
tural [177] and multi-level sequential process model[270], deal with the same sce-
nario: a student is giving a speech for the first time and someone in the audience
is laughing.

and listens to someone crying, the whole emotional experience system starts with
sensory processing.

Emotions are perceived with many human senses, but two of them are pre-
dominant: visual and auditory systems. Many types of research show that with
these two systems humans can perceive [275] and experience [305] many emotional
situations. This section exhibits how humans perceive emotions through the vi-
sual and auditory cortex, and how they are integrated into different cortical and
sub-cortical brain regions.

2.2.1 Visual Pathway

The visual processing system in the brain is part of the central nervous system
and processes information coming from the eyes. The whole visual system is very
complex and not fully understood, but it involves all processing from the capture
of the light by the eyes to the response of motor behavior and memory association.
The visual information is usually processed through the visual cortex, which is the
largest area in the human brain. The visual cortex is located in the rear part of
the brain, above the cerebellum and both hemispheres of the brain contain a visual
cortex. However, the left hemisphere is responsible for processing the right visual
field and the right hemisphere the left visual field.

The visual cortex processes sensory information in a hierarchical way, and dif-
ferent regions have neurons reacting to different visual concepts. The information
first flows through the primary cortex, composed of the V1 region and go into the
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Figure 2.5: Illustration of the location of the visual cortex in the human brain
in the rear part of the cerebrum, above the cerebellum. It is possible to see the
regions from V1 to V5. Modified from [53] based on [109].

deeper V2, V2, V4 and V5 regions. The neurons in the primary cortex usually
respond to different line segments and orientations, while neurons in V4, for ex-
ample, react to complete objects or movement. This hierarchical processing allows
the information to be shared through all these areas, and each of them reacts and
processes different levels of abstraction. Figure 2.5 illustrates the visual cortex
regions. All these regions are driven by feedforward connections, however, they
are modulated by feedback and lateral interactions.

The primary cortex, or V1 area, is the most studied area in the brain. It is
also the simplest and probably the earliest area of the visual cortex to develop,
and it is highly specialized for processing of static objects and simple pattern
recognition [185]. The neurons in V1 tend to have a strong response to a small
set of stimuli, which happens because the V1 area has the smallest receptive field
size in the visual cortex. Meaning that the neurons in the V1 area tend to react to
small changes in orientation, spatial frequencies and colors [11]. The information
encoded by the V1 neurons are basically edge detectors, representing the local
contrast between different small structures and colors on the visual field. This
region has straight-forward connections with the other regions, providing this fast
and simple processing to deeper and more complex structures [4, 278]. Recent
research [11] shows that feedback connections change also the properties of the V1
neurons over time. At first, the neurons in this region detect the small structures
and information, but after this information is processed, feedback connections to
the V1 neurons make them sensitive to the more global organization of the scene,
such as macro disturbances and movements.
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The V2 region is the second major area in the visual cortex and it receives
strong feedforward connections from the V1 neurons. The neurons in V2 encode
orientation, spatial frequency, and color, as the V1 area, but they have a larger
receptive field. That means that the neurons in V2 identify small objects and
complex patterns in multiple orientations and in different regions in the visual
field [103]. These neurons are strongly modulated by orientation and binocular
disparity and thus can identify background and foreground information [245]. Also
the neurons in this region code a small attentional modulation, identifying macro
focus regions, such as a person’s shape.

The neurons in the V3 region are generally associated with the processing
of global motion [27]. They receive feedforward connections from the V2 and
V1 areas and are known to cover the complete visual field [200]. Usually, they
encode coherent motion of large patterns, showing an understanding of what the
movement means. They are mostly associated with the perception of gestures and
body movements [254].

The area known as V4 receives strong feedforward connections from V2 and
weak connections from V1. These neurons usually encode space relations between
different objects, orientation, and color. Different from V2, the neurons in V4 en-
code mostly patterns with small complexity, like general shapes (circles, squares).
Some research [109, 252] states that V4 is responsible for dealing with color pro-
cessing, especially spatial contrast defined by different colored objects, for example,
background-foreground identification based on different colors. Also, the neurons
in V4 are strongly modulated by attention mechanisms [212], which have a strong
influence on the firing behavior of the neurons. This behavior illustrates how
subcortical mechanisms influence the visual processing.

The V5 area is also known as the middle temporal region (MT) and plays a
major role in the perception of motion, integration of local motion in the global
view and connections with the motor area, mostly for eyes movement. The V5
neurons receive connections from the V1, V2, and V3 neurons, and although the
strongest connections are coming from V1 neurons [24], studies show that visual
information reaches the V5 area even before it reaches V1 neurons [75]. The
neurons in this region encode speed and direction of movements in the whole
visual field, integrating local movements into the whole scene.

Therefore, we can see that the visual cortex regions process different visual
information: some of them relate to spatial relation between objects and some
to movement. Based on that, Milner and Goodale [111] propose the two-streams
hypothesis. This hypothesis states that the visual systems process information in
two brain pathways: the ventral and the dorsal stream. They exhibit anatomical,
neurophysiological and behavioral evidence that the ventral stream participates in
the visual cognition process, determining information about what the person is
visualizing. The dorsal stream, on the other hand, is involved in the recognition
and processing of where the object is, related to space. The dorsal stream processes
the spatial information of what the person is visualizing, for example, the distance
of the object to the person. Regions V3 and V5 are directly associated with the
dorsal stream, while regions V2 and V4 are placed in the ventral stream. The
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Figure 2.6: Illustration of the ventral and dorsal streams together with the visual
cortex. Modified from [53] based on [109].

V1 neurons are usually connected to all of the other regions and serve as a first
processing step for most of the visual cortex processing. Figure 2.6 illustrates the
ventral and dorsal streams.

The ventral stream is directly associated with object and form recognition.
Some research names it the “what” stream. The neurons in this region increase
their receptive fields size in the deeper regions, which increases the complexity of
objects recognized in the visual field. Attention and memory have a large influence
on the processing of the ventral stream, giving this region a strong role in the
judgmental significance of the visual field. It was shown, for example, that the
damages in the ventral stream cause the inability of a person to recognize facial
expressions and identifying emotional experiences [110].

The neurons in the dorsal stream region are connected directly to the V1 neu-
rons and are known to be involved in the guidance of action and recognition of
where some objects are in space. This explains the “where stream” name which
is often given to the dorsal stream. The neurons in the ventral stream are di-
rectly connected with the motor system and have interconnections with the ventral
stream. The neurons in this region encode two distinctive things: a detailed spa-
tial map of the visual field and the detecting of movements. They are responsible
for the perception of body movements and gestures, identifying speed, orientation,
and direction of these movements. Damages in the dorsal region can lead to an
inability to perceive motion and description of complex scenes, focusing only on
single objects.

Both ventral and dorsal streams contribute to the perception of emotional
experiences. Focusing on the identification of emotion expressions, the processing
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of facial movements and body postures gives us the capability to perceive what
others are expressing. The visual cortex is a very complex region and yet not fully
understood, but what we know so far about it enables us to understand better how
visual emotion expressions are perceived.

2.2.2 Auditory Pathway

The auditory cortex is responsible for the processing and understanding of audi-
tory stimuli and it is located in both brain hemispheres, roughly at the upper side
of the temporal lobe. This region receives and sends information from the ears via
subcortical auditory systems, and it is connected with other parts of the cerebral
cortex. The auditory cortex is separated into the primary cortex and secondary
projection areas which are responsible for auditory pre-processing. The main pro-
cessing and stronger connections with other cerebral areas are in the primary cortex
[237].

The neurons in the primary cortex are organized according to the frequency
of sounds they process, with neurons that react to low frequencies in one extreme
of the cortex and neurons which react to high frequencies in the other. There
are many auditory areas which can be distinguished anatomically, like the visual
cortex, and they process the audio in a similar hierarchical way [18], where ear-
lier regions process only some frequencies and deeper regions process a complete
frequency map.

The auditory cortex represents the higher abstraction processing in the au-
ditory system. It has a very important role in understanding language, dealing
with auditory conflict and semantic processing, and despite the recent interest in
understanding it, we still do not know much about it [67].

The auditory cortex is also encapsulated in the ventral and dorsal stream hy-
pothesis [226]. Studies focused on language show evidence that auditory inter-
pretation from phonemes to syntax understanding also occurs in the ventral and
dorsal stream [248]. Figure 2.7 illustrates the auditory cortex in the human brain.

While in the visual system, the ventral stream is responsible mostly for the
understanding of complex patterns and its relation to attention and memory, in
the auditory system the ventral stream neurons process auditory information and
relate it to semantics. First, the signals proceeding from the ears are transformed
into information through the subcortical auditory pathway. Then, this informa-
tion is processed in phonemes and later on recognized as words. This information
then enters the ventral stream and the individual words are related with language
concepts, and later on into large semantical ideas, such as phrases and scene de-
scription. Several mechanisms are involved in this process, including memory,
attention, and even the visual cortex.

The dorsal stream has a very different role in the auditory pathway. Hickock
and Poeppel [130] propose that the dorsal stream is directly related to articulatory
motor representations. They claim that learning to speak and understand language
is directly related to motor behavior, especially mouth movements. The auditory
information enters the dorsal stream earlier than the ventral stream. Here, the
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Figure 2.7: Illustration of the auditory cortex location in the brain. Modified from
[53] based on [109].

information is not yet processed semantically but represented as phonetic acous-
tics. The first step of the dorsal stream is the sensorimotor interface for phonetic
reproduction. That means that the information is paired with the ability of the
person to reproduce that sound. Then, it is related to the short-term memory of
the articulatory mechanisms for phonological processes [132].

The ventral and dorsal streams are also interconnected for the auditory path-
way. The integration of other mechanisms, such as memory, are important for
the learning and understanding of language [268]. The subcortical pathway has a
very important role in the processing of auditory signals and especially attention,
which modulates the cortical auditory pathway [202]. Although language is one
of the most studied fields in auditory pathway understanding, the cortical regions
are also related to interpretation and understanding of prosodic stimuli. Someone
screaming will be processed first in the subcortical area, but the auditory pathway
will have an important judgmental role on the stimuli understanding [285].

Emotional experiences can be expressed in both language and prosodic audi-
tory stimuli. Someone talking about his or her past can produce the same sad
experience as listening to someone crying. The two-streams theory helps us to
understand how stimuli are processed, but still, many other complex structures
are involved. For both, vision and auditory systems, the concept of independent
emotional processing is becoming less evident [244, 116], and the integration of
these areas with other brain regions helps us to understand how difficult emotion
processing really is.
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Figure 2.8: Illustration of the Superior Temporal Sulcus (STS) in the brain. Mod-
ified from [53] based on [109].

2.2.3 Multimodal Integration

Emotional experiences are perceived by a large number of sensors and processing
brain regions. The visual and the auditory cortex are two of these regions, and
they process unimodal information in a complex hierarchical way, with forward and
feedback connections. These two regions also communicate between each other and
are directly connected to other brain regions, such as the superior temporal sulcus
(STS). The neurons in the STS encode several different information and include
multisensory processing [276]. Figure 2.8 illustrates the STS in the brain.

The STS is directly related to social perception [19] and so it integrates several
sensory information, including signals coming from the auditory and visual cortices.
The neurons in the STS react strongly for semantic understanding [289], selective
attention [39], emotional experience determination [114] and language recognition
and learning [133]. All these tasks are highly correlated with very complex visual
and auditory stimuli.

The STS is the responsible for the interpretation of the vocal input coming from
the auditory cortex [132]. The neurons in the STS react to phones that compose
words[289] and show very weak activation when environment sounds are present.
The strong connections between the auditory cortex and the STS are mostly feed-
forward, but feedback connections are also found and modulate the perception of
certain phones when certain words are recognized [133]. This behavior indicates
that the STS is part of the modulation of the perception of words in a dialogue,
taking into consideration what was spoken before. That helps in the prediction of
certain words which usually come after the other, helping in a dialogue.

In a particular manner, the neurons in the STS react to semantic informa-
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tion when images are present [126]. The interpretation of these images, and the
construction from singular objects to high cognitive concepts - such as semantic
parsing - have been shown to influence strongly in the STS neuron’s firing behav-
ior [19]. The integration of visual and auditory information for scene parsing and
social understanding, including language and emotion experience determination,
happens at the highest level in the STS and is sent as feedback to many other
brain regions.

The STS has a strong connection to what was described with face neurons
[127], which are brain neurons that react strongly when faces are present in the
visual field. Neurons in the STS respond strongly when the face is moving in the
visual field [30], but not when an object is moving. That indicates that after faces
and objects are recognized and their movements described in the visual cortex,
the STS integrates this information and modulates the attention into the most
semantically important concept. This effect implicates a very strong role of the
STS in two distinct concepts: semantical integration [265] of the two visual cortex
streams and a modulator in the attention mechanisms [216].

Experimental results [39] show that the STS has an important role in joint
attention mechanism. When a group of persons is looking at the same place, the
STS is responsible for processing, identify and also drive the attention of the eyes
to this place. This is a very complex task and involves the sensory perception,
attention modulation, short- and long-term memory and motor integration. This
is a very important aspect of understanding other person’s emotions, as the social
behavior of emotional experiences is a very complex task. Also, the joint attention
mechanism modulates the person’s own emotional perception, which is reflected in
the way that the visual and auditory cortices process emotional stimuli.

2.3 Summary on Emotion Perception

Different research has been done in emotion understanding in the past centuries,
and yet there is no consensus on how to define emotions. Mainly because emotions
are part of many different research fields, as seen in this chapter. This chapter dis-
cussed different ways to model emotions: from categorical concepts to dimensional
abstract spaces and cognitive processes. It is important to note that among the
various views presented above, there is not a right or wrong emotion representa-
tion concept, and all of them are important to understanding different aspects of
emotions and how they affect human lives. The research described in this thesis
benefits from these different representations and use distinct properties of each of
these representations to perceive, model and learn emotional concepts in different
tasks.

Besides emotion representation, this chapter discussed emotion perception in
the human brain. Understanding how the visual and auditory systems in the
brain process emotional information help us to abstract some characteristics and
mechanisms which served as inspiration for our models.
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Chapter 3

Towards Emotional Behavior and

Affective Computing

Recent studies show that the multisensory nature of emotional experiences is pro-
cessed in several different brain regions [38]. Besides perception, which is already
a very hard and complex task, mechanisms like attention, short- and long-term
memory, motor representation, and even the most primitive reaction systems are
involved in understanding emotional experiences [73].

Traditionally, the understanding of emotional experiences has been studied
only with one modality [31, 106], but recent works study the effect of cross-modal
emotional stimuli [208, 92] in emotion recognition. It was shown that cross-modal
interpretation occurs in different brain levels with different mechanisms but also
that the presence of cross-modal stimuli created different behavioral responses in
the brain [61]. Studies show that this cross-modal modulation occurs even if the
persons are asked to base their analysis only on one of the modalities in a scenario
where different modalities are present [92].

The integration of these mechanisms with the perception systems creates a com-
plex information and processing network which is not fully understood. This re-
search helps to understand how humans perceive and understand the world around
them, but also how we can solve complex problems such as emotional interpreta-
tion. This chapter exhibits insights on concepts such as attention and memory,
and introduces a summary of the brain’s emotional circuitry. Also, it shows an
overview of the aspects of emotions which are studied by psychologists and how
they help us, in addition to philosophers and neuroscientists, to understand the
role of emotions in our lives. Finally, different computational models for emo-
tion perception, learning and integration are discussed, introducing the emotional
concepts from the perspective of artificial systems.

3.1 Emotional Attention

Attention is one of the most important mechanisms in the brain. It allows humans
to process relevant areas of the whole stimuli perception field while suppressing
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irrelevant ones, and many neural regions have been identified to be involved in
spatial attention during perception [74].

Spatial attention allows us to use what is described as selective attention: to
use processed stimuli to modulate the perceptive field. One of the most important
cases of selective attention is emotional attention, where the affective components
of the stimuli affect the perceptive field [52].

Studies with visual emotional perception show that affective estimation has a
direct influence on attention. It was also shown that neural processes responsible
for determining interest regions receive strong feedback connections from emotion
perception regions, such as the STS and the visual cortex [293].

Many behavioral studies show that people pay more attention to emotional
rather than neutral stimuli and that this behavior is often reflexive and involuntary
[78, 294, 300]. Richard et al. [249] show that there is a difference in the time
perception of emotional and non-emotional stimuli even when emotions are not
part of the task, such as in the Stroop Task. This study shows us the importance
of emotional attention in the perception processes in the brain, modulating several
spatial attention tasks.

The attention modulation is the focus of different studies [229, 233], which show
that low contrast stimuli improved if emotional cues are present, suggesting that
emotional-driven mechanisms improve the spatial attention. Additional studies
[295, 97] propose that in the case of limited attentional resources, emotional-related
information is prioritized over information without any emotion connection.

One of the most important attention-related regions in the brain is the supe-
rior colliculus (SC). This region is a subcortical structure, mostly responsible for
integrating low-level audiovisual stimuli and motor responses [288]. The SC plays
a crucial role in general attention, and it is an important part of the attentional
emotional processing [169].

Another brain region which is directly related to emotion processing is the
amygdala. The amygdala is responsible for being involved in low-level decision-
making (mostly involuntary), memory and emotional reactions. Research show
that the amygdala has a very important role in creating an associative memory
for emotional events [214], and it is also associated with reflectional processing as
fear conditioning [22] and rage [42].

The amygdala and the SC are said to be part of the emotional attention pro-
cessing mechanism [175]. The two-pathway hypothesis [183] suggests the role of
these two structures in the processing of emotional events. This theory states that
there is a partial parallel processing of the stimuli and a feedback connection be-
tween the subcortical structures - the amygdala and the SC - and the early stages
of the cortical ones.

In the subcortical regions, the stimuli are first processed by the SC, which in-
tegrates the audiovisual information and has a strong response to simple emotion
expressions, such as face expressions or body posture. Studies show that when
presented with face expressions, neurons in the SC react to the ones which are ex-
pressing an emotion [213], demonstrating an unseen emotional filter effect. Later
on, this stimulus is processed in the amygdala, which associates the filtered stim-

26



3.1. Emotional Attention

Figure 3.1: Illustration of the role of the superior colliculus (SC), amygdala (here
seen through the cortical surface, although they are subcortical structures) and
cortical regions in the two-pathway [183] and two-stage [32] hypothesis for emo-
tional attention perception, respectively in the first and second row. It is possible
to see the main difference of these theories, which is when the feedback between
cortical and subcortical structures happens. For the two-pathway theory, the feed-
back happens after the primary processing of the superior colliculus (SC) and the
amygdala. The two-stage theory, on the other hand, states that the feedback
happens during the process. Modified from [53] and based on [293].

uli coming from the SC with emotional memories, and sends this information to
cortical regions as a feedback connection. In this theory, the cortical regions send
in-between feedback projections to the SC, which acts as cortical modulators.

Alternatively, the two-stage hypothesis [32] states that there is a feedback com-
munication between high-level cortical regions and the subcortical structures after
the processing of emotional attention. This theory suggests that there is a fast full
stimuli processing, without feedback, from both subcortical and cortical structures,
and after that, the feedback connections act as modulators for both regions.

Both theories state that feedback connections are important for processing of
emotional attention and that emotional attention has a strong role in perception
modulation. The main difference between them is how this processing occurs:
while the two-stage hypothesis states that there are only feedback connections at
the end of the subcortical processing, the two-pathway hypothesis claims that this
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connection occurs in the middle of the process. Figure 3.1 illustrates both theories
and show how the feedback process happens. In both cases, it is important to
note the role of the SC and amygdala as a crucial modulation for the cortical areas
showing how complex and important the attention modulation is.

3.2 Emotion and Memory

Memory is processed in the brain in four stages [76]: encoding, consolidation, stor-
age and retrieval. The encoding stage is the perceptual processing of the instan-
taneous or short-time stimuli. The consolidation is the stage where the memory
is retained in the brain [28] and happens in two steps: the synaptic consolidation,
which is associated with short-term memory [172], and the system consolidation,
associated with long-term memory and learning [282]. Storage is a passive stage,
where the memory is stored in the brain as short-term or long-term memory. The
last stage involves the recollection of these memories, usually for modulation of
perception or learning.

In the early stages of evolution, emotional concepts related to survival instincts,
like fear or feeling safe, followed several different experiences. These experiences
were directly attached to these emotional concepts, and over time an emotional
association was created with this memory [269]. Through evolution, this process
of learning became genetically embedded in most animals, which has been referred
to as instinctive behavior [142].

During the life of a human, many events are perceived and to each of these
events, an affective concept is associated, and usually represented as an emotional
dimensional concept [262], composed of arousal and valence. Studies show that
usually the arousal dimension is related to memory association [37], but the va-
lence dimension affects how an event will be remembered [174, 218]. That means
that usually a person will remember exciting events, but how this event will be
remembered depends on the valence giving to this event. This is directly related
to goal achievements, a high arousal and high valence event [153], and traumas, a
high arousal, and low valence event [47].

Emotional aspects are known to be part of the processing of three of the four
memory stages: encoding, consolidation, and retrieval [250, 46]. During the encod-
ing stage, emotions are known to modulate the perception itself and it was shown
that emotional events, ones with high arousal, receives a stronger attention than
non-emotional ones, with low arousal [233]. Also, it was shown that events with a
high emotional arousal are more likely to be processed when attention is limited
[153]. An example of this behavior is a modulation in the magnitude of the visual
field when an object attached with an emotional relevance is present in the scene,
meaning that if a person fears spiders, he or she will spot a spider faster than other
objects.

The consolidation stage is modulated by the emotional aspects captured in the
encoding stage, but also by the arousal and valence of the memory itself [174].
During consolidation, the emotion arousal appears to increase the likelihood of
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Figure 3.2: Illustration of the forward and feedback modulation connections in the
four stages of the emotional memory scheme [76]. The red arrows represent the
modulation, while the black arrows the forward connections.

the event being retained in long-term memory, explaining behavioral effects like
punishment and reward learning [93]. Studies [47] show that the event with high
arousal will receive more focus than peripheral information. That is why a person
usually can remember the content of a very difficult test, but not what he or she
was wearing that day.

In the last two stages, storage and recollection, the modulation comes from
two different paths: from the perceived event, which triggered the recollection,
and from the memory itself [153]. For each event stored in memory, an emotional
concept is associated. There is a consensus in the field [26, 189] that the mood
of the person, meaning the evaluation of the current emotional state the person
is in, affects the recollection of an event in the memory. Watkins et al. [299]
show that a person in a depressive, low valence mood tends to remember negative
events. This effect was named as mood congruence. Other studies [187] show that
the emotional concept associated with a specific perceived event changes depending
on the person’s mood, usually reflecting the mood itself. That means that a person
with a depressive mood will associate more low valence labels with the perceived
event, while a happy person will tend to look for the high valence elements. Figure
3.2 illustrates the forward and feedback modulation connections in the emotional
memory scheme.

3.3 Early and Late Emotion Recognition

Besides describing the perceived emotional stimuli, the cortical regions of the brain
play a strong role in processing and recognizing what was perceived. This recog-
nition happens in different regions and associates the perceived stimuli, emotional
attention, and interpretation of the semantic concept behind the stimuli [92]. On
the other hand, the subcortical regions, like the superior colliculus and the amyg-
dala, have a strong role in reflexive movements and association with primitive
emotional behavior as self-preservation [213].
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The ventral and dorsal streams communicate with each other through several
levels of feedforward and feedback connections, as in the emotional attention mech-
anisms, but also process the stimuli in distinct ways, such as the perception and
reflexive reactions of fear [73]. When a human perceives fear and to be in a threat
situation, the heart-beat accelerates, pumping more blood to the brain, the face be-
comes paler, retracting the blood from the surface of the skin among other effects.
This mechanism is still not fully understood, but it is part of a more primitive
emotional experience perception: the involuntary reflexive processing [22].

Among other structures, the amygdala is one of the most important involuntary
reflexive structures in the brain [42]. The neurons in the amygdala are connected
with the primary sensors of stimuli perception, like the V1 region in the visual
cortex, and the motor system. Studies [42] show that the amygdala is respon-
sible for, among other things, fear to condition, connecting experiences such as
a scary encounter with a monster with a scream. Other studies [227] show that
the amygdala is also involved in the positive reward mechanisms, like connecting
food with a positive reward (satiating the hungry). Yet, other studies relate the
amygdala with memory association in the most primitive way: traumas, phobias,
and emotional conditioning events, like remembering a good friend when looking
at a flower.

The amygdala is also associated with memory modulation [22]. Long-term
memory is formed over time, probably for a lifelong time. That means that many
experiences happen until this memory is formed. Recent studies [232] show that
the amygdala acts as an emotional modulator in the formation of these memories.
The emotional arousal following the perceived event influences the impact of the
event in the memory consolidation, and the amygdala is directly associated with
this process.

In the cortical regions, emotions are recognized as a complex event which in-
volves low- and high-level stimuli processing and memory modulation. Areas as
the visual and auditory cortices and the STS process what the person is perceiv-
ing, in this case, auditory and visual information, integrate this with other senses,
as temperature, smell and self-movement. This whole process is modulated by
memory and by the subcortical structures.

Although very complex, emotional concepts are present in several brain re-
gions. The emotional modulations happen from perception to memory storage
and affect the daily life of every human being. The recognition of an emotion is
directly associated with a perceived event, and humans are expert in labeling emo-
tional concepts to different objects, scenes and time where the event happened.
The full integration of all these mechanisms is still not fully understood, however
understanding the functioning of these structures would give us a very important
overview on how to recognize emotions in different perceived events and memories,
and also how to make decisions, do actions and determine the person’s own mood.
A simplified version of the brain emotional circuitry discussed in this chapter is
illustrated in Figure 3.3.
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Figure 3.3: Illustration of a simplified version of the brain emotional circuitry
discussed in this chapter. The red lines represent the modulation, while the black
lines the forward connections.

3.4 Emotional Behavior

The cycle of perceiving an event, understanding it and associating it with different
memory levels and actions is a basic mechanism and happens from birth onwards.
For the whole neural system involved in perceiving, understanding and using emo-
tions, several researchers show different psychological and behavioral aspects of
emotions.

Emotions are sometimes referred to as the window to the soul [303]. In the
last 100 years, the study of several psychological aspects of emotions gave us very
important and different insights on how we use emotional concepts in our life. The
cognitive appraisal theory tries to correlate the neural aspects of emotion percep-
tion and understanding and some psychological findings. However, many questions
are not addressed by this theory, such as the emotion expression mechanisms and
learning behaviors. This section discusses these two concepts.

3.4.1 Expressing Emotions

One of the most important ways to convey emotions is through emotion expres-
sions. Humans and animals are known to show physical changes which reflect the
current mood. These expressions usually involve the whole body and different
modalities, such as speech, face expressions, and body movement. We usually can
relate these expressions with an emotional concept, using the before-mentioned
mechanisms: perception, representation, recognition, and memory.

Different persons will express differently, depending on several factors: the
gender, the cultural background, the current mood, the context situation and so
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on. However, humans are able to, in most cases, identify these expressions and the
emotional concept behind them. In a study about expressions itself [82] it is shown
that when a single emotion expression occurs, it lasts between 300 milliseconds
and 2 seconds. These expressions usually carry a broader meaning, such as the
six universal expressions, and are usually synchronized within different modalities.
That means that an angry person would scream at the same time as his or her
hands are moving frenetically in the air; and the moment the face changes, the
movements also tend to adapt to it. This introduces a concept of co-occurrence of
different modalities which are naturally synchronized.

Ekman and Friesen [85] introduced a way to describe face expressions in a de-
terministic way. The Facial Action Coding System (FACS) is a taxonomic system
to describe human facial movements. The FACS defines Action Units (AU), which
are contractions or relaxations of one or more muscles, and the combination of AUs
can represent a facial expression. In the latest version of FACS, a total of 98 AUs
is present. This system was used by psychologists and animators in the past three
decades and is still a standard method of analyzing facial expressions. Figure 3.4
illustrates an example of different FACS codings for eyebrow movements.

Although humans convey their mood, most of the time, with clear expressions,
a deeper analysis shows that there is more to see than the obvious. The concept of
micro expressions started to be analyzed in the beginning of the behavioral studies
[60], and today is one of the most important factors when trying to determine which
emotions a person is conveying. Micro expressions are involuntary movements of
the body, face, or change on the voice tone that do not reflect the macro expression
and convey important detailing information about the person’s mood or intention.

Ekman [83] demonstrates that facial micro-expressions last from 40 to 300 mil-
liseconds, and are composed of an involuntary pattern of the face, sometimes not
related to the expressions being performed. He also shows that micro expressions
are too brief to convey an emotion, but usually are signs of concealed emotions,
giving the expression a different meaning. For example, facial micro-expressions
are usually the way to distinguish when someone is angry while using a happy
sarcastic expression. In this case, the addition of facial micro-expressions as an
observable modality can enhance the capability of the model to distinguish spon-
taneous expressions, but the observation of the facial micro-expression alone does
not carry any meaning.

The interpretation of expressions and micro expressions is an important tool
for human communication and social life. The understanding of such expressions
has also a strong role in the learning mechanisms, and in the contextual interpre-
tation of the environment, helping also in decision-making and character building
mechanisms.

3.4.2 Developmental Learning of Emotions

There are two perspectives when talking about innate perception: the traditional
one says that emotional perception and morality are learned from scratch, while
others believe that some of these aspects are built-in, meaning that human babies
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Figure 3.4: Example of seven different Action Units (AU), presented in the Facial
Action Coding System (FACS), for eyebrow: inner brow raised (AU1), outer brow
raised (AU2), brow lowered (AU4), upper lid raised (Au5), cheek raised (AU6),
and lid tightened (AU7). Adapted from [16].

have already some innate judgmental capability.

In the past century, psychologists performed several experiments trying to prove
that emotional perception is learned during childhood [161, 234]. They state that
babies are born completely amoral, processing no or very basic moral information
about what happens around them, and then during childhood and several devel-
opmental processes develop a mature perspective. This also explains that persons
growing in different cultural regions have different moral standards.

The traditional perspective claims that our moral perspective is always updat-
ing, even through adulthood, and that it would be possible to train a person to
follow a certain behavior, as long as the training starts in early ages. The concept
of moral behavior, in this case, is directly associated with emotional perception
and memory association [79]. An action could be considered good or bad, and thus
shape the perception of a certain experience, for example hunting an animal. Some
people will perceive the scary face of the animal and understand the whole hunt-
ing experience as a cruelty, while others will understand it as a sport event. All
the experiences we have are associated with one or more emotional labels, which
according to the researchers in the traditional perspective, shape our morality.

On the other hand, other researchers [119, 122] address a different question:
all the aspects of the morality are learned and shaped during childhood? In the
experiments performed by the traditional stream researchers this question was
neglected, and they only evaluated the whole idea of innate perception or not
innate perception.

Recent research [148, 211] shows that the understanding of certain conceptual
domains emerges even with the absence of certain experiences. For example, a
person does not necessarily have to be helped or harmed in a particular situation
to understand when another person is being helped or harmed. This moral core
would remain intact during the person’s life.

The concept of innate moral goodness is growing among those who believe
humans have some innate characteristics for emotional perception [207]. Sagi and
Hoffman [263] show that from birth, newborns show very rudimentary emotional
reactions to other’s suffering. Hamlin [121] discusses how babies, when growing up,
adapt these reactions towards different social behaviors like comforting someone in
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distress [77], helping others to achieve goals [298] and sharing their own resources
[107].

Based on these concepts, Hamlin [121] proposes an experiment with toddlers.
A scenario with two entities, a box, and a ball is presented to the toddler. In this
scenario, two actions happen: in the first one, the ball helps the box to climb a hill.
In the other, the ball prevents the box to climb the hill. The toddler is then asked
to choose between one of the entities, and most of the toddlers create an empathy
towards the helper. This experiment shows that the toddlers could identify good
and bad actions, based on a simple task. This research showed that the toddler
could give a valence (between positive and negative) to the experience.

Other research [143, 266] confirms also that humans have an innate capability to
evaluate an event with a valence domain. That means that humans are born with
an innate emotional identification, which can be expanded throughout childhood.
This is the basis for developmental research [144, 273] on emotion acquisition,
and paired with the cognitive appraisal theory creates a robust framework for
understanding the learning of processing new emotions.

Based on the theory that emotion perception is innate, several researchers
[125, 188] state a developmental aspect of learning emotional concepts. They state
that as babies we shape our emotional perception first based on two valences:
positive and negative. As we grow up, the experiences are perceived in more
complex ways, with the inclusion of different arousal states.

Grossman [115] shows the correlation of perceiving visual and auditory emo-
tion expressions and developing them through childhood. They show that these
modalities complement each other and are one of the foundations of recognizing
and understanding unknown emotional expressions. Also, there is evidence [23]
that this mechanism could be one of the most important in the development of
intuition, and thus play a very important role in decision-making [63].

3.5 Affective Computing

In the past decades, many researchers approached the issue of automatic emotion
recognition. With the progress in Human-Machine Interaction research, in partic-
ular, Human-Robot Interaction (HRI), the necessity of having a natural way of
communication emerged.

In the nineties, the term affective computing was developed [235]. As a defini-
tion, affective computing is the area which develops computational systems that
can recognize, interpret, process and simulate emotion and affective states. It
is an interdisciplinary topic, and involves psychologists, computer, and cognitive
scientists.

Early works on affective computing focused on trying to create universal de-
scriptors for emotion perception, mainly on visual [62, 192] and auditory streams
[90, 230]. However, given the complexity of human emotional behavior, many of
these solutions were very domain-specific or neglected important aspects such as
multimodal perception or emotional learning.
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Recent researchers approach the topic from neuroscience by inspiring their mod-
els on how the human brain processes and interprets emotions [45, 251, 196], and
from the recent findings of psychology, especially on the emotional learning and
behavior. These models can deal with complex tasks, such as recognition of emo-
tions in the wild, but also the use of emotional concepts to improve communication
and learning in artificial systems.

In the next sections, the most relevant of these approaches, models and systems
are presented and discussed.

3.5.1 Emotional Descriptors

Early works on automatic emotion recognition systems proposed the use of descrip-
tors [62, 90, 230] to model the expression, and mostly stochastic [241] or rule-based
classifiers [192] to label it. The contributions of these works are on representing
emotion expressions, and most of them were based on Ekman’s assumption of
universal emotions.

Most of the early works dealt with two separately streams: face expressions
and speech. These works applied different feature descriptors in a way to describe
an expression. Most of these feature descriptors were based on general image
descriptors, when applied to face expressions, or general sound descriptors, when
applied to speech. A review of the field from Chellappa et al. [44] exhibits a broad
range of different methods used to recognize faces and shows that most works were
still at an early stage and not close to being used in real-world scenarios.

In early research, some common methods for face expression recognition involve
the use of motion descriptors [152, 89] and template matching [20]. All these works
were computationally expensive, not able to deal with real-time processing, and
had problems with generalization. For example, if the pictures were captured under
different lighting condition or from different persons, these models did not show
good performance.

Some of the works for face expression, however, were inspired by the psycho-
logical studies of Ekman and Friesen and the FACS system was used as inspiration
for many computational models [90, 191, 51]. These models use mostly template-
matching approaches to identify the Action Units (AUs) in a person’s face and use
simple rule-based classifiers [51] or even simple neural networks [257] to identify
the expressions.

The works using the FACS models solved a big problem in the field: they could
recognize expressions with a fair degree of generalization based on the evidence
of Ekman’s research. However, these models faced a new problem: they had
to identify and describe, perfectly, the AUs, otherwise the classification would not
work due to the fact that similar AUs are involved in completely different emotions
[191].

Several approaches proposed better ways to map the AUs, including the tempo-
ral analysis of the face movement [224], geometric deformation analysis [167], and
profile contour analysis [225]. These methods are strongly dependent on the AUs
to describe expressions and were able to identify dynamic and static ones. Cowie
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et al. [57] exhibit different solutions for identifying and describing the AUs, and
discuss how effective they are for generalizing the expression for different persons.

The use of explicit descriptors, mostly related to FACS, introduced an increase
of studies for automatic emotion recognition systems. However, the FACS model,
and models based on common explicit descriptors show a big problem: it is difficult
to represent spontaneous expressions with them [86, 307]. The purpose of FACS
is to describe muscle movements and classify them into emotional concepts. How-
ever, emotion expressions are spontaneous, and different persons will express the
same emotional concept in different ways. The works based on FACS and explicit
descriptors cannot deal with this nature, and are mostly used for basic emotion
recognition, such as the six universal emotions [290].

In the past decade, the introduction of Convolutional Neural Networks (CNNs),
among other deep learning models, provided an important evolution on image
recognition tasks. Such models use the concept of implicit feature descriptors to
classify complex images. Instead of using a set of pre-defined descriptors, CNNs
learn a particular descriptor which will perform best on the classification task
which it was applied. This was shown to be efficient in several different image
recognition tasks [171, 151, 146].

Given the success of CNNs in several different tasks, it was largely applied
for emotion recognition tasks [94, 209, 149], showing an improvement on general-
ization. Different architectures were applied for different tasks. Fasel et al. [94]
propose an architecture which is head-pose invariant. Their model evaluates a
CNN trained with different expressions presented with different head-poses and
this model was able to generalize the learned features for different subjects.

In the approach of Matsugu et al. [209], they use a rule-based mechanism
in between the convolution layers to improve the generalization of the detected
features. This rule-based mechanism identifies if the learned features are related
to different face structures, such as eyes or mouth, and use this information to apply
a selective mask in the filters. This is used to create a face detection mechanism,
firstly, and then to identify face expressions. They show that their system increases
the recognition of the six basic emotions when compared to common FACS-based
systems.

Karou et al. [149] use a combination of general and specific convolution chan-
nels to recognize emotions in videos. Their architecture has different training steps,
first based on general image descriptors, and later on specific emotion expressions.
They use a video aggregation scheme to recognize emotions in a sequence, where
N-frames are aggregated in one representation by summing the frames’ own rep-
resentations. They show that their network could be used in real-life emotion
recognition tasks by using their model to recognize emotions in movies and series
clips.

The use of CNNs to describe facial emotions showed also a big improvement
for spontaneous expressions recognition [302, 186, 283]. Although using CNNs,
these works rely on heavily pre-processed data [302], complex tree and rule-based
descriptors identification [186] or even in different explicit feature descriptors used
to complete the final facial representation [283].
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Although the use of CNNs to learn face expressions presented a better per-
formance when compared to FACS-based systems, recent studies show a certain
correlation on what the network learns and the AUs of the FACS, as presented
by Khorrami et al. [154]. In their work, they discuss that the learned features
of a CNN trained with facial expressions approximate some AUs, showing that
the network actually learns how to detect AUs without any pre-defined rule. This
shows that the FACS system could be limiting the recognition of spontaneous ex-
pressions, however, describing expressions with muscular movements show to be a
robust facial expression descriptor.

Similarly as facial expressions, the development of auditory emotional descrip-
tors evolved in the past decades from explicit descriptors [64] to implicit ones
[1]. The FACS system does not have any auditory emotional description, which
led to a wide range of different descriptors and acoustic models used in emotion
recognition.

Most of the works on speech emotion recognition are based on popular auditory
descriptors, which were mostly developed to describe the human voice. Early works
used a combination of simple acoustic descriptors [230], such as vocal energy, pitch,
speech rate, among others to identify mostly the six universal emotions. These
models rely heavily on a very clean input data, mostly an expression of a word or
a short sentence.

Different kinds of descriptors were developed and applied to speech recognition.
The most successful were the ones based on the Mel Frequency Cepstral Coefficients
(MFCC), which proved to be suitable for speech representation [264]. MFCCs are
described as the coefficients derived from the cepstral representation of an audio
sequence, which converts the power spectrum of an audio clip into the Mel-scale
frequency. The Mel scale was shown to be closer to human auditory system’s
response than the linear frequency.

Each auditory feature descriptor carries its own information, changing the na-
ture of the audio representation. For the same clip of sounds, very distinct infor-
mation can be extracted for different tasks. Thus, Madsen et al. [203] use a set
of three different descriptors, namely chroma features, loudness, and MFCC, to
represent distinct auditory information. They also obtain different temporal/non-
temporal representations for each descriptor, using sliding windows for discrete
representations or Hidden Markov Models for temporal dependencies. A total of
83 feature representations is obtained. After the feature extraction, they use a hi-
erarchical non-parametric Bayesian model with a Gaussian process to classify the
features. They show that their approach has a certain degree of generalization, but
the exhaustive search for tuning each parameter of the model for multiple feature
representations and feature combinations is not a viable option.

Similar to the work of [203], several approaches [251, 147, 195] use an extensive
feature representation strategy to represent the audio input: they extract several
features, creating an over-sized representation to be classified. The strength of
this strategy relies on redundancy. The problem is that usually, it is not clear how
well each of these descriptors actually represents the data, which can lead to not
capturing the essential aspects of the audio information, and decreasing the gener-
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alization capability [134]. The use of over-sized auditory feature representations is
the focus of heavy critics [307, 87] because of the incapability of these descriptors
to describe the nuances of emotion expressions in speech.

In a similar way as facial expressions, implicit descriptors methods, mostly
CNNs, were used recently to describe emotions in human speech [138, 204]. These
systems use a series of pre-processing techniques to remove mostly the noise of the
audio signal, and let the CNN learn how to represent the data and classify it in
emotion concepts [264]. In this strategy, the CNN is able to learn how to represent
the auditory information in the most efficient way for the task. Initial research was
done for music [190], and speech recognition [272] and was shown to be successful in
avoiding overfitting. The problem with this approach is that it needs an extensive
amount of data to learn high-level audio representations, especially when applied
to natural sounds, which can include speech, music, ambient sounds and sound
effects [65].

Although there are models to describe systematically the emotional components
in speech [56], there is no consensus on how to identify affective components in a
human voice, and thus the evolution of emotional auditory descriptors is limited
and much more work is necessary.

Many other models which are not based on face expressions or speech were
proposed. The use of several physiological signals, coming from muscle movements,
skin temperature, and electrocardiograms were investigated [236, 156, 155] and
delivered good performance, however, used uncomfortable and specific sensors to
obtain the signals, not suitable for be used in real-world scenarios. Mechanisms
such as bracelets or localized electrodes were used.

In a similar approach, the use of Electroencephalogram (EEG) signals was used
as emotion descriptors [25, 194, 197]. Using non-invasive EEG mechanisms, the
brain behavior was captured when different emotion experiences were presented to
a human. The initial results showed poor accuracy and generalization but open
one new approach on emotion descriptors.

Another way to describe emotions is using body movement and posture. There
are studies which show the relation between different body postures and movements
with emotional concepts [55], and even with micro-expressions [83]. Most of the
computational models in this area use the body shape [43] or common movement
descriptors [40] to represent the expression and showed good accuracy and a certain
level of generalization. However, the best performance used different sensors such
as depth cameras or gloves to capture the movements [158].

3.5.2 Emotion Recognition and Learning

Once the emotion expression is described, another problem arises: how to clas-
sify them into emotional concepts. Many approaches deal with this problem by
applying general classification techniques such as ruled-based systems and tree
structures [192], stochastic methods [241] or neural-based models [43].

Rule-based systems, as decision trees [184], were applied in many automatic
emotion recognition systems. Many of them use strong descriptors, such as the
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FACS [192], and use if-then rules to identify emotion expressions. Such systems
present a simple and efficient scheme to identify pre-defined expressions. Most
of these works are used to recognize the six universal emotions and usually does
not show good generalization due to the fact that the emotional concepts must
be very clearly separable and identifiable. Applications of such systems in speech
emotion recognition delivered good performance when used in very restricted word
scenarios [301], however, achieved poor performance when used in more complex
or natural cases, such as real-world interaction [68].

The models based on stochastic approaches usually deal with sequence prob-
lems. Among these models, the ones based on Hidden Markov Models (HMM)
became very popular in the last decades. Such models use different descriptors
to represent the expression and use them to feed one [193] or several HMMs [50].
Each HMM introduces a sequence dependency processing, creating a Markovian
chain that will represent the changes in the expression and use it to classify them
as an emotional concept. Such models are very popular for speech emotion recog-
nition, due to the good performance delivered in speech recognition tasks [173].
The biggest problem with these models is that they are limited to the amount of
information they can learn, and they do not generalize well if new information is
present. Also tend to be computationally expensive, especially for larger datasets.

Another popular method for emotion recognition are neural networks. Since the
first approach in this field, neural networks have been used to recognize emotional
concepts [159, 257]. These models are inspired by the human neural behavior,
and were approached from very theoretical [105] to practical approaches [272].
Neural networks were used as single-instance classifiers [141] to sequence processing
and prediction, using recurrent neural networks [271]. These models tend to be
more complex to design and understand, and thus limit the implementation and
development of applications. Usually, a large amount of data is necessary to train
neural networks, and generalization can be a problem for some architectures.

With the advance of deep learning networks, most of the recent work involves
the use of neural architectures. The ones with the best performance and general-
ization apply different classifiers to different descriptors [193, 45, 147], and there is
no consensus on a universal emotion recognition system. Most of these systems are
applied to one-modality only and present a good performance for specific tasks.
By using one modality, either vision or audition in most of the cases, these sys-
tems create a domain-specific constraint and sometimes are not enough to identify
spontaneously and/or natural expressions [274].

Multimodal emotion recognition has been shown to improve emotion recog-
nition in humans [35], but also in automatic recognition systems [118]. Usually,
such systems use several descriptors to represent one expression and then one or
several classifiers to recognize it [45]. Gunes et al. [118] evaluate the efficiency of
face expression, body motion and a fused representation for an automatic emotion
recognition system. They realize two experiments, each one extracting specific
features from face and body motion from the same corpus and compare the recog-
nition accuracy. For face expressions, they track the face and extract a series of
features based on face landmarks. For body motion, they track the position of the
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shoulders, arms and head of the subject and extract 3522 feature vectors, using
dozens of different specific feature extraction techniques. These feature vectors are
classified using general classification techniques, such as Support Vector Machines
and Random Forests. At the end, they fuse all feature vectors extracted from both
experiments and classify them. The results obtained when fusing face and motion
features were better than when these modalities were classified alone.

The same conclusion was achieved by Chen et al. [45]. They apply a series of
techniques to pre-process and extract specific features from face and body motion,
similarly to Gunes et al. Differences are that they use fewer features in the final
representation and the time variance representation is different in both approaches.
Gunes et al. use a frame-based-classification, where each frame is classified indi-
vidually and a stream of frames is later on scored to identify which emotional
state is present. Chen et al. analyze two temporal representations: one based on
a bag-of-words model and another based on a temporal normalization based on
linear interpolation of the frames. Both approaches use the same solution based
on manual feature fusion, which does not take into consideration the inner corre-
lation between face expression and body motion, but fused both modalities using
a methodological scheme.

The observation of different modalities, such as body posture, motion, and
speech intonation, improved the determination of the emotional state of differ-
ent subjects, increasing the generalization of the models. This was demonstrated
in the computational system of Castellano et al. [43], where they process facial
expression, body posture, and speech, extracting a series of features from each
modality and combining them into one feature vector. Although they show that
when different modalities are processed together they lead to a better recognition
accuracy, the extraction of each modality individually does not model the correla-
tion between them, which could be found when processing the modalities together
as one stream.

The same principle was also found for visual-only modalities [118, 45], and
audio-only modalities [251, 147, 195]. However, all these works deal with a set of
restricted expression categorizations which means that if a new emotion expression
is presented to these systems, they must be re-trained and a new evaluation and
validation of the whole system need to be done.

3.6 Summary on Emotion Learning and Affec-

tive Computing

Many types of research were done on understanding how emotions affect humans
on many different levels. From neural modulation in perception and learning sys-
tems to behavioral aspects of emotional concepts and affective computing, the
most important notions and methods were discussed in this chapter. In each of
these areas, different researchers discussed, proposed and described many different
mechanisms, models, and theories, and yet we are far from a unified model of emo-
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tions. This can be explained by the wide range of systems and mechanisms were
emotions have an important role, and thus indicates how important is to continue
understanding and to research in the field.

This chapter also presented an overview of several approaches and models for
different emotional tasks in affective computing. Although these models offer so-
lutions for various tasks, none of them led to an integrative solution for emotion
recognition, processing, and learning, which is the primary focus of this thesis.
Inspiring some solutions present in our models in the neural-psychological mech-
anisms presented in this chapter allows us to address important aspects of our
research questions, and contribute to the field of affective computing.
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Chapter 4

Neural Network Concepts and

Corpora Used in this Thesis

This chapter discusses the most important neural network concepts and techniques
used for the development of the models proposed in this thesis. The techniques
are exhibited in their original models and any necessary modification is indicated
in each of the model’s own chapters.

To evaluate the proposed models a number of different corpora are necessary
and hey are described in section 4.6. During the execution of this work, a new
corpus was recorded and all details involving the design, collection and analysis of
the recorded data is presented in section 4.7.

4.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models which are inspired
by the behavior of the neurons. The first of these models was the perceptron [256],
which simulates a single neuron and it is the elemental computing unit of an ANN.
The perceptron consists of a weight vector (w), representing synaptic connections,
that is multiplied by the input signal (x) and a bias unit (b), which usually has
a value of −1. The values resulting from this operation are then summed. In the
last step, these summed values are fed as input to an activation function(y), also
known as a transfer function, which will produce the output signal (o). Figure 4.1
illustrates the structure of a perceptron unit.

Stacking several perceptron units together in one layer and connecting these
stacks sequentially, without connections between the neurons in the same layer,
produces what is known as a multilayer perceptron (MLP) neural network. The
MLPs are the main component of most of the neural networks applications, and
were applied to several different tasks in the past 60 years. Figure 4.2 illustrates
the high-level common architecture of an MLP. Each neuron in an MLP is usually
fully connected with all the neurons in the next layer, with its own set of weights.
The first layer of an MLP is usually the input signal and the last layer is called
output layer. The layers between the input and output layers are called hidden
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Figure 4.1: Perceptron illustration, representing the input signal (x), the weights
(w), the activation function (y) and the output signal (o).

Figure 4.2: Multilayer perceptron illustration. Each layer contains several percep-
tron units, which are then connected to units in the subsequent layer.

layers, because its representation is not known and not important for the network
designer.

The knowledge of ANNs is stored directly in its weights. Their weights rep-
resent the transformation of certain patterns in the input signal into a processed
representation, which can be related to another concept, as for example in a clas-
sification task. This means that ANNs can be trained to create a separation space
between the input signal and the desired output concept. Depending on the way
the network is designed, it can be tuned to create different representations for
different parts of the input stimuli, or integrate several different stimuli into one
single representation.

The idea of using several ANNs to solve a complex task is somehow an abstract
method inspired by how information is processed in brain circuits. Because of that,
the ANNs have similar properties to the brain’s neural circuits, such as being able
to have parallel processing, adaptation over time, be robust against noise, and
most importantly, being capable of generalizations.
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An ANN can be trained to adapt its weights to a task. The parameters such
as the weights, the number of layers, the number of units, the activation function
among others can be chosen or updated by certain rules in order to obtain an
expected result. The automatic update of these parameters, mostly the connection
weights, give the network the power to learn and thus adapt to the problem it was
applied to.

There are many learning strategies that can be used to adapt, or train, the
weights of an ANN. These strategies can be separated into two categories: super-
vised and unsupervised methods [199]. A supervised strategy uses the concept of a
teacher, which will guide the ANN during the training. This teacher will indicate
to the ANN how the task has to be done by updating the weights based on the
error between the current network output and the desired output. In this strategy,
the teacher knows what the outputs are which the network should learn.

On the other hand, the unsupervised strategy has no teacher. This strategy re-
lies on an underlying probabilistic distribution of the data to update the weights.
The unsupervised strategies are used mostly to create an ANN capable of de-
scribing the data, reduce the dimensionality and complexity of the problem or to
increase generalization.

4.2 Supervised Learning with Backpropagation

Backpropagation [259] is one of the most used supervised learning strategies for
training multilayer perceptron networks. It became so popular because of two
characteristics: the simplicity of the concept and the efficiency in the tasks it was
used for so far.

The main idea of backpropagation is to minimize the error E between the
network output and the desired output, also known as target or teaching signal,
t. The algorithm updates the weights of the neuron connections, and thereby tries
to minimize E. The most common way to calculate the error E is through the
sum-of-squares error function. Each output unit (k) error is summed into one value
using the following rule:

E =
1

2

n
∑

k=1

(tk − yk)
2 (4.1)

where the factor 1/2 is used to simplify the computation and has no major effect
on learning [199]. After calculating the error, each unit has its weights updated
using the following rule:

wt+1 = wt − η
∂E

∂wt

(4.2)

where wt+1 is the updated connection or weight, wt is the current value of the
weight, and η is the learning rate, a parameter which modulates learning speed.
∂E
∂w

represents the change of the error with respect to the weight wt.
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The error is then backpropagated through the entire network, and the layers
are updated in relation to the connections in the previous layer. As an example
of this operation, imagine a network with the same structure as the one in Figure
4.2: one input layer, one hidden layer and one output layer. The activation of each
output unit (Y 3

k ) can be calculated as:

Y 3
k = f

(

∑

j

wjkY
2
k

)

(4.3)

where Y 2
k represents the activation of the k−th unit in the 3rd layer, wjk is the

connection weight between the k-th unit in the current layer and the j-th unit in
the previous layer. Because the error calculation shown in Equation 4.1 depends
on the derivative of the error, the activation function f needs to be differentiable.

In the same way, we can calculate the activation for each unit in the hidden
layer (Y 2

k ):

Y 2
k = f

(

∑

j

wijxi

)

(4.4)

where wij represents the connection of each j-th unit in the hidden layer with the
k-th unit in the input layer, and xi is the i-th input unit.

To proceed with the weight updated in the output layer, we have to calculate
∂E
∂wjk

. To do that, we derive the Equation 4.1 after we replace the network output

yk by Equation 4.3. Applying the chain rule we obtain:

∂E

∂wjk

=
∂E

∂Y 3
k

∂Y 3
k

∂wjk

=
(

tk − Y 3
k

)

f
′

(

∑

l

wlkY
2
l

)

Y 2
j (4.5)

The same rule can be applied to calculate the derivative of the weights in the
hidden layer, just replacing Y 2

j in Equation 4.5 by Equation 4.4.
Theoretically, backpropagation could be used to update any network indepen-

dent of the number of layers, although a network with two hidden layers is enough
to approximate any function with arbitrary accuracy [199]. Important to note
that backpropagating the error rapidly becomes ineffective to update the weights
in deep multilayer perceptrons, especially in the layers closer to the inputs [179],
which is referred as vanishing or exploding gradient problem. This happens be-
cause the derivative of the cost function in the first layer is lower than in a deeper
layer, and the contribution of the error for each weight connection is reduced. To
improve the capability of backpropagation to train arbitrary networks, some regu-
larization techniques are used. In the next sections the L1 and L2 normalization,
momentum and dropout techniques will be explained.

4.2.1 L1 and L2 Regularization

Regularizing the weights during network training helps to avoid problems such
as the exponential decrease or increase of the error gradient. Regularization also
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prevents that the weights memorize the input data, which is known as overfitting.
An ANN should be able to process data which was never presented to it during
the training, generalizing its knowledge to new information, so a network that just
memorizes the training data is not ideal.

The L1 and L2 regularization rules add terms to the weights updated in order
to avoid them to memorize the data. The difference between the L1 and L2 is
how these added terms are calculated. For L1, the sum of the weights is used to
calculate the regularization term. Adding the L1 regularization term to the weight
updated rule represented in Equation 4.2 can be expressed as:

wt+1 = wt − η
∂E

∂wt

+ λ
i
∑

k

‖wt‖ (4.6)

where λ represents a parameter which controls the relative importance of the reg-
ularization term. The L2 regularization term can be defined as the sum of the
square of the weights, and in a similar way as in Equation 4.6, it can be expressed
as:

wt+1 = wt − η
∂E

∂wt

+ λ

i
∑

k

w2
t (4.7)

4.2.2 Momentum Term

The backpropagation algorithm is used to train the network and minimize the error,
trying to find the global minimum of the function. The global minimum is the
optimal value of the weights which will produce the minimal error, independent of
the inputs. Finding the global minimum is difficult most of the time, and because
of the nature of the backpropagation, the algorithm can be stopped by what is
known as local minimum. The local minimum is an intermediate solution, which
minimizes the error of the network but not optimally.

To avoid local minima is a very difficult task, and it can be achieved by using
different regularization techniques, changing the network topology or preprocessing
the data, among other solutions. To help the network to avoid local minimum,
several algorithms are proposed, including the momentum term. This algorithm is
probably the most used one to avoid local minima and produces good results for
most of the applications.

The concept behind the momentum term is that, to avoid local minima, the
update of the weights should be enhanced when the update is larger. This algo-
rithm introduces an effect that increases the size of the weight change when the
gradient keeps pointing the same direction, making the weight change faster when
the network is following an optimization path. On the other hand, when the di-
rection of the gradient keeps changing, the momentum term will smooth out the
variation. This property helps when the network finds several local minima, which
will change the direction of the error. We can update Equation 4.2 to add the
momentum term and express it as:
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Figure 4.3: Illustration of the dropout algorithm applied to Figure 4.2 during one
training cycle. It is possible to see that some of the neurons have dropped out
during the training, reducing the number of connections.

wt+1 = wt − η
∂E

∂wt

+ µwt (4.8)

where µ represents the momentum term, which should be larger than 0 and smaller
than 1. The momentum term adds a fraction of the previous weight value to the
current update.

4.2.3 Dropout

Deep MLPs tend to overfit easily. Because of the many numbers of weights to
update, the network usually ends up memorizing the data instead of generalizing.
A way to prevent this is using the algorithm known as dropout [134]. The dropout
algorithm tries to prevent the co-adaptation of the weights of the network to the
training data by omitting some units in the hidden layers during training.

The algorithm follows the concept that whenever a training sample is presented
to the network, each hidden unit has a chance of been turned off. That means that
all the connections to this unit and departing from this unit are also turned off
along with it. This behavior is temporary, and it is only valid for one training
cycle. That is achieved by using a probability of dropping out for a unit, which is
usually around 50% [134]. Figure 4.3 illustrates the architecture depicted in Figure
4.2 when dropout is used during one training cycle. Note that for each training
cycle, a different set of neurons can be dropped out, meaning that for each training
cycle a different sub-set of neurons is trained.

Dropout could be compared to training a lot of different neural networks within
the same training cycle. The difference is that, training and testing many different
networks would be very expensive, and they would be completely independent
of each other. What dropout does is that a new subset of the neural network is
trained during every training cycle, however, the units in this subset can be present
in another subset.
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The resulting effect of dropout is that the training time of the network will
increase, but also improve the generalization. By training the hidden units with
different input units, the algorithm is making that specific unit robust to different
input data entirely. The dropout gives each hidden unit a robustness against
incomplete or useless information, and also avoids that the unit memorizes the
input data.

Computationally speaking, dropout can be seen as a mask applied to the net-
work topology. Giving the activation function described in Equation 4.4, dropout
could be expressed as:

Y 2
k = d ∗ f

(

∑

j

wijxi

)

(4.9)

where d is a binary mask filled with zeros and ones which are randomly distributed
in a way that summed they reach the dropout probability factor. The mask d is
used only when training the network, and for every training cycle the values of
d are recalculated. When using the network for classification tasks, the mean of
the network topology is used. The mean is calculated over all the hidden units,
however, it has to compensate for the fact that during testing roughly twice as
many hidden units is used because of the dropout probability factor of 50%. In
this case, the weights are then divided by 2.

4.3 Unsupervised Learning with Hebbian Learn-

ing

The concept of unsupervised learning differs most from supervised learning in one
property: the absence of a teacher. In the supervised learning techniques, it is nec-
essary to update the network related to an error which is calculated by comparing
the network output with the desired output. On the other hand, unsupervised
approaches use the data’s own distribution to update the network. In other words,
the network learns how to update itself based on the data it is receiving.

One of the most popular and efficient unsupervised approaches is Hebbian
Learning [129]. Hebbian learning is a simple, but powerful mechanism to encode
the input stimulus in a way that resembles memory formation and associative
learning in the brain.

The idea behind the Hebbian learning is that neurons which encode similar
information will fire at the same time. That means that the update of the weights
of each neuron is proportional to the difference between the input stimuli and the
neuron information. This can be expressed with the following rule:

wt =

{

Wt−1 + εYtYr , ifas > ā,

Wt−1 otherwise,

}

(4.10)

where wt is the weight update, ε is the learning rate Yt is the activation of the
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current unit, and Yr the activation of a similar unit, and a the mean activation of
the current layer.

4.4 Convolutional Neural Network

A Convolutional Neural Network (CNN) is composed of several layers of convo-
lution and pooling operations stacked together. These two operations simulate
the responses of simple and complex cell layers discovered in visual cortex area
V1 by Huben and Wiesel [139]. In a CNN, the abstraction of the simple cells is
represented by the use of convolution operations, which use local filters to compute
high-level features from the input stimuli. The pooling operation creates a higher
level of abstraction of the complex cells and increases the spatial invariance of the
stimuli by pooling simple cell units of the same receptive field in previous layers.

Every layer of a CNN applies different filters, which increases the capability
of the simple cells to extract features. Each filter is trained to extract a different
representation of the same receptive field, which generates different outputs, also
known as feature maps, for each layer. The complex cells pool units of receptive
fields in each feature map. These feature maps are passed to another layer of the
network, and because of the complex cells’ pooling mechanism, each layer applies
a filter in a receptive field which contains the representation of a larger region
of the initial stimuli. This means that the first layer will output feature maps
which contain representations of one region of the initial stimuli, and deeper layers
will represent larger regions. At the end, the output feature map will contain the
representation of all stimuli.

Each set of filters in the simple cell layers acts in a receptive field in the input
stimuli. The activation of each unit ux,y

n,c at (x,y) position of the nth feature map
in the cth layer is given by

ux,y
n,c = max (bnc + S, 0) , (4.11)

where max(·, 0) represents the rectified linear function, which was shown to be
more suitable than non-linear functions for training deep neural architectures, as
discussed by [108]. bnc is the bias for the nth feature map of the cth layer and S
is defined as

S =
M
∑

m=1

H
∑

h=1

W
∑

w=1

whw
(c−1)mu

(x+h)(y+w)
(c−1)m , (4.12)

where m indexes over the set of filters M in the current layer, c, which is connected
to the input stimuli on the previous layer (c-1). The weight of the connection
between the unit ux,y

n,c and the receptive field with height H and width W of the
previous layer c− 1 is whw

(c−1)m. Figure 4.4 illustrates this operation.
A complex cell is connected to a receptive field in the previous simple cell, re-

ducing the dimension of the feature maps. Each complex cell outputs the maximum
activation of the receptive field u(x, y) and is defined as:
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Figure 4.4: Illustration of the convolution process. Each neuron u is connected to
a receptive field in the input stimuli by a set of weights w, which represents the
filters, and is affected by a bias b, which is the same for all the filters in the same
layer. Each filter produces a feature map, composed of several neurons which are
then passed to the next layer.

aj = maxn×n (un,c(x, y)) , (4.13)

where vn,c is the output of the simple cell. In this function, a simple cell computes
the maximum activation of the receptive field (x, y). The maximum operation
down-samples the feature map, maintaining the simple cell structure. Figure 4.5
illustrates this operation.

Figure 4.5: Illustration of the pooling process. Each unit of the complex cell is
connected to a receptive field of the feature map, and applies a maximum operation,
resulting in one activation per receptive field.

4.4.1 Cubic Receptive Fields

In a CNN, each filter is applied to a single instance of the stimuli and extracts
features of a certain region. This works well for an individual stimulus, but does
not work when a certain sequence dependency is necessary, as in the cases of
gestures, speech or even emotion expressions. In this case, if the filter extracts the
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same features in each snapshot of the sequence, it will not take into consideration
that a hand is moving towards one direction, or that a smile is being displayed.

To introduce sequence dependency cubic receptive fields are used [146]. In a
cubic receptive field, the value of each unit(x,y,z) at the nth filter map in the cth
layer is defined as:

ux,y,z
n,c = max(bnc + S3, 0) (4.14)

where max(·, 0) represents the rectified linear function, bcn is the bias for the nth
filter map of the cth layer, and S3 is defined as

S3 =
∑

m

H
∑

h=1

W
∑

w=1

R
∑

r=1

whwr
(c−1)mu

(x+h)(y+w)(z+r)
(m−1) , (4.15)

where m indexes over the set of feature maps in the (c-1) layer connected to the
current layer c. The weight of the connection between the unit (h,w,r) and a
receptive field connected to the previous layer (c − 1) and the filter map m is
whwr

(c−1)m. H and W are the height and width of the receptive field and z indexes
each stimulus; R is the number of stimuli stacked together representing the new
dimension of the receptive field.

Figure 4.6: Illustration of the cubic convolution process. Different from the com-
mon convolution, each neuron u is connected to a receptive field in all of the stimuli
at the same time. This way, each neuron has R filters represented by the weights
w, where R is the number of input stimuli.

4.4.2 Shunting Inhibition

To learn general features, several layers of simple and complex cells are necessary.
Which leads to a large number of parameters to be trained. This, put together
with the usual necessity of a large amount of data, which is one of the requirements
for the filters to learn general representations, is a big problem shared among deep
neural architectures. To reduce the necessity of a deeper network, we introduce
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the use of shunting inhibitory fields [99], which improves the efficiency of the filters
in learning complex patterns.

Shunting inhibitory neurons are neural-physiological plausible mechanisms that
are present in several visual and cognitive functions [113]. When applied to com-
plex cells, shunting neurons can result in filters which are more robust to geometric
distortions, meaning that the filters learn more high-level features. Each shunt-
ing neuron Sxy

nc at the position (x,y) of the nth receptive field in the cth layer is
activated as:

Sxy
nc =

uxy
nc

anc + Ixync
(4.16)

where uxy
nc is the activation of the common unit in the same position and Ixync is

the activation of the inhibitory neuron. The weights of each inhibitory neuron are
trained with backpropagation. A passive decay term, anc, is a defined parameter
and it is the same for the whole shunting inhibitory field. Figure 4.7 illustrates
shunting neurons applied to a complex cell layer.

Figure 4.7: Illustration of the shunting inhibitory neuron in complex cells. Each
neuron u has an inhibitory neuron, I, attached to it. Each inhibitory neuron has
its own set of weights, that connect the inhibitory neuron to the common neuron,
and a passive decay a, which is the same for all the neurons in a layer.

The concept behind the shunting neurons is that they will specify the filters
of a layer. This creates a problem when applied to filters which extract low-level
features, such as edges and contours. When applied to such filters, the shunting
neurons specify these filters causing a loss on the generalization aspects of the low-
level features. However, when applied to deeper layers, the shunting neurons can
enhance the capability of the filters to extract strong high-level representations,
which could only be achieved by the use of a deeper network.

4.4.3 Inner Representation Visualization in CNNs

CNNs were successfully used in several domains. However, most of the work with
CNNs does not explain why the model is so successful. As CNNs are neural
networks that learn a representation of the input data, the knowledge about what
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the network learns can help us to understand why these models perform so well
in different tasks. The usual method to evaluate the learned representations of
neural networks is the observation of the weights matrices, which is not suited for
CNNs. Each filter in the convolution layers learns to detect certain patterns in
the regions of the input stimuli, and because of the pooling operations, the deeper
layers learn patterns which represent a far larger region of the input. That means
that the observation of the filters does not give us a reliable way to evaluate the
knowledge of the network.

Zeiler and Fergus [306] proposed the deconvolutional process, which helps to
visualize the knowledge of a CNN. In their method, they backpropagate the acti-
vation of each neuron to an input, which helps to visualize which part of the input
the neurons of the network are activated for. This way, we can determine regions
of neurons that activated for similar patterns, for example, neurons that activate
for the mouth and others for the eyes.

In the deconvolution process, to visualize the activation of a neuron a in layer
l (al), an input is fed to the network and the signal is forwarded. Afterward,
the activation of every neuron in layer l, except for a, is set to zero. After that,
each convolution and pooling operation of each layer are reversed. The reverse of
the convolution, named filtering, is done by flipping the filters horizontally and
vertically. The filtering process can be defined as

Sf =
M
∑

m=1

H
∑

h=1

W
∑

w=1

wfhw
(c−1)mu

(x+h)(y+w)
(c−1)m , (4.17)

where wfhw
(c−1)m represents the flipped filters.

The reverse of the pooling operation is known as unpooling. Zeiler and Fergus
[306] show that it is necessary to consider the position of the maximum values in
order to improve the quality of the visualizations, so these values are stored during
the forward-pass. During the unspooling, the values which are not the maximum
are set to zero.

Backpropagating the activation of a neuron will cause the reconstruction of the
input in a way that only the region which activates this neuron is visualized. Our
CNNs use rectified linear units, which means that the neurons which are activated
output positive values, and zero represents no activation. That means that in our
reconstructed inputs, bright pixels indicate the importance of that specific region
for the activation of the neuron.

In a CNN, each filter tends to learn similar patterns, which indicates that
those neurons in the same filter will be activated to resembling patterns. Also,
each neuron can be activated for very specific patterns, which are not high-level
enough for subjective analysis. To improve the quality of our analysis, we apply
the concept of creating visualizations for all neurons in one filter, by averaging the
activation of each neuron in that filter. That allows us to cluster the knowledge of
the network in filters, meaning that we can identify if the network has specialized
filters and not specialized neurons. Also, visualizing filters on all layers help us to
understand how the network builds the representation and helps us to demonstrate
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Figure 4.8: For an input image containing a face, it is possible to see the application
of different filters. The filters themselves do not contain any information, but by
visualizing the activation of the neurons it is possible to identify patterns like eyes
and mouth, in the first layer, and a full face representation in the second layer.

the hierarchical capabilities of CNNs.
To demonstrate the advantages of the visualizations, Figure 4.8 illustrates ex-

amples of filters, single neurons and mean of filter visualizations. It is possible to
see that the filters themselves do not contain any indication about what stimuli
structure the neurons activated for. The neuron activation gives us a rough indi-
cation of which regions of the image the neuron activated for, but still the concept
is too abstract, especially in the first layers. The visualization by mean of neurons
in a filter allows us to cluster the representation of similar neurons, and with that,
we can see regions of interest. It is possible to see that each layer of the network
builds a different representation, starting with very simple edges and contours,
going to mouth and eyes and finally a full face representation.

The visualizations are a very powerful tool that helps us to have an important
insight about the knowledge learned by the network. With them, we can validate
the parameters of our model, understand what the model learns and illustrate the
advantages of using concepts such as the inhibitory fields and the cross-channels.
We also use the visualizations to illustrate which are the most important features,
from the network’s perspective, for emotion expression, and how they are combined
in different modalities.

4.5 Self-Organizing Maps

Self-Organizing Maps (SOMs) [163] are artificial neural networks which use un-
supervised learning techniques to represent the input data in a low-dimensional
space. The SOM is usually represented as a grid of neurons which are fully con-
nected with the input data, and through a competitive mechanism, encode the
stimuli. The concept behind the SOM is that each neuron encodes a different
input representation, and neighbor neurons have a similar encoding. Thus, it is
possible to represent the high-dimensional input stimuli using the 2D projection
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of the SOM’s topology.
The training of the neurons in the SOM rely heavily on the Hebbian learning

structure, where neurons which are neighbors fire together and thus should be
updated toward the same goal. The neurons in the SOM are fully connected with
the input data, so each neuron will be updated to resemble one or a set of input
stimuli which are closely related.

The SOM uses a competitive learning mechanism based on the Euclidean Dis-
tance. After a random initialization of the neurons, one sample is presented to the
network. The distance between the input sample and the neurons is calculated,
and the unit which has the smaller distance is selected. This unit is commonly
known as the best matching unit (BMU). During the update cycle, only the weights
of the BMU and the neurons neighboring this unit are adjusted using the input
stimuli as the goal. The update rule for the neuron in the SOM can be expressed
as:

wt = wt−1 + θ(b, n)α(x− wt), (4.18)

where wt is the updated weight of the current unit, wt−1 is the current weight,
θ(b, n) is the neighboring function between the current unit, n and the BMU b, α
is the learning coefficient, a parameter which decreases during training, and x is
the input. This function calculates the distance between the current unit and the
BMU, and can be implemented in several different ways. The most common one
is to define the function as 1 if the neuron is adjacent to the BMU and 0 if not.

During training, it is possible to see an emerging effect: some neurons will be
updated to reflect the distribution of the input data. This effect forms a cluster,
where certain regions in the SOM can be associated with certain concepts in the
input data distribution. For example, if the SOM is being used to classify human
faces, it is possible to cluster male and female faces in different places of the
grid. Figure 4.9 illustrates a SOM connected to the input layer, the BMU and the
clustering effect which is represented by different colors in the SOM structure.

4.5.1 Growing When Required Networks

The Growing When Required (GWR) [206] networks are an extension of SOMs
which does not have the concept of a 2D grid in the neuron’s distribution. In
a SOM the neurons are constructed in a way that they are disposed of in a 2D
structure, where each neuron has a known number of neighbors. The number of
neurons and their disposition in the grid is one of the decisions that should be
made before starting to build the SOM. That gives the model the capability to
reduce the dimensionality of the input data but restricts the network with respect
to the amount of information it can learn.

The GWR was proposed to solve the fixed topology problem in the SOM. In
this model, neurons are added only when necessary, and without any pre-defined
topology. This allows this model to have a growing mechanism, increasing and de-
creasing the number of neurons, and their positions, when necessary. This makes
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Figure 4.9: Illustration of a SOM. The input is fully connected with all the SOM
units, and the best matching unit (BMU) is calculated. The different colors in
the grid indicate neurons which encode similar information, introducing the idea
of different clusters in the SOM.

the model able to represent data with an arbitrary number of samples and intro-
duces the capability of dealing with novelty detection.

The neurons in the GWR have, besides the weight vector which connects the
neuron to the input, the concept of edges. The edges connect the neurons, giving
them the concept of neighbors. This allows the model to grow to match the
topological distribution of the data, in contrary to the SOM which transforms the
data topology into a 2D topology.

Differently from a SOM, the GWR starts only with two neurons, which are
created based on two random samples in the input data. Then, as more data is
presented to the network, the algorithm decides based on some constraints and the
activation behavior of each neuron when and where to add a new neuron. That
means that the network can create different clusters of neurons, which represents
similar concepts, in different spatial regions. Imagine if you have a network trained
with data representing two colors, blue and red, and suddenly a new color, green, is
presented. The network will decide to create a new region of neurons to represent
the new color. Theoretically, there is no limit to adding new neurons, meaning that
the network can learn an arbitrary number of new concepts. The edges maintain
the concept of similarity between the nodes, therefore clusters can have connections
through edges, exhibiting that these clusters have certain properties in common.

To train this network, the main concept of the SOM training is kept: to find
a BMU among the neurons in the model. The difference is that after finding the
BMU, the activation of the BMU and its neighbors is calculated. In the GWR
the activation can be represented as a function applied to the distance between
the neurons and the input. Based on this distance, the network can identify if an
input is too far from the knowledge stored in the neurons of the network, if that
is the case, a new node is added and an edge between the closer node and the new
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node is created.

Each of the nodes in the GWR is also equipped with a function to identify how
often it has fired, meaning how often the distance between the neuron and the
input was larger than a certain threshold. This mechanism modulates the creation
of new nodes by creating a priority in updating neurons which have not been fired
in a long time instead of creating new neurons. That gives the network a forgetting
mechanism. This mechanism allows the network to forget useless information, that
means forget representations which are not important to represent the data.

Together with that, each edge has an associated age that will be used to remove
old connections. That means that if a new cluster is created during training, and
suddenly is not related to the main neurons anymore, it should be deleted. In the
end of each training iteration, the nodes without connections are removed. That
makes the model robust against outliers.

The behavior of the GWR when iterating over a training set shows the emer-
gence of concepts. In the first epochs the network will have an exponential grow in
the number of neurons, but after achieving a topology that models the data, it will
mostly converge. This behavior will change when a new set of training samples
is presented to the network. If that new set does not match with some particular
region of the network, the model will adapt around the new data distribution,
forgetting and removing old neurons when necessary, and creating new ones. That
gives the model a similar behavior found in the formation and storage of memory
in the brain.

Figure 4.10 illustrates a GWR in two different steps of training. In the left side,
Figure 4.10a, it shows the GWR in the second training cycle. In this example,
each dot represents a neuron, and the color of the neuron represents an emotional
concept. The image on the right, Figure 4.10b shows the model after 100 training
cycles are completed. It is possible to see that the network created a non-uniform
topology to represent the data. Also, it is possible to see that neurons with similar
concepts stay together, creating the idea of clusters. Also, it is possible to identify
that some emotional concepts, mostly the black ones, are merged with the others.
The black concepts represent the neutral emotions, which are related to all others
in this example.

4.6 Corpora

Different corpora were used to evaluate the models proposed in this thesis as each
model has its own properties and necessities. All the corpora used are related
to emotion expressions, however, differ on the data nature. While the bi-modal
FAce and BOdy benchmark database (FABO) has visual expressions, the Surrey
Audio-Visual Expressed Emotion (SAVEE) corpus has multimodal audio-visual
expressions. To evaluate the models using complex and real-world data, the
Emotion-Recognition-In-The-Wild-Challenge dataset is used. This dataset con-
tains excerpts from different movies, and its known to be one of the most challeng-
ing corpora available.
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Figure 4.10: The neurons of a GWR during the training on emotional data, showed
in the 2 first training cycles (a) and in the 100 first ones(b). Each color represents
a different emotional concept associated with that neuron.

To evaluate the attention models proposed in this thesis, we introduce a new
emotional attention corpus, based on the FABO dataset. This corpus contains
data used for emotional attention tasks, which are not present in the previously
mentioned datasets.

Most of the corpora used in training and evaluating affective computing models
are related to single emotion expressions, and none contains data of Human-Robot-
Interaction (HRI). To evaluate the capability of the models proposed in this thesis
to cope with HRI scenarios a novel dataset, named KT Emotional Interaction
Corpus, with emotional behavior observations was designed and recorded. This
corpus was designed to be challenging in different tasks: spontaneous emotion
expressions recognition, emotional attention identification, and emotional behavior
analysis.

The following sections detail the FABO and SAVEE corpus, the emotional
attention corpus and also the new KT Emotional Interaction Corpus.

4.6.1 Emotion Expression Corpora

The Bi-modal face and body benchmark database

For our experiments we use four corpora. The first one is the bi-modal FAce and
BOdy benchmark database (FABO), introduced by Gunes and Piccardi [117]. This
corpus is composed of recordings of the upper torso of different subjects performing
spontaneous emotion expressions. This corpus contains a total of 11 expressions
performed by 23 subjects of different nationalities. Each expression is performed
in a spontaneous way, where no indication was given of how the subject must per-
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Figure 4.11: Examples of images with an angry expression in the FABO corpus.

Figure 4.12: Faces with an angry expression in the SAVEE corpus.

form the expression. A total of 281 videos were recorded, each one having 2 to 4
of the following expressions: “Anger”, “Anxiety”, “Boredom”, “Disgust”, “Fear”,
“Happiness”, “Surprise”, “Puzzlement”, “Sadness” and “Uncertainty”. Each ex-
pression starts with a neutral phase, and continues until the apex phase, where the
expression is at its peak. We use the neutral phase for each expression to create a
12th “Neutral” class in our experiments. Figure 4.11 illustrates images present in
a sequence of an angry expression in the FABO corpus.

Surrey Audio-Visual Expressed Emotion

The second corpus is the Surrey Audio-Visual Expressed Emotion (SAVEE) Database,
created by Haq and Jackson [123]. This corpus contains speech recordings from four
male native English speakers. Each speaker reads sentences which are clustered
into seven different classes: “Anger”, “Disgust”, “Fear”, “Happiness”, “Neutral”,
“Sadness” and “Surprise”. These classes represent the six universal emotions with
the addition of the “Neutral” class Each speaker recorded 135 utterances, with 30
representing “Neutral” expressions and 15 for each of the other emotions. All the
texts are extracted from the TIMIT dataset and are phonetically balanced. Each
recording contains the audio and face of the participant, with facial markers. The
markers are present to be used for systems that need them, and unfortunately
belong to the image. Figure 4.12 illustrates faces of a subject while performing an
angry expression in the SAVEE corpus.

Emotion-Recognition-In-the-Wild-Challenge Dataset

The third corpus is the database for the Emotion-Recognition-In-the-Wild-Challenge
(EmotiW) [69]. This corpus contains video clips extracted from different movies
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Figure 4.13: Example of an angry sequence in the EmotiW corpus.

and organized into seven classes: “Anger”, “Disgust, “Fear”, “Happiness”, “Neu-
tral”, “Sadness” and “Surprise”. A total of 1000 videos with different lengths is
available, separated into training and validation sets. The test set is available, but
without any label, and includes 700 extra videos. Therefore, we only evaluate our
model on the validation set. This challenge is recognized as one of the most diffi-
cult tasks for emotion recognition because the movie scenes contain very cluttered
environments, occluded faces, speech, music, sound effects, more than one speaker
and even animals. Figure 4.13 illustrates some frames of an angry expression in
the EmotiW corpus.

4.6.2 Emotional Attention Corpus

To evaluate our model with spontaneous expressions in emotional attention tasks,
we adapted a dataset based on the bi-modal FAce and BOdy benchmark database
(FABO) corpus introduced by [117]. To build our dataset, we extracted the face
expression and body movement of the FABO corpus and located it in a random
position in a meeting scene background. The expressions always had the same
size, while the positions in the meeting scene were selected using a randomization
algorithm. We created a dataset with 1200 expressions composed of different se-
quences from the FABO corpus using the happy and neutral expressions only. That
means that the same expression could be selected more than once, but displayed
at a different position in our meeting scene. We created three different categories
of sequences: one with only the background, without any expressions, one with
a single expression (either neutral or happy), and one with both a neutral and a
happy expression. A total of 400 sequences for each category were created. Figure
4.14 illustrates one frame of a sequence of each category.

4.7 KT Emotional Interaction Corpus

The corpora presented previously were focused mostly on human interpretation
of emotional concepts. To evaluate our model properly, we created a new corpus
based on human-human and human-robot interaction.

The data recording happened in two different scenarios. The first one recorded
human-human interactions, and the second one human-robot interactions. We
annotate the data using dimensional and categorical representations, similar to
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Figure 4.14: Examples of images with no expressions, one expression (happy) and
two expressions (happy and neutral), used to train and evaluate our model.

other datasets in the field such as the IEMOCAP [34]. Our corpus differs from
the other datasets in the area by introducing a scenario in which the interaction
between humans and robots can be evaluated and compared with human-human
interaction.

In both scenarios, two subjects conducted a fictitious dialogue based on a cer-
tain topic. The subjects were seated at a table across from each other. Images from
the subjects faces and torsos, and audio were recorded. In one of the scenarios,
both subjects are humans, however, in the second scenario, one of the subjects is
replaced by a robot. The whole process of conceptual design, recording procedure,
pos-processing and annotation are presented in the next sections.

4.7.1 Recording Setup

To collect the data we used the Robot Interaction Laboratory of the Knowledge
Technology Group at University of Hamburg [17]. The subjects were placed inside
the half-circle environment. A white canvas covers the whole environment, which
means that the participants are separated from the instructors. This way, we assure
that the instructors will not bias the recordings, and we let the participants have
the dialogue as natural as possible. Figure 4.15 shows the half-circle environment.

Two Logitech HD Pro C920 cameras were placed in a position that it captured
the torso of a person seated on the chairs. Each camera recorded a video at a
resolution of 1024x768 and a framerate of 30FPS. Each participant had a Blue-
tooth Sennheiser EZX 80 microphone attached on their shirt, allowing to record
an individual audio channel for each participant. Figure 4.16 exhibits an example
of the recordings, showing one subject with the microphone attached to his shirt.

4.7.2 Data Collection

Both our scenarios, the human-human and human-robot, had the same basic setup:
two subjects are seated across each other on a table and they talk about a topic.
Before the experiment started, we explained to both subjects that they would
be part of an improvised dialogue, and they would be given a topic to discuss.
We did not let the subjects know that our goal was to analyze their emotional
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Figure 4.15: Picture of the half-circle environment used for the data recording.

Figure 4.16: Picture of one example of the recordings, showing one subject and
the microphone position.

reaction. The data collection happened in into two steps: the instruction step and
the recording step.

Instruction

In the instruction step a consent form was given to each subject, which can be found
in Appendix A. In the consent form the subject had information about which kind
of data would be collected, audio and visual data and that the data would not be
correlated to his personal identification. The subject was also asked to identify if
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Figure 4.17: Picture of the instruction step of the data collection, where the sub-
jects were informed about the scenarios and the consent form was presented and
signed.

the collected data could be used in future experiments, and if it could be published
or not. Figure 4.17 shows a picture of the instruction step, where the instructor
gives the consent form and directions about the scenario to two participants.

During this step, we collected also some demographic information about each
subject. Each subject was asked to range their age into a group age between 0-
12 years, 13-18 years, 19-49 years and 50+ years, to state his or her gender, the
mother tongue and the city/country of birth. This information helps us to create
a distinction between the data, and if to identify gender, age or place of birth
influence in the interactions.

All the instruction, recordings, and data labeling happened in English, although
persons from different countries participated in all these steps.

Recording

In both scenarios, the Human-Human Interaction (HHI) and the Human-Robot
Interaction (HRI), two subjects interacted with each other, however, in the HHI
scenario both are humans and in the HRI one human is replaced by a robot.
We invited different students from the informatics campus of the University of
Hamburg, using an open call distributed via email to different student lists.
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For both scenarios, we created two roles: an active and a passive subject. Before
initiating each dialogue session, we gave to the active subject a topic, and he or she
should introduce it during the dialogue. The passive subject was not aware of the
topic of the dialogue, and both subjects should improvise. The subjects were free
to perform the dialogue as they wanted, with the only restriction of not standing
up nor changing places. The following topics were available:

• Lottery: Tell the other person he or she won the lottery.

• Food: Introduce to the other person a very disgusting food.

• School: Tell the other person that his/her school records are gone.

• Pet: Tell the other person that his/her pet died.

• Family: Tell the other person that a family member of him/her is in the
hospital.

These topics were selected in a way to provoke interactions related to at least
one of the universal expressions each: “Happiness”, “Disgust”,“Anger”, “Fear”,
and “Sadness”. To none of the subjects any information was given about the
nature of the analyses, to not bias their expressions.

In the HHI scenario, both participants were humans. One of them was chosen
to be the first active subject, and the topic was presented only to him. The
topics were printed on a paper and shown to the active person, in a way that
all the active persons received the same instruction. Figure 4.18 shows the topic
assignment moment for an active participant.

After each dialogue session, the role of the active subject was given to the
previously passive subject and a new topic was assigned. For each pair of partici-
pants, a total of five dialogue sessions was recorded, one for each topic, and each
one lasting between 30 seconds and 2 minutes. Although the topics were chosen
to provoke different expressions, it was the case that in some dialogues none of the
previously mentioned emotional concepts were expressed.

The HRI scenario followed the same pattern that the HHI scenario had but re-
placed the active subject with a humanoid iCub robot [210] head. In this scenario,
the robot was always the active subject. As in the previous scenario, the passive
subject was not informed of the theme of the dialogue and had to improvise a
discussion.

The iCub head has three degrees of freedom for head movement and 21 different
eyebrows and mouth positions, for face expressions. Figure 4.19 illustrates the iCub
robot used in our experiments. We captured the pictures from the iCub perspective
placing a camera just in front of it. The iCub has a built-in camera, however, the
resolution and frame rate are very low and incompatible with the ones necessary
for our scenario.

The robot was remote controlled, which means that movements, face expres-
sions and what the robot spoke were typed by an instructor. The participants
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Figure 4.18: Picture of the topic assignment. One of the participants is chosen as
the active subject, and one of the five topics is given to him/her.

Figure 4.19: Picture of the iCub robot used in our experiments.

were not informed about that, and the instructor controlled the robot from an-
other room. This way, only the robot and the participant were in the room during
the recordings. Each dialogue session did not take more than 4 minutes, taking
longer than those in the first scenario, mostly due to the delay in the robot’s
response. Figure 4.20 illustrates the HRI scenario.
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Figure 4.20: Picture of the HRI scenario. A person is seated in front of the iCub
robot, which is the active subject.

4.7.3 Data Annotation

To give the corpus a human ground truth analysis, we needed to label each inter-
action in a way that we can compare them to our computational models. To do
that, we selected a dimensional [261] and a categorical [81] approach to describe
each interaction. Instead of using emotional concepts, such as happiness or sad-
ness, a dimensional model allows us to describe the interaction itself. This allows
us to identify interactions which were similar but presented in different emotional
situations, such as smiling and moving the arms at the same time.

Using a dimensional model, allows us to better deal with spontaneous expres-
sions which were present in our recorded data. The dimensional model also allows
us to identify the core affect [262] of the interaction which makes it possible to cre-
ate a consistent and valid measure of an interaction [12], reducing the contextual
bias of the analyzer, such as current mood, environment or cultural differences.

We choose the dimensional model proposed by Russel et al. [262], and updated
by Rubin et al. [258] with the addition of dominance, besides the usual arousal and
valence. Dominance gives the intensity attribution to the expression itself, differ-
ently from arousal which gives us the intensity of the person’s behavior. According
to Rubin et al., arousal evaluates how the person behaved, and dominance relates
to the strength of the expression, not the person. By labeling each interaction
using these three dimensions (arousal, valence, and dominance), we can identify
more fine-tuned information about the expressions.

Besides the three dimensions, we decided to include a categorical value for
each interaction. We use the six universal emotions to identify the expression, and
although this information can be very difficult to identify in our spontaneous in-
teractions, it was helpful to situate the annotator into an emotional concept. Also,
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Figure 4.21: Picture of the labeling collection framework.

by collecting a categorical concept, we can use it to identify different emotional
categories within our three-dimensional attributes.

Data Annotation Framework

To avoid biased labels, we use anonymous annotators. For that, we developed an
online framework, which allows annotators to watch the interactions and give the
labels. We let our annotation framework online, and distributed the access link to
student and professionals in the informatics campus of the University of Hamburg.
When the annotators access the framework, a first page is shown with instructions
about the task. Then, after agreeing with the instructions, the annotator is sent to
the labeling page. This pages shows a video and asks the annotator to evaluate the
interaction using an interactive slider to range each attribute between two extreme
concepts. For valence, the limits were negative and positive, arousal had limits
ranging from calm to excited, and dominance from weak to strong. At the end, an
emotional concept was asked. Figure 4.21 illustrates the labeling session.

As each interaction was based on a whole dialogue session, it could happen that
several different expressions were present. To make possible that each annotator
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watched and evaluated different expressions, we split each dialogue session into
videos with 10s. This generated a problem: parts of the video which were tempo-
rally close to each other could have very different labels. We solved that by using
many annotators to evaluate the same video parts, creating an averaged measure
for each attribute.

To make the transitions between different video parts better, we introduce the
use of a Gaussian distribution to represent each video label. Each attribute was
evaluated in a range of two concepts, where 0 represents the minimal extreme and
100 the maximum. For example, on this scale, 0 represents the most negative va-
lence and 100 the most positive. We then proceed to create a Gaussian distribution
with the chosen value as mean and the standard deviation of all the annotations
for that particular video clip as distribution spread.

The use of Gaussian distributions as labels allow us to create a robust label
for the videos, removing outliers. As all the video clips could have very different
annotators, the idea of using a distribution gives us a better view on the expression
on each clip, instead of analyzing each annotation individually. Also, by using a
distribution, we can smooth the transitions of each video clip better, and represent
the real expression transitions with more naturality.

4.7.4 Recorded Data

The data recording happened in two different days: one for the HHI scenario and
other for the HRI scenario. For each scenario, we recorded the image and audio,
in a video format, for each of the subjects.

The HHI scenario had a total of 7 sessions, with 14 different subjects, two
participating in each session. Each session had 6 dialogues, one per topic and
an extra one where the two subjects introduced each other, using a fake name.
Each subject only participated in one session, meaning that no subject repeated
the experiment. A total of 84 videos were recorded, one for each subject in each
dialogue, with a sum of 1h05min of recordings. Each video had a different length,
with the longer one having 2 minutes and 8 seconds and the shorter one with 30
seconds.

The HRI scenario had one session more than the HHI, totaling 9 sessions,
and each had one different subject. In the HRI scenario, each session had 5 di-
alogues, one per topic, without the introduction dialogue. A total of 45 videos
were recorded, summing 2h05min of videos. As happened with the HHI, each
video has a different length and the longer one had 3min40s and the shorter one
with 1min30s. It is possible to see already, that the interactions with the robot
produced longer dialogues than the only-human ones. That was expected, giving
that the robot has a longer reaction time than humans. Table 4.1 summarize the
number and duration of the videos in each scenario.
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Table 4.1: Number and duration of videos for each scenario experiment.

Scenario Videos Subjects Total Duration

HHI 84 14 1h05min

HRI 45 9 2h05min

Figure 4.22: Demographic data summary for the HHI scenario, showing the total
of subjects and the associated percentage for gender, mother tongue and birth
country distributions.

Demographic data

The demographic data shows us how the subjects are clustered with respect to
their gender, mother tongue and country of birth. All of our subjects were in the
age group of 19-49, so we did not have any variation. However, for the other three
characteristics we obtained different measures.

For the HHI scenario, most of the subjects, 64 %, were male and only 36%
female. The subjects were from three different countries, and had five different
mother languages. The majority of the subjects came from Germany (72%), but
participants from Russia, India and Egypt were also present. Similarly, most of the
participants had German as a mother tongue (also 72 %). Figure 4.22 illustrates
a summary of the demographic data for the HHI scenario. This shows that our
dataset has persons with different cultural background, and with different mother
tongue. As all the experiments were performed in English, this information could
help us to identify different behaviors which could be related to the subjects own
cultural background.

Differently from the HHI, most of the participants of the HRI scenario were
female (67%). Again, most of the participants came from Germany and had Ger-
man as mother tongue (78% each characteristic), however, different countries were
present as well, with Malaysian and Chinese as a mother tongue. Figure 4.23
illustrates a summary of the demographic data for the HRI scenario.
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Figure 4.23: Demographic data summary for the HRI scenario, showing the total
of subjects and the associated percentage for gender, mother tongue and birth
country distributions.

4.7.5 Data Analysis

The annotation framework was made available for two weeks. A total of 39 an-
notators contributed. Each annotator labeled an average of 3 whole clips, and
we obtained a total of total of 2365 annotations over all the 10s video clips. The
annotations show us some interesting aspects of the dataset, and we clustered the
analysis into three categories: general, per topic and per subject. The general
analysis shows us how the data is distributed across the dataset and which infor-
mation we can have about recordings as a whole. The analysis per topic shows us
how each topic was perceived by each subject pair, giving us indications about how
the subjects behaved on the different topics. Finally, the per subject analysis gives
us individual information on how a certain subject performed during the whole
dialogue sessions, showing how different subjects react to same scenarios.

We also cluster our analysis into the two scenarios, to gives us the possibility
of understanding how the subjects performed when interacting with a human or
with a robot. With these analyses, we intend to quantify the difference between
human-human- and human-robot-interaction.

Analyzing the general distributions for the whole corpus gave us a perspective
of what was expressed and an indication of what expressions are present in the
interactions. Also, comparing the HHI and HRI scenarios, gave us a general indi-
cation on how people behaved. Figure 4.24 shows the histogram for the valence,
arousal, dominance and the emotional labels for all the annotations in both sce-
narios. It is possible to see that the annotations for all of these dimensions are
normally distributed, showing a strong indication that most of the interactions
were not so close to the extremes. The exception is the lower extreme, which al-
ways showed a larger amount of data. That means that many of the interactions
were evaluated as negative (valence), calm (arousal) and weak (dominance). The
emotional concepts indicate a similar effect, where the neural expressions were
mostly present, followed by angry expressions, which can explain the number of
negative valences.
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Figure 4.24: These plots show the histogram of the annotations for all the dataset.
For the emotional concepts histogram, the x axis represents the following emotions:
0 - Anger, 1 -Disgust, 2 - Fear, 3 - Happiness, 4 - Neutral, 5 - Sadness and 6 -
Surprise.

It is also possible to see that for both scenarios the distribution of the labels have
some important differences: the valence of the HRI scenario is more distributed
to the right when compared to the one in the HHI scenario, indicating that the
subjects tend to be more positive with the robot than with a human. The arousal
also shows that in the robot scenario the subjects tend to be less calm, the same
for the dominance. It is also possible to see that there were more “Happiness”
annotations and less “Sadness” ones in the HRI scenario than in the HHI scenario.

Dominance and arousal have a similar behavior in the histogram. To show how
they are correlated we calculated the Pearson correlation coefficient [176], which
measures the linear relationship between two series. It takes a value between -1
and 1, where -1 indicates an inverse correlation, 1 a direct correlation and 0 no
correlation. The coefficient for dominance and arousal for the HHI scenario is
0.7, and 0.72 for the HRI scenario showing that for both scenarios there is a high
direct correlation. These values are similar to other datasets [34] and indicate that
arousal and dominance are influenced by each other.

The analysis per topic gives shows how the chosen topics produced different
interactions. Figure 4.25 illustrates two topics from both scenarios: lottery and
food. It is possible to see how the annotations differ for each topic, showing that
in the lottery videos a lot of high valences is presented, while in the food videos
the data presented mostly high arousal. The dominance is rather small when the
arousal is also small for both videos. Comparing the difference between the HHI
and HRI scenarios, it is possible to see that the HRI scenario presented more
negative valence than the HHI scenario.

It is possible to see also how some emotional concepts are present in each
scenario. While in the food scenario, many “Disgust” annotations are present, in
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Figure 4.25: This plot shows the spread of the annotations for the dataset separated
per topic. The x axis represents valence, and the y axis represents arousal. The
dot size represents dominance, where a small dot is a weak dominance and a large
dot a strong dominance.

the food scenario the interactions are labeled mostly as “Happiness” or “Surprise”.
It is also possible to see that for the HRI scenario, some persons behaved with
“Angry” in the lottery topic and that most of the “Surprise” annotations in the
food scenario have higher arousal in the HRI scenario than in the HHI one.

To provide the analysis with an inter-rater reliability measure, we calculated
the interclass correlation coefficient [160] for each topic. This coefficient gives a
value between 0 and 1, where 1 indicates that the correlation is excellent, meaning
that most of the annotators agree, and 0 means poor agreement. This measure is
commonly used for other emotion assessment scenarios [33, 21, 29] and presents
an unbiased measure of agreement. Table 4.2 exhibits the coefficients per topic
for the HHI scenario. It is possible to see that the lottery scenario produced a
better agreement in most cases, and the food scenario the worst one. Also, the
dominance variable was the one with the lowest agreement coefficients, while the
emotional concepts had the highest.

Differently from the HHI scenario, the interclass coefficient for the HHI scenario
shows a higher agreement of the annotators. Although dominance still shows a
lower agreement rate, valence and arousal present a higher one.
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Table 4.2: Interclass correlation coefficient per topic in the HHI scenario.

Characteristic Lottery Food School Family Pet

Valence 0.7 0.5 0.3 0.6 0.4

Arousal 0.5 0.6 0.6 0.5 0.4

Dominance 0.4 0.5 0.4 0.5 0.4

Emotion Concept 0.7 0.6 0.5 0.6 0.5

Table 4.3: Interclass correlation coefficient per topic in the HRI scenario.

Characteristic Lottery Food School Family Pet

Valence 0.7 0.6 0.4 0.5 0.6

Arousal 0.6 0.6 0.6 0.4 0.5

Dominance 0.5 0.5 0.5 0.4 0.5

Emotion Concept 0.6 0.7 0.5 0.5 0.5

Figure 4.26: These plots show two examples of the spread of the annotations for
the dataset separated per subjects. The x axis represents valence, and the y axis
represents arousal. The dot size represents dominance, where a small dot is a weak
dominance and a large dot a strong dominance.

Analyzing the subjects, it is possible to see how they behave during the whole
recording session. Figure 4.26 exhibits the behavior of two subjects per scenario.
In the image it is possible to see that one subject from the HHI scenario presented
mostly high arousal expressions, and highly more dominant ones. Also, the expres-
sions were mostly with a negative valence, although annotated as neutral. This
subject did not express any fear nor surprise expression during the five topics.

Subject 6 1 from the HRI scenario showed mostly positive expressions, with a
high incidence of surprise and fear expressions. However, the dominance of this
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subject was very weak mostly, although the arousal was more excited than calm.
That probably means that this subject was nervous while talking to the robot, but
could not present strong or intense expressions during most of the interaction.

The collected dataset contains a large amount of information, and many more
interesting statistics could be provided. However, the ones that are necessary for
the development and evaluation of the models presented in this thesis are the ones
discussed in this section.

4.8 Summary

This chapter presented important concepts used by the models of this thesis and
detailed the datasets used for the evaluation of such models. The neural network
concepts described here are the basis to understand the proposed techniques and
solutions, although what was discussed was only the fundamental concepts. De-
tailed views on network behavior, extensions, and possible limitations are discussed
in the next chapters, which present our models.

The corpora used for our evaluations have different properties, which were
necessary to evaluate the behavior of our model in different tasks: multimodal
and spontaneous expression representation and recognition, and emotional con-
cept learning. Although many corpora are available, none of them had an impor-
tant characteristic: continuous scenarios representing different human-human and
human-robot interactions. To address this problem, we proposed a new corpus.
The acquisition, recording, labeling and analysis of this novel corpus was presented
in this chapter and serves as the basis for comparison of our integrative emotional,
behavioral analysis model, presented in Chapter 7.
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Chapter 5

Emotion Perception with a

Cross-channel Convolution Neural

Network

5.1 Introduction

The first problem this thesis deals with is the multimodal emotion expression
representation. As seen in Chapter 3, emotion expressions are very complex to be
represented by computational models, in particular multimodal expressions. We
propose here the use of a visual-cortex-inspired deep learning model to learn how
to represent multimodal expressions.

Our model deals with multimodal stimuli, and takes into consideration visual,
primary face expressions and body movements, and auditory information. It is
implemented as a Cross-channel Convolutional Neural Network (CCCNN) and it
extracts hierarchical features from the two modalities. The complex representa-
tion varies depending on the presented stimuli, and each hierarchical layer of the
network learns a different level of abstraction. This means that the deeper layers
will have a full representation of the input, while the first layers will have a local
representation of some regions or parts of the input stimuli.

To be able to deal with sequences, cubic receptive fields are implemented [146]
expanding the capability of the model into modeling dependencies between sequen-
tial information. Also, the use of shunting inhibitory fields [99], allows us to ensure
a strong feature representation.

The proposed model is able to learn simple and complex features and to model
the dependencies of these features in a sequence. Using a multichannel implemen-
tation, it is possible to learn different features of each stimulus. We use the concept
of cross-channel learning to deal with differences within the modalities. This allows
us to have regions of the network specified to learn features from face expressions
and body movements, for example, but the final representation integrates both
specific features.

To evaluate our model, we use different corpora of emotional expressions with

77



Chapter 5. Emotion Perception with a Cross-channel Convolution Neural Network

different modalities. We also introduce a study on the model’s behavior, and a
visualization analysis on the learned representation. Finally, we discuss the model
behavior and architecture and its capability to learn multimodal spontaneous ex-
pressions.

5.2 Cross-channel Convolution Neural Network

To be able to deal with multimodal data, our network uses the concept of the Cross-
channel Convolutional Neural Network (CCCNN). In the CCCNN architecture,
several channels, each one composed of an independent sequence of convolution
and pooling layers, are fully connected at the end to a Cross-channel layer, and
trained as one single architecture. Our architecture is composed of two main
streams: a visual and an auditory stream.

Our Cross-channel is inspired by the V4 area of the brain’s visual pathway
[91]. In this area, the representations obtained by the ventral and dorsal areas are
integrated. In our case, we implement a Cross-channel layer which is composed of a
layer of simple and complex cells. This layer receives the high-level representation
of two different channels as input and integrates them.

Our model applies topological convolution, and because of this the size of the
receptive field has an important impact on the learning process. The receptive
fields in our Cross-channel should be large enough to be able to capture the whole
concept of the stimulus, and not only part of it. With a small receptive field, our
cross learning will not be able to capture the high-level features.

We apply our Cross-channel learning in two streams. Goodale and Milner
[112] describe how the visual cortex is categorized into two streams, and how
these streams are integrated into the V4 area. In their model, the ventral and
dorsal streams extract different kinds of information from the input and are used
as input to the V4 area. Hickok [131] describes a similar process occurring in
the auditory pathway, where different kinds of information are processed by the
ventral and dorsal stream, and integrated into the V4 area. Although we are not
modeling the same pathways and information exactly as the ones present in the
brain, the architecture of our model was developed in a way that resembles the
brain’s organizational structure. Also, we specify our model to deal with emotion
expressions, and not general visual and auditory recognition.

5.2.1 Visual Representation

Inspired by the primate visual cortex model [91], the proposed model visual stream
has two channels. The first channel is responsible for learning and extracting in-
formation about facial expressions, which comprises contour, shape and texture of
a face, and mimics the encoding of information in the ventral area of the primate
visual cortex. The second channel codes information about the orientation, direc-
tion and speed of changes within the torso of a person in a sequence of images,
similar to the information coded by the dorsal area.
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Although facial expressions are an important part of emotion expression de-
termination, there is evidence that shows that in some cases facial expressions
and body posture and movements are contradictory and carry a different meaning.
This phenomenon was first observed by Darwin [60] and is referred to as micro
expressions. Although micro expressions occur with other modalities as well, the
face is the one in which this behavior is easily perceptible [243].

Ekman [83] demonstrates that facial micro expressions last from 40 to 300
milliseconds, and are composed of an involuntary pattern of the face, sometimes
not directly related to the expression the person intended to perform. He also shows
that micro expressions are too brief to convey an emotion, but usually are signs
of concealed behaviors, giving the expression a different meaning. For example,
facial micro expressions are usually the way to determine weather someone is angry
while using a happy sarcastic expression. In this case, the addition of facial micro
expressions as an observable modality can enhance the capability of the model
to distinguish spontaneous expressions, but the observation of the facial micro
expression alone does not carry any meaning [231].

Our architecture is tuned to deal with facial expressions and micro expressions.
Our architecture is fed with frames comprising 1s, and our Face channel receives
a smaller sequence representing 300 milliseconds. These intervals were found by
experimenting with using different sequence lengths as input to the network, and
the chosen values are congruent with evidence from [83]. That means that our
network is able to recognize common face expressions, but also takes into consid-
eration micro expressions.

To feed our visual stream, we must first find the faces on the images. To do so,
we use the Viola-Jones face detection algorithm [291], which uses an Adaboost-
based detection. Wang [297] discusses the Viola-Jones algorithm, and shows that
it is robust and effective when applied to general face detection datasets. In our
experiments, the Viola-Jones algorithm showed to be reliable in controlled envi-
ronments. After finding the face, we create a bounding box to describe the torso
movement. We extract face and torso from a sequence of frames corresponding to
1 second and use them as input to the network.

To define the input of the Movement channel, we use a motion representation.
Feeding this stream with this representation, and not the whole image, allows us
to specialize the channel into learning motion descriptors. This way, we can train
the network with a smaller amount of data, and use a shallow network to obtain
high-level descriptors.

To obtain the motion representation, an additional layer is used for pre-processing
the input of the Movement channel. This layer receives 10 gray scale frames and
creates a representation based on the difference between each pair of frames. This
approach was used in previous works to learn gestures, and showed to be success-
ful by [14]. The layer computes an absolute difference and sums up the resulting
frame to a stack of frames. This operation generates one image representing the
motion of the sequence, defined here as M :
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Figure 5.1: Example of input for the visual stream. We feed the network with 1s of
expressions, which are processed into 3 movement frames and 9 facial expressions.

M =
N
∑

i=1

|(Fi−1 − Fi)| (i/t), (5.1)

where N is the number of frames, Fi represents the current frame and (i/t)
represents the weighted shadow. The weighted shadow is used to create different
gray scale shadows in the final representation according to the time that each frame
is presented. This means that every frame of the image will have a different gray
tone in the final image. The weight t starts as 0 in the first frame and is increased
over time, so each frame has a different weight. The absolute difference of each
pair of frames removes non-changing parts of the image, being able to extract the
background or any other detail in the image that is not important to the motion
representation. By summing up all the absolute differences of each pair of images
it is possible to create a shape representation of the motion and with the help
of the weighted shadows, the information of when each single posture happened.
Figure 5.1 displays a common input of our visual stream, containing examples of
the Face and Movement channels.

The Face channel is composed of two convolution and pooling layers. The first
convolution layer implements 5 filters with cubic receptive fields, each one with
a dimension of 5x5x3. The second layer implements 5 filter maps, also with a
dimension of 5x5, and a shunting inhibitory field. Both layers implement max-
pooling operators with a receptive field of 2x2. In our experiments, we use a rate
of 30 frames per second, which means that the 300 milliseconds are represented by
9 frames. Each frame is resized to 50x50 pixels.

The Movement channel implements three convolution and pooling layers. The
first convolution layer implements 5 filters with cubic receptive fields, each one
with a dimension of 5x5x3. The second and third channels implement 5 filters,
each one with a dimension of 5x5 and all channels implement max-pooling with
a receptive field of 2x2. We feed this channel with 1s of expressions, meaning
that we feed the network with 30 frames. We compute the motion representation
for every 10 frames, meaning that we feed the Movement channel with 3 motion
representations. All the images are resized to 128x96 pixels.
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Figure 5.2: The Visual stream of our network is composed of two channels: the
Face and the Movement channels. The Face channel implements two layers, each
one with convolution and pooling, and applies inhibitory fields in the second layer,
while the Movement channel implements three layers, with pooling and convolu-
tion. Both channels implement cubic receptive fields in the first layer. The final
output of each channel is fed to a Cross-channel which implements convolution
and pooling and produces a final visual representation.

We apply a Cross-channel to the visual stream. This Cross-channel receives
as input the Face and Movement channels, and it is composed of one convolution
channel with 10 filters, each one with a dimension of 3x3, and one max-pooling
with a receptive field of 2x2. We have to ensure that the input of the Cross-
channel has the same dimension, to do so we resize the output representation of
the Movement channel to 9x9, the same as the Face channel. Figure 5.2 illustrates
the visual stream of the network.

5.2.2 Auditory Representation

The dorsal and ventral streams of the brain process different auditory information
[131]. While the ventral stream deals with speech information, the dorsal one
maps auditory sensory representation. In earlier stages of the dorsal stream, the
auditory information is decomposed into a series of representations, which are
not connected to phonetic representations. We use this concept to separate the
perception of auditory information in our network into two channels. One deals
mostly with speech signals, and the other with general sounds, including music.

Evidence in the work of [264] shows that the use of Mel-Cepstral Coefficients
(MFCC) is suited for speech representation, but does not provide much information
when describing music. MFCCs are described as the coefficients derived from the
cepstral representation of an audio sequence, which converts the power spectrum
of an audio clip into the Mel-scale frequency. The Mel scale showed to be closer
to human auditory system’s response than the linear frequency [238].

When trying to describe general music information, spectral representations,
such as power spectrograms, showed good results [104]. Power spectrograms are
calculated in smaller sequences of audio clips, by applying a discrete Fourier trans-
form in each clip. This operation describes the distribution of frequency compo-
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Figure 5.3: The Auditory stream of our network implements two channels: the
Music channel and the Speech channel, which implements filters with one dimen-
sion. We feed the network with 1s audio clips, and calculate a power spectrogram
as input for the Music channel and MFCCs as input for the Speech channel. The
output of both channels is used as input for the auditory Cross-channel.

nents on each clip.

To use the auditory representation in CNNs, the MFCCs and power spectro-
grams are represented as images. But there is a fundamental difference when
dealing with these representations. Usually, the input of CNNs is processed by a
filter matrix which is applied in both, height and width axis. The filter is trained
to capture local information of the region where it is applied. When this concept
is applied to an auditory representation, to learn from a 2D region can generate
a problem. In auditory input, each axis represents different kinds of information,
where usually the X axis represents time and the Y axis the spectral representa-
tion. For the power spectrogram representations, the use of 2D filters showed to
be ideal, because each filter captures the spectral representation in a certain region
of the audio clip [128].

On the MFFCs representation, the use of 2D filters does not work. To Extract
the MFCCs, a cosine transformation is applied and this projects each value of the Y
axis into the Mel frequency space, which may not preserve locality. Because of the
topological nature of 2D filters, the network will try to learn patterns in adjacent
regions, which are not represented adjacently in the Mel frequency domain. Abdel-
Hamid et al. [1] propose the use of 1D filters to solve this problem. The convolution
process is the same, but the network applies 1D filters on each value of the Y axis of
the image. This means that the filters will learn how to correlate the representation
per axis and not within neighbors. Pooling is also applied in one dimension, always
keeping the same topological structure.

We build our auditory stream based on the speech and music representation.
We use two channels, which are connected to a Cross-channel. We use audio clips
with 1s as input, and each clip is re-sampled to 16000 Hz. We compute the power
spectrum and the MFCC of the audio clip and feed them to the two channels.
The power spectrogram is the input of the Music channel, and it is computed over
a window of 25ms with a slide of 10ms. The frequency resolution is 2048. This
generates a spectrogram with 1024 bins, each one with 136 descriptors. We resize
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Figure 5.4: Final crossmodal architecture, which extracts features from the visual
and the auditory input and classifies them in emotion expressions. We connect the
outputs of each stream to a fully connected hidden layer and then to a softmax
layer, which will give us a classification probability.

the spectrogram by a factor of 8, resulting in an input size of 128x7. The MFCC
is used as input for the Speech channel, and it is calculated over the same window
and slide as the power spectrogram. We change the frequency resolution to 1024,
which generated a representation with 35 bins each one with 26 descriptors.

The Music channel is composed of two layers, the first one with 10 filters, and
each one with a dimension of 5x5. The second layer has 20 filters, with a dimension
of 3x3. Both layers implement pooling, with a receptive field of 2x2. The Speech
channel is composed of three layers, each one with one-dimensional filters. The
first has 5 filters, with a dimension of 1x3, the second one has 10 filters with a
dimension of 1x3 and the third one 20 filters with a dimension of 1x2. All three
layers apply pooling with a receptive field of 1x2.

The Cross-channel applied to our Auditory stream has one layer, with 30 filters,
each one with a dimension of 2x2, without the application of pooling. To be able to
use the Cross-channel, both channels must output data with the same dimensions
and our results showed that resizing the Music channel output produced better
performance. This can be explained by the fact that the Speech channel depends
strongly on the non-locality of the features. Figure 5.3 illustrates our Auditory
stream.

5.2.3 Crossmodal Representation

We integrate both streams into one Multichannel Convolutional Neural Network
architecture. We connect each Cross-channel with a fully connected hidden layer,
with 500 units, which is then connected to a softmax layer. This way, each modal-
ity, visual and auditory, has its own high abstraction level representation preserved.
Figure 5.4 illustrates our final architecture.

It is possible to train the filters of a CNN using either a supervised [136] or
an unsupervised approach [247]. Although the unsupervised approach does not
depend on strongly labeled data, evidence [150, 296], showed that the use of su-

83



Chapter 5. Emotion Perception with a Cross-channel Convolution Neural Network

pervised training improved the effectiveness of CNNs. Also, the use of supervised
training allows us to train the network with a smaller amount of data, which would
not be possible when using unsupervised training.

Erhan et al. [88] show evidence that the use of pre-training steps improves the
capability of the filters to be tuned faster in a specific domain. We follow this
strategy and pre-train each channel of our network to learn specific representation
from specific data. After the filters of each channel are trained, we then train
our fully connected hidden layer and the softmax layer to classify the input. This
strategy allows us to decrease the amount of time needed to train our network and
increased the generalization property of our filters.

5.3 Methodology

To evaluate our model, we perform three sets of experiments. In the first set we
perform a parameter evaluation, determining the impact of some of the parameters
of the network. In the second set of experiments we evaluate some aspects of the
architecture: the impact of the input length and the use of the inhibitory fields.
The last set of experiments evaluates the capability of the CCCNN to learn specific
and crossmodal representations, and use them to classify emotion expressions.

One extra corpus is used to train the Music stream of the auditory information.
The GTZAN corpus [286] is not directly related to emotion recognition, but to
music genre classification. The task of music genre classification is similar to
music emotion classification [157] because the task is to cluster audio segments
which are closely related based on auditory features. Music genres can also be used
for emotion classification, since for example blues and soul music is more related
to sadness or feelings of loneliness, and pop music more to happiness [157]. This
database contains 1000 song snippets, each one with 30 seconds and a sampling rate
of 22050 Hz at 16 bit, labeled into ten musical genres: Blues, Classical, Country,
Disco, Hip hop, Jazz, Metal, Pop, Reggae, and Rock.

For all experiments, 30 experiment routines were performed and the mean
of the accuracy was collected for each expression individually, which helps us to
understand better our model.

5.3.1 Experiment 1: Parameter Evaluation

To evaluate how the parameters affect the network, a parameter exploration exper-
iment is performed. Three parameters are chosen, with the range of values based
on the evidence found by Simard et al. [279] and our previous experiments with
CNNs. The three parameters were chosen because of their major influence on the
network response. A total of three different values is chosen for each parameter,
generating a total of 27 experiments. Table 5.1 shows the chosen parameters and
the range of values.

The number of filter maps affects directly the number of features extracted,
and what these features represent. A large number of feature maps introduces
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Table 5.1: Parameter sets evaluated for each experiment. The combination of all
values for all parameters was evaluated and discussed.

Parameter Values

Filter maps layer 1 and 2 10 and 20 20 and 40 30 and 60

Receptive field size layer 1 3x3x2 11x11x2 21x21x2

Receptive field size layer 2 3x3 7x7 11x11

redundancy, and a small number is not enough to extract a proper description of
the emotion sequence. The minimum and maximum values of 10 and 30 filter maps
were chosen based on preliminary experiments, where these values represented the
limits where the network showed a big variation for the accuracy. The number
of filter maps on the second layer [279], is selected as twice the number of filter
maps on the first layer. This selection leads to more specialized features on the
second layer to expand the representations on the first layer, which are mostly edge-
like detectors. The size of the receptive fields determines which pixel structures
are important for the model. On the first layer, the receptive fields are connected
directly to the image, and they will enhance structures present in the original data.
If the receptive fields are too small, they will not be able to enhance important
pixel structures, and will generate redundancy for the next layers. If they are too
large, they will consume more pixel structures than necessary, and they will not
be able to determine or to react to these structures, aggregating more than one
structure into one filter map. This can generate very specific filter maps for the
data while training the network, which leads to an overfitting of the model. For
our experiments, we chose a range between the smaller and maximum receptive
field sizes which were able to extract meaningful information from our input.

5.3.2 Experiment 2: Aspects of the Architecture

An expression occurs between 300 milliseconds and 2 seconds [83]. To evaluate
an optimal approximation of sequence length, we evaluated our Face channel with
four different input lengths: 40ms, 300ms, 600ms and 1s. For this experiment we
use the FABO corpus, explained in details in Chapter 4, Section 4.6, and as the
sequences in this corpus were recorded with a frame rate of 30 frames per second,
that means that we evaluate the use of 1, 9, 18 and 36 frames as input. We also
evaluated the input length for the Movement channel. First, we evaluate the use
of 2 frames to compose a movement representation, then 5 frames, 10 frames and
lastly 15 frames. This leads to feeding the network with 15, 6, 3 and 2 movement
images respectively.

We then evaluate the use of the inhibitory fields on the visual stream, by
applying it in different layers. We show how the inhibitory fields affect each rep-
resentation of each layer and why we only use them on our Face channel.

For the auditory representation, we follow indications in the work of [1] for
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the Speech channel and [104] for the Music channel. Separating the same 1s of
representation and using the window and earlier slide values indicated in this work
produced the best results, so we kept them. Also, the use of inhibitory fields on the
auditory channel did not produce any improvement on the results, causing exactly
the opposite: an overfitting of the filters made the network lose completely the
focus during training.

5.3.3 Experiment 3: Emotion Expression Recognition

Visual Emotion Expressions

Using the FABO corpus we evaluate the visual stream of the network. In this set of
experiment, we evaluate the use of the Face and Movement channels individually
and then both of them at the same time.

With this experiment we show in detail the impact that each modality has in
different expressions. As the FABO corpus deals with secondary expressions, it is
possible to see how our visual representation behaves for very different expressions,
such as happiness and sadness, or very similar ones, as boredom and puzzlement.

Auditory Emotion Expressions

We use the SAVEE, GTZAN and EmotiW corpora, all detailed in Chapter 4,
Section 4.6, to evaluate the auditory stream of the network. For all datasets we
extracted 1s of each audio input to train our networks. To recognize each audio
clip, we used a sliding window approach of 1 second as input to the network. So,
if the original audio input has 30 seconds, we split the audio into 30 parts of 1
second and use them as input to the network. With 30 results, we identified the
most frequently occurring ones, leading to a final classification result for the 30
seconds audio input.

We performed experiments using the two channels individually and the Cross-
channel on the three datasets. This allows us to explain the behavior of the model
when un-suitable information is used as input for each task. We also performed
a Pre-training strategy, where the Music-specific architecture was trained exclu-
sively with the GTZAN set, the Speech-specific architecture with the SAVEE set
and the Cross-channel architecture uses the pre-trained features of both previous
architectures and trains its own Cross-channel with the EmotiW corpus. This
way we ensure that the Cross-channel architecture uses the specific representation
learned through the specific architectures to construct a higher abstraction level
of auditory features. The mean and standard deviation of the accuracy over 30
training runs are calculated for all the experiments.

Multimodal Emotion Experiments

The EmotiW corpus contains the most complex emotion expressions in our exper-
iments. The video clips contain different subjects (sometimes at the same time),
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music, speech, different lighting conditions in the same scene and various face
positions. This makes the emotion classification in this dataset very difficult.

We evaluate the use of our channels trained with this dataset; first each chan-
nel individually and then the integration of visual only streams and auditory only
streams. Finally, we evaluate the audio-visual representation. Each of these ex-
periments is performed with two different training strategies: one with and one
without the pre-training of the filters. We use the FABO corpus to pre-train the
filters of the visual stream and the SAVEE and GTZAN corpus to pre-train the
auditory stream.

All results are compared and we show for the six basic emotions [81], plus a
neutral category, how each of the modalities behaves and the advantage of using
the pre-training strategy.

As the SAVEE corpus also has visual information, with the recording of the
faces of the subjects, we also evaluate only the Face channel and the crossmodal
representation obtained with the use of the auditory channels and the Face channel.

5.4 Results

5.4.1 Experiment 1: Parameter Evaluation

After performing the parameter exploration experiments, the average of the accu-
racy was computed. Table 5.2 shows the results for all the parameter combinations.
For the first set of experiments, we locked the number of filter maps to 10. The
best result was achieved with a configuration of a receptive field size of 3x3 pixels
in the first and second layer, with an accuracy of 91.3%, while the worst result
found, with a configuration of kernel size in the first layer of 11x11 pixels and in
the second layer of 21x21 pixels, was 87.89%. We found a trend: when the size of
the receptive fields was increased, in both layers, the network produced the poorer
results.

When locking the number of filter maps on the first layer at 20, the results
obtained showed a similar trend: increasing the size of the receptive fields of the
filter maps for the first and second layer decreases the accuracy. For this set of
experiments, the best result was also with the smaller receptive field size, in both
layers, achieving 91.25% of accuracy. The worst result can be observed when using
the maximum value of the receptive field size. This configuration achieved an
accuracy of 87.3%.

The trend can also be found when the number of filter maps on the first layer
was locked at 30. The best result was also with the smaller receptive field sizes
with an accuracy of 91.18%. The worst accuracy was 88.9%, when using the largest
kernel size for both layers.

Evaluating the parameters, it is possible to find some trends in the network be-
havior. Figure 5.5 shows a box plot with the individual analysis of the parameters.
The plot shows the variance of the accuracy of each parameter. The plot depicts
that using a smaller receptive field in both layers the accuracy improves. Looking
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Table 5.2: Average accuracy for each parameter combination computed during the
parameter exploration experiments.

Receptive field size Filter maps

1st Layer 2nd Layer 10 20 30

3 3 91.30% 91.25% 91.18 %

3 7 90.93 % 89.83 % 91.00 %

3 11 89.93 % 87.92 % 90.47 %

11 3 90.77 % 90.83 % 90.01 %

11 7 90.04 % 89.75 % 91.02 %

11 11 87.34 % 88.65 % 90.43 %

21 3 90.08 % 89.82 % 89.90%

21 7 90.01 % 88.92 % 90.42 %

21 11 87.89 % 87.30 % 88.90 %

Figure 5.5: Individual analysis for the parameter exploration. It is possible to
see a trend that when the kernel sizes are smaller the accuracy tends to be higher.
When increasing the number of filter maps, the average of the results is also higher,
despite the best accuracy being lower.
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at the plot, it is possible to see a clear trend in the spread of the results. When
using smaller receptive fields, the network produces results with a better accuracy
median and smaller variance. Also, increasing the number of filter maps decreases
the accuracy variance between the experiments. This shows that when we increase
the number of filter maps, the results of our network tend to be more stable. Using
a smaller receptive field allows the network to learn those general structures which
occur more often in the images. Passing these general features through our layers
generate higher level features in deeper layers. But, as our network is not very
deep, we need to increase the number of filter maps in order to expand the variety
of features extracted in the same layer.

When evaluating the combinations of parameters, it is possible to visualize
how the number of filter maps influences the results. Figure 5.6 illustrates the
plot with the combination of the parameters. It is possible to see that when we
increased the size of filter maps, the variance in the accuracies values is small.
Also, it is possible to see that increasing the number of filter maps in the second
layer produces a lower accuracy. However, when using 30 filter maps and using
a receptive field of 7x7 in the second layer, the network produces better results.
This occurs because extending the number of filter maps will result in the network
generating different feature representations at the same level and thus it generates
redundant features which allow a better generalization. It is important to note that
with too many redundant filters, the network loses the capability of generalizing
and ends up overfitting.

5.4.2 Experiment 2: Aspects of the Architecture

The results obtained when training the Face channel with different sequence lengths
showed us that the use of 9 frames produced the best results, as shown in Table
5.3. As the FABO corpus was recorded with 30 frames per second, the use of 9
frames means that the sequence has an approximate length of 300 milliseconds. A
sequence with this length is congruent with the description of facial expressions and
micro expressions, meaning that our model performed best when both expressions
could be perceived. The use of longer expressions, with 1s, produced the weakest
results.

The Movement channel receives a sequence of motion representations of 1s of
the expression as input. This means that each representation of this sequence is
composed of several frames. The results, exhibited in Table 5.3, show that the
use of 3 movement representations gave the best performance, meaning that each
movement representation is composed of 10 frames. This means that each motion
representation captures 300ms. Our results showed that using a minimum number
of frames to capture the movement, 2 frames per motion representation and 15
frames as the channel’s input, produced the worst result.

In the following experiments, we evaluate the use of inhibitory neurons in our
visual channels. We evaluate the use of the inhibitory fields on each of the lay-
ers, and in combination with all layers of each channel and Table 5.4 shows the
results. The application of the inhibitory fields to the Movement channel did not
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Figure 5.6: Combination analysis for the parameter exploration. When smaller
receptive fields are used, the accuracy is higher. Also, when comparing the same
size of receptive fields, but increasing the number of filter maps, it is possible to
see that the average of the accuracy increases, although the best result was found
with the smaller number of filter maps.

Table 5.3: Average accuracy, in percentage, for different lengths of the input se-
quence, in frames, for the Face channel, and in movement representations, for the
Movement channel trained with the FABO corpus.

Face Channel

Sequence Length 1 9 18 36

Accuracy(%) 64.8 80.6 73.6 49.4

Movement Channel

Motion Representations 15 6 3 2

Accuracy(%) 48.3 67.9 74.8 66.2

produce better results, which is due to the fact that the movement representation
is already a specified stimulus, and the filters alone were capable of coping with
the complexity of the representation. The inhibitory fields produced better results
when applied to the last layer of the Face channel, which confirms that the strong
extra-specification on the last layer is beneficial for face expression recognition.
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Table 5.4: Average accuracy, in percentage, for the use of inhibitory neurons in
different layers of the Face and Movement channels trained with the FABO corpus.

Face Channel

Layers None L1 L2 All

Accuracy(%) 80.6 59.9 87.3 64.4

Movement Channel

Layers None L1 L2 L3 All

Accuracy(%) 74.8 41.3 47.8 48.8 45.8

5.4.3 Experiment 3: Emotion Expression Recognition

Visual Emotion Expressions

The combined results of the FABO experiments are presented in Table 5.5 and
we can see that the overall mean accuracy of the integrated representation is the
highest. Also, it is possible to see how some expressions behave with different
modalities. For example, “Anxiety” and “Puzzlement” expressions had a per-
formance similar to the Face and Movement channels individually, but increased
when the integrated representation was used. Also, there was a great increase in
the performance for “Disgust” and “Negative Surprise” expressions, showing that
for these expressions the integrated representation provided more information than
each modality individually.

Comparing our model to state-of-the-art approaches using the FABO corpus
shows that our network performed similar, and in the Face representation better.
Table 5.6 shows this comparison. The works of Chen et al. [45] and Gunes and
Piccardi [118] extract several landmark features from the face, and diverse move-
ment descriptors for the body movement. They create a huge feature descriptor for
each modality, and use techniques as SVM and Random Forest, respectively, for
classification. It is possible to see that the fusion of both modalities improved their
results, but the performance is still lower than ours. In previous work, we used a
Multichannel Convolution Neural Networks (MCCNN) [15], to extract facial and
movement features. That network produces a joint representation, but our cur-
rent CCCNN improved this representation through the use of separated channels
per modality and the application of inhibitory fields. One can see a substantial
improvement on the movement representation, mostly because we use a different
movement representation in the CCCNN.

Auditory Emotion Expressions

Our Music-specific channel obtained the best accuracy, with a total value of 96.4%.
The second best result appeared when using the pre-trained filters on the Cross-
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Table 5.5: Accuracy, in percentage, for the visual stream channels trained with the
FABO corpus. The results are for the Face channel (F), Movement channel (M)
and the integrated Face and Movement channel, representing the visual stream
(V).

Class F M V

Anger 74.5 66.3 95.9

Anxiety 78.6 80.5 91.2

Uncertainty 82.3 75.8 86.4

Boredom 93.4 76.3 92.3

Disgust 78.3 65.9 93.2

Fear 96.3 80.0 94.7

Happiness 93.7 60.3 98.8

Negative Surprise 67.2 32.4 99.6

Positive Surprise 85.7 65.7 89.6

Puzzlement 85.4 84.8 88.7

Sadness 89.6 80.1 99.8

Mean 87.3 74.8 93.65

Table 5.6: Comparison of the accuracies, in percentage, of our model with state-
of-the-art approaches reported with the FABO corpus for representations of the
face, the movement, and both integrated.

Approach Face Movement Both

MCCNN 72.7 57.8 91.3

Chen et al. [45] 66.5 66.7 75.0

Gunes and Piccardi [118] 32.49 76.0 82.5

CCCNN 87.3 74.8 93.65

channel architecture, with a total value of 90.5%, which still almost 6% less than
using only the Music-specific architecture. Using the Speech-specific architecture,
the accuracy was the lowest, reaching the minimum score of 62.5% when applying
the pre-training strategy. Table 5.7 exhibits all the experimental results on the
GTZAN dataset.

On the SAVEE dataset, the Speech-specific channel was the one which obtained
the best mean accuracy (92.0%). It was followed closely by the pre-trained version
of the Cross-channel architecture, with 87.3%. The trained version of the Cross-
channel obtained a total of 82.9%. Here the Music-specific architecture obtained
the worst results, with a minimum of 63.1% on the trained version. The pre-trained
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Table 5.7: Average accuracy and standard deviation for all the experiments using
the GTZAN dataset.

Experiment Accuracy (STD)

Trained Pre-Trained

Music-Specific 96.4% (+/- 3.4) -

Speech-Specific 68.7% (+/- 3.2) 62.5%(+/- 1.6)

Cross-channel 83.9% (+/- 2.3) 90.5%(+/- 2.2)

Table 5.8: Average accuracy and standard deviation for all the experiments using
the SAVEE dataset.

Experiment Accuracy (STD)

Trained Pre-Trained

Music-Specific 63.1% (+/- 2.7) 64.5% (+/- 2.3)

Speech-Specific 92.0% (+/- 3.9) -

Cross-channel 82.9% (+/- 2.0) 87.3%(+/- 1.8)

Table 5.9: Average accuracy and standard deviation for all the experiments using
the EmotiW dataset.

Experiment Accuracy (STD)

Trained Pre-Trained

Music-Specific 22.1% (+/- 1.4) 23.1% (+/- 2.2)

Speech-Specific 21.7% (+/- 2.3) 21.0%(+/- 1.2)

Cross-channel 22.4% (+/- 1.1) 30.0%(+/- 3.3)

version obtained slightly better results, reaching 64.5%. Table 5.8 shows all the
experimental results on the SAVEE dataset.

For the EmotiW dataset the pre-trained version of the Cross-channel archi-
tecture gave the highest mean accuracy of 30.0%. All the other combinations,
including the trained version of the Cross-channel, achieved accuracies around
20%. See table 5.9 for the results of our experiments with the EmotiW dataset.

The results achieved by our architectures are not far away from the state-of-
the-art results in the literature. For the GTZAN dataset, our specific architecture
performs close to the system proposed by Sarkar et al [267]. Their approach
uses empiric mode decomposition to compute pitch-based features from the audio
input. They classify their features using a multilayer perceptron. Following the
same evaluation protocol we used, they could reach a total of 97.70% of accuracy,
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Table 5.10: Performance of state-of-the-art approaches on the GTZAN dataset.
All experiments use 10-fold cross validation and calculate the mean accuracy. The
results obtained by Sgtia et al. [277] were using a different data split, using 50%
of the data for training, 25% for validation and 25% for testing.

Methodology Accuracy(%)

Arabi et al. [5] 90.79

Panagakis et al.[222] 93.70

Sgtia et al.[277]* 83.0

Huang et al. [138] 97.20

Sarkar et al.[267] 97.70

Music-specific 96.40

Cross-Channel 90.50

slightly more than our 96.4% with the Music-specific architecture.

Our Cross-channel architecture, when using the pre-training strategy, obtained
a lower accuracy, but still competitive when compared to other results using differ-
ent approaches. Table 5.10 exhibits the results obtained on the GTZAN dataset.
All the proposed techniques use a combination of several features, and a generic
classifier such as SVM or MLP. However, using such a large number of audio fea-
tures, their approaches are not suitable for generalization, a property that our
Music-specific architecture has. The approach of Sgtia et al. [277] is similar to
ours. They evaluate the application of techniques such as dropout and Hessian
Free training, but do not report the performance of the network neither for learn-
ing different features nor for generalization aspects.

For the SAVEE dataset, our approach is competitive. This dataset contains
only speech signals, which are very different from the music signals. That ex-
plains the different accuracies obtained by the Music-specific architecture and the
Speech-specific architecture. Once more the pre-trained Cross-channel architec-
ture showed its generalization capabilities and was able to achieve a result which
was comparable to the Music-specific architecture, having less than 3% of accuracy
difference. When compared to state-of-the-art approaches, our Music-specific ar-
chitecture obtained a result comparable with the work of Muthusamy et al. [215].
They use a particle swarm optimization technique to enhance the feature selection
over a total of five different features, with many dimensions. They use an extreme
learning machine technique to recognize the selected features. Their work showed
an interesting degree of generalization, but still a huge effort is necessary, with the
training step consuming enormous amounts of time and computational resources.
The authors of the SAVEE dataset also did a study to examine the human per-
formance for the same task. Using the same protocol, a 4-fold cross validation,
they evaluated the performance of 10 subjects on the recognition of emotions on
the audio data. The results showed that most approaches exceeded human per-
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Table 5.11: Performance of state-of-the-art approaches on the SAVEE dataset.
All the experiments use 4-fold cross validation and we have calculated the mean
accuracy.

Methodology Accuracy(%)

Banda et al. [9] 79.0

Fulmare et al.[101] 74.39

Haq et al.[124] 63.0

Muthusamy et al. [215] 94.01

Speech-specific 92.0

Cross-Channel 87.3

Human Performance [123] 66.5

Table 5.12: Performance of state-of-the-art approaches on the EmotiW dataset.
All the results are the mean accuracy on the validation split of the dataset.

Methodology Accuracy(%)

Liu et al. [196] 30.73

Kahou et al.[149] 29.3

Baseline results[70] 26.10

Cross-Channel 30.0

formance on this dataset. Table 5.11 exhibits the state-of-art results and human
performance on the SAVEE dataset.

The EmotiW dataset proved to be a very difficult challenge. On this dataset,
our specific models did not work so well, but as Table 5.12 shows this is also a
much harder task. Due to the huge variability of the data, neither of them was
able to learn strong and meaningful features by itself. When the Cross-channel
architecture was used with the pre-training strategy, the network was able to learn
to correlate the features of each channel, and use them to overcome the complexity
of the dataset. Our Cross-channel architecture results are competitive with the
state-of-the-art approaches, and performed better than the baseline values for the
competition. The work of Liu et al. [196] and Kahou et al. [149] extract more
than 100 auditory features each, and use classifiers such as SVM or multi-layer
perceptrons to categorize them. Our Cross-channel architecture results showed
that we can actually obtain similar generalization capability using a simple and
direct pre-training strategy without the necessity of relying on several different
feature representations. Table 5.12 exhibits the results on the EmotiW dataset.

95



Chapter 5. Emotion Perception with a Cross-channel Convolution Neural Network

Table 5.13: Average accuracy, in percentage, for the auditory and visual stream
channels trained with the SAVEE corpus. The results are for the Face channel
(F), Speech channel (S), Speech and pre-trained Music channel, representing the
auditory stream (A) and the integrated audio-visual streams, with the Face, Speech
and Music channels (AV).

Class F S A AV

Anger 95.4 95.0 92.6 100

Disgust 95.6 100 88.0 100

Fear 89.7 88.0 85.5 100

Happiness 100 81.1 86.1 95.0

Neutral 100 100 91.3 100

Sadness 90.0 93.5 87.4 96.5

Surprise 86.7 86.5 80.5 96.7

Mean 93.9 92.0 87.3 98.3

Multimodal Emotion Expressions

The results of the SAVEE experiments are exhibited in Table 5.13. It is possible
to see that the auditory information yielded the lowest accuracy, and among them
the pre-trained representation was the one with the lowest general accuracy. This
happens because the data in the SAVEE corpus does not contain music, only
speech, which reflects directly on the performance achieved by the network. Still,
it is possible to see that the auditory channel composed of the Speech and Music
does not decrease substantially the performance of the network, and makes it more
robust to deal with speech and music data.

We also see that the face representation obtained a similar performance to the
auditory one, but when combined, the performance tends to increase. This is
due to the fact that when both, face and auditory information, are present, the
network can distinguish better between the expressions. This is demonstrated by
the performance of the expressions “Anger”, “Sadness” and “Surprise”, which have
a similar performance in individual channels and a higher one in the integrated
representation.

Our approach proved to be competitive when evaluated on the SAVEE corpus.
When compared to state-of-the-art approaches, our representations showed a result
comparable to the work of Banda et al. [9]. They use a decision-based fusion
framework to infer emotion from audio-visual inputs. They process each modality
differently, using linear binary patterns to represent the facial expressions and a
series of audio features to represent speech. After that, a pairwise SVM strategy is
used to train the representations. Our network has a similar performance for face
representation, but a higher accuracy for audio. We improved 10% the accuracy
more than the speech representation. For the multimodal integration, our network
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Table 5.14: Performance of state-of-the-art approaches on the SAVEE dataset.

Methodology Face Audio Both

[9] 95.0 79.0 98.0

[124] 95.4 56.3 97.5

CCCNN 93.9 92.0 98.31

Human Performance 88.0 66.5 91.8

has been shown to be competitive, and performed similarly, but with a much less
costly feature representation process. The authors of the SAVEE dataset, [124],
also did a study to examine the human performance for the same task. Using
the same protocol, a 4-fold cross validation, they evaluated the performance of 10
subjects on the recognition of emotions on the audio and video data. The results
indicate that most approaches exceeded human performance on this dataset. Table
5.14 exhibits state-of-art results and human performance on the SAVEE dataset.

The EmotiW corpus proved to be a very difficult challenge. Table 5.15 illus-
trates all results on the corpus. It is possible to see that the visual representations,
represented by the columns F, M and V, reached better results than the auditory
representation, presented in columns S, Mu and A.

The visual representations indicate a very interesting distribution of accuracies.
It is possible to see that when the expressions were represented by the movement,
Column M, “Happy” and “Sad” expressions were recognized better on our model
than the others, showing that for these expressions the movements were more re-
liable than the face expression itself. When integrated, the visual representation
improved the performance of most expressions, in particular surprised, “Anger”
and “Happy” expressions, which indicates that these expressions are better recog-
nized when movement and facial expressions are taken into consideration.

The auditory representation indicates that most of the expressions are not
well recognized only with auditory information, exceptions are angry and happy
emotions. This can be related to the nature of the dataset, because usually in
movies happy and angry are expressed with similar song tracks or intonations.
The integrated representation for the auditory stream performed better than the
individual ones in all the expressions.

Finally, the multimodal representation was the one with the best performance.
We see an improvement in classification of “Sad” and “Anger” expressions, but
also in fear and surprised ones. This is due to the fact that the combination
of different sound tracks, facial expressions and movement for these expressions
represents them better than a single modality. In general, it is possible to see that
surprised, disgusted and sad expressions were the ones with the lowest performance
in all modalities.

Table 5.16 shows the results on the EmotiW dataset. On this dataset, the
performance of our model dropped, but as Table 5.16 shows this is also a much
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Table 5.15: Average accuracy, in percentage, for the auditory and visual stream
channels trained with the validation set of the EmotiW corpus. The results are
for the Face channel (F), Movement channel (M), Face and Movement channel
together, representing the visual stream (V), Speech channel (S), Music channel
(Mu), Speech and Music channel together, representing the auditory stream (A)
and visual-auditory integration (AV).

Class F M V S Mu A AV

Anger 70.2 50.8 77.8 56.4 50.7 70.1 80.3

Disgust 18.2 9.4 18.7 12.4 2.6 15.2 23.4

Fear 21.4 16.8 20.2 7.8 6.5 7.2 30.8

Happiness 67.2 75.6 77.8 59.1 65.4 72.0 81.2

Neutral 67.2 57.7 70.9 10.8 15.6 25.4 68.7

Sadness 22.4 21.2 23.2 8.3 9.8 16.2 24.5

Surprise 5.4 10.0 12.1 0.0 2.1 4.1 14.0

Mean 38.8 34.5 42.9 22.1 21.8 30.0 46.1

Table 5.16: Performance of state-of-the-art approaches on the EmotiW dataset.
All the results calculate the mean accuracy on the validation split of the dataset.

Methodology Video Audio Both

[196] 45.28 30.73 48.53

[149] 38.1 29.3 41.1

[70] 33.15 26.10 28.19

CCCNN 42.9 30.0 46.1

harder task. Due to the variability of the data, neither of the modalities provides
an overall high accuracy. Our model results are competitive with the state-of-the-
art approaches, and performed better than the baseline values of the competition.
The works of Liu et al. [196] and Kahou et al. [149] extracts more than 100
auditory features each, and use several CNNs to extract facial features. A vector
composed of the output of the CNN are used by several classifiers such as SVM
and multi-layer perceptron to categorize the input into emotions. The results of
our models showed that we can actually obtain similar generalization capability
using a simple and direct pre-training strategy without the necessity of relying on
several different feature representations.
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Figure 5.7: Implementing inhibitory fields in different layers of the network pro-
duces different features. Each visualization corresponds to one filter on a de-
termined layer. It is possible to see how the inhibitory fields affect the feature
extraction capabilities of each layer.

5.5 Discussion

In this section we discuss two concepts of our network. First we analyze the
CCCNN architecture, and how the introduction of inhibitory fields and the Cross-
channel contribute to the representation. Then we discuss how the model repre-
sents multimodal stimuli, how the expression is decomposed inside the model and
what each layer represents.

5.5.1 Inhibitory Fields and Cross Channels

The application of the inhibitory fields has been shown to increase the performance
of the network only when they were implemented in the last layer of the face
channel. That was caused by the over specialization of that the inhibitory fields
produced in the layer’s filters, which turned to be beneficial for the model. When
the inhibitory fields were applied to the first layer, the filters learned more complex
patterns, which did not help in the feature generalization. That phenomenon is
easily visible when we visualize the features that the network learned using the
deconvolution process illustrated in Image 5.7, which shows the visualizations of
the internal knowledge of one filter in different layers of the network.

When no inhibitory filter was implemented, the first layer the network learned
some edge detectors, which could filter mostly the background and hair of the
person. In the second layer, the network constructed a higher level of abstraction,
mostly the shape of the face, and some regions such as eyes, mouth and nose are
roughly highlighted. When we implement the inhibitory fields in the first layer only,
we find that the more information is filtered. The filters detected more specific
regions, filtering much more information which is relevant to represent the facial
expression. This causes a problem in the second layer, which then tries to learn
very specific concepts, and constructed a very limited representation. When the
inhibitory fields are applied in the last layer, we found a very clear distinction in
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Figure 5.8: Applying the Cross-channel on the individual representations brings
results on different features. Note that the face representation after the application
of the Cross-channel changed to include the hands movement.

the representation. The shape of the face is very clear, but regions as eyes, nose and
mouth are better represented than when no inhibitory fields are applied. Finally,
when we applied the inhibitory fields in both layers, the final representation does
not contain any reliable information with some very rough representation of the
eyes and nose.

The cross channels also have an impact on the quality of the extracted filters.
Our Cross-channels integrates two channels into one representation, which was
shown to be more efficient and robust, but also reduced the dimensionality of
the data. The application of the Cross-channels created a new representation of
the input stimuli, which is different from the individual representation. Figure
5.8 illustrates the visualizations of the last layer of the individual channels and
the Cross-channel. We can see that the Cross-channel features are different from
the individual representation, and they changed to capture an important feature:
the hands over the face. Furthermore, we see that the facial features changed
drastically to incorporate the movement of the hands, which is now also highlighted
in the movement channel.

5.5.2 Expression Representation

The application of the visualizations also helps us understand how the network
represents an expression. It is possible to see how the expressions are decomposed
inside the network, and have an insight on the role of each layer of the network to
build the expression representation. By visualizing the same region of neurons for
several images, it is possible to identify for which regions those neurons activate
most strongly. This way, we can analyze which parts of the input stimuli activate
each filter of the network. Figure 5.9 illustrates this concept, where it is possible
to see what each filter codes for in each layer. To generate these visualizations, we
created an average per filter in the Face channel for all the images in the FABO
corpus.

The filters learn to represent different things, which are complementary for the
emotion expression. In the first layer, mostly background and hair information is
filtered. Filter 5 highlights the region of the mouth out of the image, while filter 2
keeps the eye information.

The most interesting representations occur in the second layer, where filters
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Figure 5.9: Mean visualization from all images in the FABO corpus per filter in
all the layers of the Face channel. It is possible to specialized filters, which helps
us to understand how the expression representation is created.

1 and 2 represent mostly the face shape and positions of eyes, nose and mouth.
Filters 3 and 4 represent the eyes, nose and mouth shapes, where filter 3 activates
mostly for the cheeks and closed mouths and filter 4 for open mouths. Different
from the others, filter 5 specialized on eyebrows mainly.

The filters in our network show that our network actually builds the face ex-
pressions based on the changes of some particular regions, which is consistent with
the Facial Action Coding System (FACS) [86]. The FACS is a coding scheme to
represent facial expressions based on movement of facial muscles. The movements
in FACS are mostly related to eyes, mouth, eyebrows and cheek regions, which
are very similar to the regions detected by our network, showing that the fea-
tures which emerge in the filters are actually related to human facial expression
perception.

Our network filters react to very specific patterns in the input images, which
are related to human facial expressions. We can see how these patterns are strong
when we send to the network images which resemble human expressions, this is
illustrated in Figure 5.10. The network highlighted regions which were closely
related to human features. In the image with the dog, the position of the eyes
and mouth were detected, and in the Don Quixote painting, the shape of the face
was highlighted. In all images, it is possible to see that the filters of the network
highlighted regions of interest that have a similar contrast as some facial features,
as face, eyes and mouth shapes. On the other hand, the network is strongly domain
restricted. It will always try to find human facial features in the images, even when
they are not present. This can cause problems, especially in the EmotiW corpus,
illustrated in the last column of Figure 5.10.
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Figure 5.10: Visualization of the facial representation for different images. We see
that the network tries to find human facial features, such as mouths, eyes and face
shapes in the images.

5.6 Summary

In this chapter, we proposed a novel architecture for multimodal emotion expres-
sion representation. Our model introduces Cross-channel Convolution Neural Net-
works (CCCNN) to learn specific features of audio-visual stimuli. The network
implements several channels, and each one learns different emotional features from
each modality and applies a cross-convolution learning scheme to integrate audi-
tory and visual representations of emotion expressions.

The network architecture is inspired by the ventral and dorsal stream models
of the visual and auditory systems in the brain. Also, it implements shunting
inhibitory neurons to specialize the deeper layers of the network, avoiding the
necessity of a very deep neural network. Such mechanisms showed to help us to
represent spontaneous and multimodal expressions from different subjects.

We also introduce visualization tools which allow us to understand and identify
the knowledge of the network. By using the deconvolution process to visualize the
internal representation of the CCCNN filters we showed how our model learns
different expressions in a hierarchical manner.

To evaluate our model, we use three different corpora: the Bi-modal face and
body benchmark database (FABO) with visual expressions, the Surrey Audio-
Visual Expressed Emotion (SAVEE) Database with audio-visual expressions and
the corpus for the Emotion-Recognition-In-the-Wild-Challenge (EmotiW), which
contains audio-visual clips extracted from different movies. Each corpus contains
different expression information, and we use them to fine tune the training to
evaluate each modality. Our network showed to be competitive, and in the case of
the FABO corpus better when compared to state-of-the-art approaches.
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Chapter 6

Learning Emotional Concepts

with Self-Organizing Networks

6.1 Introduction

To classify emotion expressions is a difficult task: First the observation of various
different modalities is necessary. Second, the concept of emotion itself is not pre-
cise, and the idea of classifying what another person is expressing based on very
strict concepts, makes the analysis of such models difficult.

Dealing with such set of restricted emotions is a serious constraint to HRI
systems. Humans have the capability to learn emotion expressions and adapt
their internal representation to a newly perceived emotion. This is explained by
Hamlin [120] as a developmental learning process. Her work shows that human
babies perceive interactions into two very clear directions: positive and negative.
When the baby is growing, this perception is shaped based on the observation of
human interaction. Eventually, concepts such as the five universal emotions are
formed. After observing individual actions toward others, humans can learn how
to categorize complex emotions and also concepts such as trust and empathy. The
same process was also described by Harter et al. [125], Lewis et al. [188] and Pons
et al. [242].

In the previous chapter we introduced the CCCNN for multimodal emotion
expression representation, and in this chapter we extend the model by adapting it
to learn different representations and cluster them into emotional concepts. Based
on the findings of Hamlin et al. [120], and her emotional learning theory, we
introduce the use of the CCCNN as innate perception mechanism, and make use
of self-organizing layers to learn new emotional concepts. The model is evaluated
in the recognition and learning of new expressions and we proceed with an analysis
of the model while it learns multimodal expressions, and study the development
of emotional learning from different subjects.
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Figure 6.1: Crossmodal architecture used as input for the SOM. This architecture
extracts multimodal features from audio-visual inputs and clusters the representa-
tion in different regions, which represent emotion expressions.

6.2 Emotion Expression Learning

To create a developmental emotion perception mechanism, we focus on the dimen-
sional model representation. We follow the idea of Hamlin [120] of developmental
learning, and we train our CCCNN to learn strong and reliable emotion expression
representations in different modalities. We then replace the fully connected hidden
and softmax layers of our network with a layer which implements Self-Organizing
Maps (SOMs) [163]. The SOMs are neural models where the neurons are trained
in an unsupervised fashion to create a topological grid that represents the input
stimuli. In a SOM, each neuron is trained to be a prototype of the input stimuli,
meaning that after training, each neuron will have a strong emotion representation
and neurons which are neighbors are related to similar expressions.

In our architecture, we implement a SOM with 40 neurons in each dimension.
Empirically this was shown to be enough to represent up to 11 emotions for the
visual stream and up to 7 emotions using crossmodal representation. Figure 6.1
illustrates the updated version of our model.

6.2.1 Perception Representation

After training, a SOM will create a grid of neurons each one with the same di-
mensionality as the input stimuli. The neurons of a SOM organize a projection of
a high-dimensional data space into a set of neurons spread in a grid. This means
that the knowledge of a SOM is represented by its topology. One way to interpret
the neurons in a SOM is to use the U-Matrix [287]. The U-Matrix creates a vi-
sual representation of the distances between the neurons. Basically, you calculate
the distance between adjacent neurons. The U-Matrix gives us a very important
representation of the structural behavior of the SOM, in which we can identify
different clusters of neurons. The U-Matrix of a SOM is defined as:
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Figure 6.2: U-Matrix of a SOM with 40 neurons in each dimension and trained with
happy, sad and neutral expressions. It is possible to see the neurons, represented
by dots, in different regions, which represent the distances among the neurons.

U −Matrix =
∑

Mm=1

k
∑

i=1

d(w − wm), (6.1)

where M indexes the neighbor neurons, and w is the set of weights of each neuron.
The distance calculation is given by d(x, y), and is usually the Euclidean distance.

After training, our SOM has neurons which represent emotion expressions,
and we can visualize them by calculating the U-Matrix. Our SOM is trained
completely in an unsupervised fashion, which means that we do not identify the
expressions we are showing to the network with any class and the U-Matrix shows
the distribution of the neurons, or emotion expressions, over a grid. We use this
grid to identify regions of neurons that have a similar representation, and find
certain patterns of the neuron distribution. Figure 6.2 illustrates an example of
a U-Matrix calculated of a SOM with 40 neurons in each dimension and trained
with three different expressions: happy, sad and neutral. It is possible to see the
neurons, marked as the dots, and different regions based on the distances between
the neurons.

In a SOM we can calculate the distance of a certain input for all the neurons,
and the neuron which has the smallest distance is selected as the best matching
unit, which represents the neuron that mostly resembles the presented input. How-
ever, instead of using only one neuron to represent an expression, we can use the
distances of each neuron to the input to create an activation map, showing which
neurons of the SOM are more related to the input. This way, we can, for example,
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Figure 6.3: Examples of activation maps when three different expressions for each
class are presented. It is possible to see that each class has an activation pattern
different from the other classes.

identify which regions of the SOM activate mostly when happy or sad expressions
are presented.

The neurons which are strongly related to a presented input, will activate most:
for instance, a certain neuron that activates for a happy expression will have a lower
activation when a sad expression is presented. This way, by visualizing several
activation maps, we can have an emotion representation which is very close to a
dimensional perception, but learned in an unsupervised way. Figure 6.3 illustrates
different activation maps. It is possible to see that the activation pattern changes
when different happy, angry or neutral expressions are presented to the network.

The visualization of the knowledge learned by the SOM is not easy, similar to
the human perception of emotions. Emotion expressions are learned by humans in
a continuous process of perceiving new expressions and adapting them to previous
knowledge [120]. This process happens through childhood by assimilating similar
emotions with known concepts, such as happiness, pain or depressive states. This
means that each person has their own emotion perception mechanism, based on
different features and different perceived emotions. We simulate this process by
using a very strong feature representation, learned by the CCNN, and updating
our SOM with perceived expressions. In this case, our SOM represents a unique
perception representation, which could be related to a person’s own perception.

This mechanism helps us to interpret emotion expressions in general. By cre-
ating the person’s specific activation maps, we can identify how this person’s ex-
pression behavior differs. Also, we can create specific SOM’s for specific person’s,
or for a specific group of persons. This way we can create very personal represen-
tations of expressions, which are suited for different subjects and can be updated
differently. This allows the model to have an individual knowledge about how a
particular person expresses its own emotions. This way, a person that expresses
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themselves in a more shy way will have a different neuron structure than one which
is more excited, and both can be represented by different SOMs.

6.2.2 Expression Categorization

With the use of the U-Matrix and the activation maps, we can identify patterns in
the SOM structure. We can assimilate concepts to similar patterns, finding which
regions of the network fire most for known expressions. This means that we can
identify network regions which fire for happy or sad expressions.

Using the same principle, we can create a categorical view of the network’s
representation. This helps us to use our model in emotion recognition tasks. The
advantage of using our model is that we can create different categorical models
without re-training the network. If we want to analyze simple separations as
positive and negative emotions, we can easily identify which regions of the network
fire for these categories. If we want to increase the number of categories, we just
have to increase the number of clusters. So, instead of finding regions that fire
only for negative or positive, we can find regions that fire for happy, sad, surprised
and disgusted.

To find these clusters, we use the U-Matrix to create a topological representa-
tion of the neurons and the K-means algorithm [201] to cluster them. The K-means
algorithm partitions a set of observations into N clusters, based on the distance
of individual observations to each other. The goal of K-means is to minimize the
within-cluster sum of squares, which is be defined as

K = argmin
k
∑

i=1

||(c− µi)|| , (6.2)

where K indicates a cluster, c is one observation and µ is the mean of each obser-
vation.

The limitation of our model is directly related to the SOM architecture limita-
tion: we have to define the number of neurons before training them, which restricts
the number of expressions that can be categorized. However, with an optimal num-
ber of neurons, we can create different categories of expressions without re-training
the network.

Using the expression categorization, we can use our network to recognize differ-
ent emotion categories. If, at first, we want to recognize only positive and negative
emotions, we just have to define two clusters. Then, if we need to identify between
a happy and an excited expression, we can apply the K-means algorithm only to
the region of the network which has a bigger probability to activate for these con-
cepts. In the same way, if we want to identify different kinds of happy expressions,
we can create clusters only for this specific region. Figure 6.4 illustrates the appli-
cation of K-means to the network illustrated in Figure 6.2. In this example, the
network is clustered for three classes: happy, sad and neutral.
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Figure 6.4: K-means algorithm applied to the SOM illustrated in Figure 6.2. We
cluster the neurons into three expressions: happy, sad and neutral. We use the
K-means clusters to classify expressions.

6.3 Methodology

To evaluate our expression learning architecture, we use the trained filters of the
CCCNN to extract high-level expression representations and trained a series of
SOMs with them. We perform three sets of experiments: the first one to evaluate
the capability of the model to classify expressions and the second to evaluate the
capability to learn new expressions. In the last set of experiments, we evaluate the
use of the model in creating behavior analysis for independent subjects.

For all experiments, 30 experiment routines were performed and the mean
of the accuracy was collected for each expression individually, which helps us to
understand our model better.

6.3.1 Experiment 1: Emotion Categorization

After training the CCCNN with the multimodal expressions of the EmotiW corpus,
we train a SOM and use it in a classification task using K-means to cluster the
neurons in a number of specified classes. We compare the use of the SOM with the
CCCNN performance for classifying crossmodal data. These experiments show us
the capability of the SOM to generalize expressions.
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6.3.2 Experiment 2: Learning New Expressions

In this set of experiments, we measure the capability of the SOM to learn new
expressions. For this purpose, we train a SOM with a limited set of expressions,
composed by only sad and happy expressions. Then, we systematically present new
expressions to the SOM, such as angry, disgusted and surprised ones, and we also
calculate the mean of the activation maps for each expression. This way we show
the capability of the SOM to learn different expressions. For these experiments
we use the FABO corpus, because it contains a controllable environment, which is
not present in the EmotiW dataset.

6.3.3 Experiment 3: Individual Behavior

In the last round of experiments, we use of the SOM for analyzing the behavior of
expressions. We perform experiments with the SAVEE corpus only, which contains
data from four different subjects. We train one SOM for each subject and compare
the differences of the expressions based on the clusters of each SOM.

6.4 Results

6.4.1 Experiment 1: Emotion Categorization

For these experiments, we trained our SOM with the emotion representation ob-
tained by the CCCNN in of the previous chapter. We then cluster the neurons
of the SOM in 7 regions with K-means algorithm, so each region represents one
class of the EmotiW corpus. Figure 6.5 illustrates the clustered regions from 0
to 6, respectively: anger, disgust, fear, happiness, neutral, sadness and surprise.
It is possible to see that the neutral expressions, represented by class number 5,
have almost all the others expressions as their neighbor. Also, angry expressions,
class number 1, are between happy, class number 4, and sad expressions, class
number 6. And finally, it is possible to see that fear expressions, class number 3,
are closely related to surprise expressions, class number 7. In this case, some of
the fear expressions are between happy and surprise.

Using the clusters, we calculated the accuracy of the SOM in the validation set
of the EmotiW corpus. Table 6.1 shows the results. It is possible to see that with
the SOM clustering, such expressions as disgust and sadness show an increase of
almost 7% in performance. As we see in the cluster, sad and disgusted expressions
are neighboring regions, and the application of the SOM created a better separation
border, which would explain the performance increase. In general we have an
improvement of more than 3% in the accuracy when using the SOM.

6.4.2 Experiment 2: Learning New Expressions

In our next experiment, we trained the SOM with happy and sad expressions from
the FABO corpus. We then proceed by feeding angry, disgusted and surprised
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Figure 6.5: K-means algorithm applied to the SOM trained with the EmotiW
multimodal representation. Six emotions were clustered: surprise, sadness, angry,
happiness, fear, neutral and disgust.

Table 6.1: Mean accuracy, in percentage, for the multimodal representation in the
validation set of the EmotiW corpus. The results are for the CCCNN and the
SOM.

Class CCCNN SOM

Anger 80.3 85.3

Disgust 23.4 30.3

Fear 30.8 32.1

Happiness 81.2 82.3

Neutral 68.7 67.3

Sadness 24.5 31.7

Surprise 14.0 17.6

Mean 46.1 49.5

110



6.4. Results

Figure 6.6: Activations plotted on top of a clustered SOM. The SOM was trained
with sad and angry expressions and each activation shows the mean activation
map when feeding the network with angry, disgusted and surprised expressions.

expressions to the network, and generate the mean of the activation maps for
each set of expressions. Figure 6.6 illustrates the activations for each new set of
expressions plotted on top of the clustered SOM. In this experiment, the network
never saw angry, disgusted or surprised expressions and we can see how the neurons
activate when these expressions are presented.

Angry expressions activated a mixed region of neurons, between the sad and
happy regions. Two neurons had a higher activation, in both regions. This is
congruent with the regions found when analyzing the EmotiW SOM, where angry
expressions were represented between happy and sad. Expressions of “Disgust”
were mostly activated by neurons on the sad region, which is also congruent with
the cluster of the EmotiW SOM. And finally, the “Surprise” expressions were
mostly activated in the “Happiness” regions, with some activation in the angry
region.

We then proceeded to re-train the network on the new expression. We used the
network trained with sad and happy expressions, and created four new networks,
three of them trained with the addition of one new expression, and the fourth one
with all five expressions. Figure 6.7 illustrates the clusters of each network. We
can see that the disposition of the new clusters is similar to the activation maps
of the network trained with only two expressions. That demonstrates how each
emotion expression can be related to others, and our network is able to use this
relation to learning new expressions.

6.4.3 Experiment 3: Individual Behavior

In the final set of experiments with the SOM, we train one SOM with expressions,
represented by the Face and Speech channels, from each one of the four subjects
from the SAVEE corpus, which are identified as DC, JE, JK and KL. We trained
each SOM using a 4-fold cross validation strategy, only with the data of each
individual subject. We then calculated the accuracy for each subject, which is
shown in Table 6.2.

We separated the regions of each SOM into seven classes, and produced cluster
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Figure 6.7: We train a network with two kinds of expressions: happy and sad.
Systematically add one different expression and re-train the network. At the end,
we train a network with the five expressions together.

Table 6.2: Mean accuracy, in percentage, for the auditory and visual stream chan-
nels trained with a SOM on the SAVEE corpus. The results are presented for the
four different subjects: DC, JE, JK and KL.

Class DC JE JK KL

Anger 100.0 94.3 100.0 92.0

Disgust 100.0 100.0 100.0 90.9

Fear 100.0 100.0 96.7 100.

Happiness 99.4 99.1 100. 97.7

Neutral 98.3 100.0 100.0 96.7

Sadness 96.7 97.8 100.0 97.8

Surprise 100.0 100.0 97.9 98.2

Mean 99.1 98.7 99.2 98.3

images for each subject, which are illustrated in Figure 6.8. Analyzing each clus-
ter, we can see that the same expressions have different regions for each subject.
Analyzing these images, it is possible to obtain some information about how each
subject expresses itself. For each subject, the same number of samples is recorded
for each emotion category, so there is no bias to one expression in each subject.

Except for the network of subject JE, all others clustered expressions of “Sur-
prise” in a neighboring region with “Happiness” expressions. On the other hand,
all of them clustered “Surprise” in a neighbor region to “Angry” and “Fear” ex-
pressions. That indicates that JE “Surprise” expressions are less happy than the
others. Also, the “Disgust” expression is different for each subject. Although all
of them have “Disgust” expressions as a neighbor of “Sad” expressions, the other
neighboring expressions are different. It is possible to see that for DC, disgusted
expressions are closely related to “Angry”, for JE with “Fear”, JK with “Happy”
and KL with “Surprise” expressions. Looking for the region that each expression
takes part in, it is possible to see that JK’s network clustered “Happy” expressions
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Figure 6.8: Trained networks with expressions of each subject of the SAVEE cor-
pus: DC, JE, JK and KL. It is possible to visualize how different each subject
expresses emotions by analyzing the network clusters.

with a larger region when compared to the other subjects, which could be an indi-
cation that JK expresses happiness different than the others. The same happens
with JK’s “Disgust” expression. On the other hand, his “Neutral” expressions have
a smaller region than the others, indicating that most of his neutral expressions
are very similar to one another.

6.5 Discussion

Some regions of the CCCNN code for specific features, such as face shape, eyes,
mouth among others. But, once these features are related to an emotion expression,
it is the role of the model, in this case of the fully connected hidden and the
softmax layers to classify these features into emotions. These layers have some
information about emotion expression, but they do not store any information about
the expressions itself, only about the separation space. Replacing these neurons by
a SOM gives the model a powerful tool to represent emotion expressions. Besides
creating a more flexible separation region, the SOM allows the model itself to store
information about the expressions.

6.5.1 The Prototype Expressions

Each neuron in the SOM represents a prototype of an expression, which is tuned
to be similar to the data used to train the model. This means that each neuron
alone codes for an expression, and neighbor neurons code similar expressions. In
this way, we can simulate the spatial separation that the hidden and the softmax
layers produce by clustering the neurons in different regions, giving the SOM the
capability of classifying expressions. This means that a real expression has to be
represented by one prototype expression in order to be classified. This showed how
to improve the performance of classification tasks.

The prototype expressions also help our model to code the concept of the
expression itself. While the filters on the CCCNN code for specific features from
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Figure 6.9: Visualization of the neural emotional representation for two subjects,
DE and JE, of the SAVEE corpus. It is possible to see how neurons which are
closer to different regions of the network, store different expressions.

the input stimulus, each group of neurons in the SOM code for similar expressions,
giving our model a complete representation of the emotional expression, from the
input stimuli to the expression representation itself.

6.5.2 Emotional Concept Representation

We can actually use the visualizations to gain insight into what expressions the
model learns. When visualizing an input, we backpropagate the responses that the
input produced by our filters, but by using the prototype neuron representation
instead of the image representation, we can visualize which expression this neuron
learned. By doing that for several images and several neurons, we can actually
identify how these expressions change through the network, which helps us to
understand the clusters of the SOM and the network representation itself.

Taking as an example the network trained for each subject of the SAVEE cor-
pus, we can visualize the expressions learned by each neuron. Figure 6.9 illustrates
some neurons of two subjects which are in the same region and correspond to angry
expressions. It is possible to see that both networks have different representations
for the angry expressions, depending on where the neurons are. For DC, it is pos-
sible to see that an expression closer to the fear region, produces a different mouth
shape than the one closer to the surprise region. And for JE it is possible to see
that all three representations have different eyes and mouth shapes.

6.6 Summary

In this chapter, we extended the Cross-channel Convolution Neural Network (CC-
CNN) architecture by using a self-organizing layer to learn emotional concepts.
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This structure gave the network the ability to cluster different expressions into
similar concepts, in an unsupervised manner. This allows the model to learn how
to identify different expressions into emotional clusters, introducing the capability
to learn new expressions.

Using visualization techniques, we also showed how the model learned different
clusters. It was possible to see the representation that each neuron learned, in the
form of prototype expressions, and how they differ from each other, showing that
in our model similar expressions are represented by neighboring neurons.

Our self-organizing layer presents two key features: First, it can learn new emo-
tional concepts using expression cluster. These characteristics allows the model to
adapt its knowledge to different domains and subjects, being able to generalize the
representation, or specialize it, if necessary. Second, the model uses the prototype
expressions to abstract emotional concepts, creating a robust emotional represen-
tation. In our experiments, we showed that this new emotional representation
improved the recognition of spontaneous expressions.

We evaluated our new model in different tasks: cluster emotions, learn new
emotions and behavioral analysis. The model was able to cluster different spon-
taneous expressions in similar regions and expand its learned representation with
new emotional concepts. Used for behavioral analysis, the model was able to de-
fine patterns on how different subjects expressed themselves, and by visualizing
the network topology, it was possible to represent these differences visually.
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Chapter 7

Integration of Emotional

Attention and Memory

7.1 Introduction

This chapter presents our integrated model for emotional attention and mem-
ory modulation, which contributes to our model in recognition and representation
tasks. The models presented in Chapter 5 and Chapter 7 are able, respectively, to
learn how to represent spontaneous expressions and to create emotional clusters
which indicate affective concepts. However, the application of such models in real-
world scenarios implies serious restrictions. First, attention is a very important
part of emotional perception, and almost none of the proposed models implement
any attention mechanism. Second, as explained in chapters 3 and 2, the under-
standing of emotional concepts are modulated by several memory mechanisms.
By implementing memory modulators to our models, we intend to make it robust
to emotion concepts determination, individual subjects behavioral learning and
achieve a more detailed environment perception.

Cross-modal emotional learning happens in different brain regions [208, 92],
and we aim to the develop our model as inspired by neural architectures. First, we
introduce a visual emotional attention model, which is inspired by the two-stage
hypothesis of emotional attention [32], which states that attention modulation
happens in parallel processing between the amygdala complex and the visual cor-
tex, but after a fast-forward only processing has happened. Second, we propose a
memory model based on growing neural networks, which is applied to the learning
of emotional concepts. Lastly, we integrate our model in an emotional learning
architecture, which takes into consideration attention and memory modulation
and apply it to different human-human and human-robot interaction tasks. We
evaluate our model based on three characteristics: emotion expression learning,
emotional attention, and individual affective maps estimation.
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7.2 Emotional Attention

The first step towards an emotional attention mechanism is to introduce a selective
attention system. Although many computational models of attention were intro-
duced in the past decades [100], none of them take into consideration emotional
modulation. That means, that none of these models implement any emotional as-
pect of the region of interest perception, which is an important mechanism found
in humans for improving spatial attention [229, 233] and emotion recognition [288].
We introduce, here, an attention model which is closely related to emotional per-
ception.

Our model combines the idea of hierarchical learning and selective emotional
attention using convolutional neural networks (CNN). Our approach differs from
traditional CNN-based approaches in two factors: first, the input stimuli are com-
posed of the whole scene, which may or may not contain people expressing emo-
tions. Second, the network is trained to a) localize spatially where the emotion
expression is in the visual field and b) identify if the detected emotion expression
is interesting enough to attract the attention of the model.

We use our model to detect emotional events conveyed by face expressions
and bodily movements. In this scenario, each convolutional unit learns how to
process facial and movement features from the entire image. We differ from simple
classification tasks by not tuning the convolutional units to describe forms, but
rather to identify where an expression is located in the image. Therefore, we
implement a hierarchical localization representation where each layer deals with a
sub-region of the image. The first layers will learn how to detect Regions of Interest
(ROI) which will then be fine-tuned in the deeper layers. Because the pooling units
increase the spatial invariance, we only apply them to our last layers, which means
that our first layers are only composed of convolutional units stacked together.
In this section 7.2, we describe our model, starting with common CNNs and our
emotional attention model. To train our network as a localization model, we use a
different learning strategy based on probability density functions, which will also
be explained in this section.

Being a CNN-based model, our architecture learns implicit feature extractors
and by investigating the learned representations, we identified regions of the net-
work which coded for different visual modalities. While specific filters detected the
facial expression, others focused on the body movement. That approximates our
model from the first visual cortex areas, and we use this knowledge to integrate
our attention model with our CCCNN architecture.

7.2.1 Attentional Salience Learning Strategy

To achieve the localization processing, we build our CNN architecture in a par-
ticular way: we only apply pooling operations in the last layers. Pooling usually
introduces space invariance, which is in contrast with our concept of identifying a
region of interest. Therefore, pooling is only applied in the last convolutional two
layers, i.e. after we have identified a possible interest region by filtering information
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with the convolutional units.
We observed that the use of the shunting neurons in the last layers of our

network caused an interesting effect in the learned filters. As we feed the network
with a full image and expect it to output a location, we are training the filters to
detect unlabeled emotion expressions. Since the first two layers have no pooling,
the filters are applied to the whole image to specify where possible expressions
are occurring. By applying the shunting neurons on this layer, we increase the
specification of the layer and assure that it can learn, indirectly, how to distinguish
between different expressions.

CNNs are usually trained using strongly labeled classes, which provides an
interpretation of the features learned by the filters. However, this also implicitly
guides the learning process to shape the learned filters to detect features which
are specific for a classification task. As an example, the concept of training the
network to detect categorical expressions such as anger, happiness, and sadness,
will enforce the filters to detect features which are important for such classes,
ignoring possible other categorical emotions. The biggest problem, when using
such models for localization, is that a CNN will reduce the input dimension and
in the process introduces robustness against spatial translation. In a localization
task, the spatial translation should be maintained, as we want to find where in the
image a certain structure is located. To adapt the CNN to a localization task, we
train our network to create salience regions on the input stimuli. This way, we do
not have specific classes, such as the ones mentioned above. The model is trained
using a probability distribution (instead of a class attribution) that indicates the
location of interest.

Our model has two output layers, each one responsible for describing positions
of the 2D visual field. One of the output layers gives the positions on the X axis and
the other on the Y axis, which means that each output layer has different dimen-
sions. Furthermore, using a probability distribution allows our model to converge
faster since the concept of having a precise position would be hard to learn. The
shape of the distribution changes, e.g. depending on how close the expression is
being performed with respect to the camera. Using a probability distribution as
output also allows us to identify other interesting regions in the images, allowing
different expressions to be localized at the same time. Figure 2 illustrates an input
sample to the network and the corresponding output distribution probabilities.

7.2.2 Attention Model

The model uses as input a sequence of 10 images, each one with a size of 400x300
pixels. That means that with a frame rate of 30 frames per second, our model
localizes expressions at approximately 300ms, which is the interval of a duration
of a common expression, between 200ms and 1s [83]. Our model is illustrated in
Figure 7.2.

Our model implements 4 convolution layers, the first three with 4 filters and
dimensions of 9x9 in the first layer and 5x5 in the second and third. A fourth
convolution layer with 8 filters and a dimension of 3x3 is preceded and followed
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Figure 7.1: Example of output of the teaching signal. For each sequence of images,
representing a scene with one or more expressions, two probability distributions
are used as teaching signal, describing the region of interest by its position on the
x- and y- axis, respectively.

Figure 7.2: Proposed attention model. Our architecture has 4 convolution layers
and only the two last ones are followed by a pooling layer. The convolution layers
are fully connected with two separated hidden layers, which are connected with
output units, computing the x and y location of the possible expression.

by pooling, with receptive field sizes of 8x8 and 2x2 respectively. These sizes
were found to perform best based on empirical evaluations. The last convolutional
layer, labeled Conv4 in Figure 7.2) implements shunting neurons. Here we use a
pyramidal structure where the first layers implement four filters with large receptive
field, and the last layers have 8 filters with smaller receptive fields. This is necessary
because the role of the first layers is to detect, and thus filter, possible interest
regions in the entire image. The larger receptive fields help filter large chunks of
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the image where noise is easily filtered. The last layer applies a smaller filter, which
looks for very specific information, such as facial expressions and body movements.

The convolution layers are connected to two separated fully connected hidden
layers, which are then connected to two softmax output layers. We also normalize
the teaching signal with a softmax function before using it for the network training.
By separating the hidden layer, we assure that the same representation will be
used for both outputs, but with independent connections. On the other hand,
the network is trained with an error calculated from both hidden layers, meaning
that each output influences the training of the convolution layers. Each hidden
layer has 200 neurons and the output layers have 300 and 400 output units, one
for each row and column of pixels, respectively, in the image input. The model
applies L2 norm and dropout as regularization methods using momentum during
the training with an adaptive learning rate. The input images are pre-processed
with ZCA-whitening [49] before used as input to the network, which increases the
contrast of the images and improved the final localization task.

7.2.3 Multicue Attention Stimuli

Our model is trained with a full image, without the necessity of any kind of seg-
mentation. This means that the whole scene, including the facial expression and
body movement, are processed by the convolutional filters. After analyzing the
filters learned by the network, we could indicate how the network trained specific
filters for specific visual stimuli: a set of filters were reacting to facial expressions
and another set to body movements.

By visualizing the last layer of the network, using the deconvolution process,
we are able to illustrate what the network has learned. Figure 7.3 illustrates the
visualization of different filters of the pre-last layer of the network where one input
stimulus was presented. It is possible to see that the network has learned how to
detect different modalities. Filters 1, 2 and 3 learned how to filter features of the
face, such as the eyes, mouth and face shape.

Filters 5 to 8, on the other hand, learned how to code movement. Furthermore,
we can see that the network highlighted the hands, elbows, and hand movements
in the representation, while other shapes were ignored. Another aspect of CNNs
could be observed here: filters 5 to 8 detected partially the same movement shape,
but with different activations, represented by the gray tone in the image. CNNs are
known to use redundant filters in their classification process, and the movements
were depicted by more filters than face expressions, mainly because the movement
across the frames is the most salient feature. Filter 4, which did not pick any
meaningful information, did not contribute to the localization of this expression.

7.2.4 Attention Modulation

The two-stage hypothesis of emotional attention [32] states that attention stimuli
are first processed as a fast-forward signal by the amygdala complex, and then used
as feedback for the visual cortex. This theory state that there are many feedback
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Figure 7.3: Examples of what each filter in the last layer of the network reacts to
when presenting the stimuli shown on the left. It is possible to see that filters 1
to 3 focus on face features, filter 4 did not pick any meaningful information from
this expression, and filters 5 to 8 focus on movement. In this figure, Filters 1 to 4
are inverted for better visualization.

connections between the visual cortex and the amygdala, however, to simplify our
attention mechanism, we will use only one-side modulation: from the attention
model to our perception model.

Based on this theory, our attention modulation starts as a fast-forward pro-
cessing from the attention model, and then use the found region as input for the
perception model. Finally, we use the use of specific features in the attention
model as a modulator for the perception model. An image is fed to our attention
CNN, and an interest region is obtained. However as shown in the previous sec-
tion, our attention model has specific features which detect face expressions and
body movements. To integrate both models, we create a connection between these
filters and the second convolutional layer of the CCCNN. That means that our
attention model feeds specific facial and movement features to the second layer of
the CCNN. The second layer was chosen because, in the face channel, it already
extracts features which are similar to the ones coming from the attention model,
very related to final facial features. The movement channel still needs one more
convolution layer to learn specific movement features. Figure 7.4 illustrates our
final attention modulation model.

We choose the face-related features and add them to the input of the second
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Figure 7.4: Our attention modulation model, which uses the specific features
learned from the attention architecture as inputs for the specific channels of deeper
layers of the CCCNN. In this picture the red dotted line represents the specific
facial feature maps and the black dotted line the movement feature maps.

convolution layer of the face channel. This creates an extra set of inputs, which
are correlated and processed by the convolution layer. By adding a new set of
features to the input of the convolution layer, we are actually biasing the repre-
sentation towards what was depicted on the attention model. The same occurs to
the movement channel, and we connect only the movement related feature maps.

The new attention modulation model should be trained in parallel, with one
teaching signal for each set of convolution filters. The final teaching signal is com-
posed of the location of the face, to update the weights of the attention-related
convolutions, and an emotion concept, to update the weights of the representation-
related convolutions. Note that while training the CCCNN layers, we also update
the specific facial and movement filters of the attention model on the fourth con-
volution layer. This is done as a way to integrate our representation, and assure
that the attention modulation actually has a meaning on the learning from both
models. We can also see this as a feedback connection, which ensures that the
models can learn with each other.

7.3 Affective Memory

In a neural network, the idea of memory is usually related to the weights, and
the knowledge attached to them [220]. With this concept in mind, the use of self-
organizing architectures introduce a different type of memory to neural networks:
instead of carrying representation about how to separate the input data, the neu-
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rons in such models carry a knowledge about the data itself. In a self-organizing
model, each neuron can be seen as a memory unit, which is trained to resemble
the input data [165].

A common use of self-organizing neural networks is in associative memory tasks
[162, 164]. In such tasks, the neurons in a self-organizing model will learn how to
memorize the association between two concepts. We use a similar concept in
the self-organizing layer of our CCCNN to associate auditory and visual modali-
ties, and then generate a memory of what the network learned, grouping similarly
learned concepts together. However, such model has a restrictive problem: the
number of neurons affects directly what the network can learn. Also, restricting
the topology of the neurons in a grid can create relations which are not present in
the input data, in a way that neighboring regions may not be as closely related as
the proximity indicates [135].

Emotion concepts are known to be very related to memory modulation, and
thus have a strong participation on how memory is created, stored and processed.
In this section, we introduce the use of growing self-organizing networks to simulate
different memory stages, but also to learn and forget emotion concepts. To give
our model the capability to use such concepts to improve the learning strategy, we
introduce the use of a modulation system, which affects how the memory model
stores and forget. Finally, we introduce the use of such a system in an emotional
neural circuitry which encodes different stages of emotion perception and learning.

7.3.1 Growing Neural Memory

To address the problems one faces when using a Self-Organizing Map (SOM) we
propose the update of our memory system by using a Growing-When-Required
Neural Network (GWR) [206] to learn emotion concepts. Such networks have
the ability to grow, by adding more neurons, in any direction. This means that
the network is not restricted to a number of neurons, either by any topological
structure. The GWR grows to adapt to the input data, meaning that the expression
distribution which is shown to the network is actually better fitted, which produces
a better-learned representation than in SOM.

The GWR gives our model three important new characteristics: it removes the
limitation on the number and topological structure of the neurons, increases the
capability of novelty detection, adapting to new expressions the moment they are
presented to the network, and lastly, but most important, has the capability to
learn and forget concepts. That means that we can use our GWR to learn how to
associate different expression modalities, identify and learn never seen expressions
and cluster them into new emotional concepts, and forget concepts which are not
important anymore.

We first use a GWR model to learn general multimodal emotion expressions.
This model represents the general knowledge of our perception architecture and
is able to identify several different types of expression. We train this Perception
GWR with different expressions coming from all our corpora, in a way that it
produces the most general representation as possible. Figure 7.5 illustrates our

124



7.3. Affective Memory

Figure 7.5: We proceed to train a Perception GWR, which will maintain our entire
representation of multimodal emotion expression perception. The figure illustrates
the general network trained with emotion expressions from all our corpora, in the
first training cycle on the left, and after 100 ones on the right.

general network in the first interaction, on the left, and in the last interaction, on
the right. It is possible to see that the network created clusters by itself, as we do
not enforce any topological structure.

Training the GWR with different expressions gives us a very powerful associa-
tive tool which will adapt to the expressions which are presented to it. By adapting
the learning and forgetting factors of the GWR we can determine how long the
network will keep the learned information, simulating different stages of the hu-
man memory process. For example, training a GWR to forget quickly will make
it associate and learn local expressions, in a similar way that the encoding stage
works. By decreasing the forgetting factor of the network, it is possible to make it
learn more expressions, meaning that it can adapt its own neurons topology to a
set of expressions that was presented in a mid- to long-time span.

Figure 7.6 illustrates a GWR architecture used to represent an Affective Mem-
ory for a video sequence. We first proceed to use the Perception GWR to detect
which expressions were been performed, and we feed this information to our Affec-
tive Memory GWR. In the beginning, represented by the topology on the left, it
is possible to see that the network memorized mostly neutral concepts. However,
at the end, different concepts were memorized. By changing the forgetting factor
of this network, we can let it learn the expressions on the whole video, or just in
one part of it.

Using the GWR we can create several kinds of emotional memory of what was
perceived. By having other GWRs, with different learning and forgetting factors,
we can simulate several types of emotional memory: short- and long-term memory,
but also personal affective memory, related to a scene, person or object, and even
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Figure 7.6: Using the expressions depicted on the Perception GWR, we proceed to
train an Affective Memory GWR for a video. The network on the left illustrates
the Affective Memory on the start of the video (02 seconds) and on the right at the
end of the video (06 seconds). The colored dots in the Perception GWR indicate
which neurons were activated when the expression is presented and the emotion
concept associated with them. The colored neurons on the Affective Memory
indicate which emotion concepts these neurons code.

mood. By feeding each of this memories with the Perception GWR, we can create
an end-to-end memory model, which will learn and adapt itself based on what was
perceived. The Perception GWR can learn new expressions if presented, and each
of the specific memories will adapt to it in an unsupervised fashion.

7.3.2 Memory Modulation

Many researchers describe the mood as a representation of the internal correlation
of different emotional processes [240], like hunger or fear, others as a complex
behavior which is modulated by perception, attention, and memory [12]. We can
also identify the mood in as part of the definition of the core affect [262] in cognitive
emotions, as discussed in Chapter 2. In this sense, the mood would not affect how
you perceive something, but also how you interpret the perceived expression, and
how you store that as an emotional memory. In other words, the mood could be
described as a medium-term memory modulator which affects and is affected by
different sensory and behavioral mechanisms [218].

With the addition of such a modulator, humans have a sharper perception level
in natural communication. Depending on a person’s mood, he or she can show
interest in different aspects of the communication, and identifying other people’s
mood can make you adapt the dialogue or interaction to avoid certain topics. Mood
also reflects the way we perceive things, there is a consensus in the field that the
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valence of our mood directly affects how we perceive certain expressions [26, 189].
This makes us more empathic towards each other, as we can adapt our perception
to our general mood.

Creating a robot that integrates such modulator into its perception would make
such an autonomous system capable of understanding and interpreting certain ex-
pressions better. A common problem is that automatic systems do not adapt their
own representation of what was perceived, and this decreases the natural percep-
tion of the dialogue with humans, as was seen in our Human-Robot-Interaction
scenario of the WTM Emotional Interaction Corpus.

We introduce, here, the use of a memory modulator, based on what was per-
ceived to improve our models’ adaptability. This modulator is implemented as
a GWR network which is updated based on what the robot sees at the moment
(short-term memory), and on a current mood (medium-term memory). The first
updates on the current mood are basically copies from what the robot sees. How-
ever, after a certain amount of memory stored, the robot applies a modulation
based on the mood’s valence.

The modulation is applied as a function and calculates the amount of expres-
sions necessary to update the memory. First, we have to identify the robots mood,
based on the mean of the valences of all the neurons in its Mood Memory. Then,
we calculate the modulator factor M :

M =
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(7.1)

where vp is the valence of the perceived expression, e is a constant indicating the
modulator strength, and vm is the mean valence of the memory. The modulator
factor indicates the strength of the relation between the perceived expression and
the Mood Memory. It will increase if the valences of the perceived expressions and
memory are similar, and decrease if not.

We then proceed to update the memory using the perceived expression. To do
that, we createM copies of the perceived expression and update the Mood memory
with it. The forgetting factor of the Mood Memory is set to a mid-range term,
meaning that as many expressions of the same type are presented, much stronger
they will be remembered if an expression which is not strongly presented during
the update, meaning a weak memory relation, it will generate fewer neurons and
connections, and will be forgotten quickly.

The way the memory modulator is built increases the connection with ex-
pressions with the same valence but allows the memory to be updated with the
opposite valence. That is an important mechanism because it allows the memory
to change from a positive to a negative valence, completely based on the perceived
expressions.

Applying the modulator factor to other memories could also create different
modulations. For example, introducing the robot to a person which it associates
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Figure 7.7: The Emotion Deep Neural Circuitry which integrates our attention,
perception and memory models. The red dotted arrows indicate where modulation
and feedback connection happens: mostly between attention and perception, and
within memory mechanisms.

a strong positive valence memory with, could affect the Mood Memory of the
robot. In the same way, if the robot has a very negative valence Mood Memory, it
could affect perceive differently when a person communicates with it using negative
expressions.

7.3.3 Emotional Deep Neural Circuitry

To integrate our the proposed systems and methods we propose an emotional deep
neural circuitry, as illustrated in Figure 7.7. The model integrates our CCCNN
with attention modulation, the perception GWR, and different memory mecha-
nisms. With this model, it is possible to identify emotion expressions in a scene,
by visual attention means, represent the expression using multimodal information,
visual and auditory representation, and cluster the expression into different emo-
tional concepts. The memory mechanisms introduce the Mood Memory, Affective
Memory, connected directly to the individual subject in the scene, and a Working
Memory, which can store emotion concepts from different interactions.

For each subject, a new Affective Memory model is created and only updated
when that particular subject is present in a scene. This creates an individual
measure for each subject, which gives us a tool to measure how that particular
subject expressed themselves to the robot in a certain time-span. This memory
can be a long- or mid-term memory, depending on the forgetting factor chosen for
it. In this thesis, we adapted this memory to be updated during our experiments,
in a way that it creates a measure within all the interactions. Such memory could
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be related to the concept of affection and empathy, as it will store how a particular
subject behaved while in an interaction with the robot.

Our Working Memory encodes the interaction of all subjects within which one
certain type of interaction is performed. This means that it can be used to identify
the robot’s perception for an entire afternoon of work, or in a particular dialogue
task. In the same way, could also be expanded to encode long-term memory,
encoding expressions from a long time span, like days or weeks.

The Mood Memory is directly modulated by the Perception GWR and encodes
the robot’s own perception based on a certain range of past expressions. Our
Mood Memory acts as the main modulator for all the other memories but is also
modulated by Affective Memory and Working Memory. That means that if the
robot is in a negative mood and interacts with a person which it relates positive
expressions to in the past, the chances of the robot to change its mood towards a
positive one is higher.

Our Emotional Deep Neural Circuitry is trained in different steps. First, the
CCCNN and attention model are trained with pertinent data, to give us a very
robust expression representation and attention mechanism. Without this strong
pre-training, our model becomes weakly reliable, as all its representations are based
on a robust expression representation. These two mechanisms are the ones which
demand more time for training, as they implement deep neural networks and re-
quire a large amount of data to learn meaningful representations.

Our Perception GWR is pre-trained with the same data used to train the
CCCNN and attention model. This gives our model very robust initial emotional
concepts, however, this model can be trained online at any time. That means that
our Perception GWR can learn new expressions and emotional concepts, which
were not present during the CCCNN training. Lastly, our different memories are
trained in an online fashion, while performing the experiments. This way, each
of our memory mechanisms can learn different information from the interactions,
and regulate each other using the memory modulators.

To estimate the valence, used for the memory modulators, we introduce the
use of a Multi-Layer Perceptron (MLP). We use the trained CCCNN filters to
represent different expressions and proceed to feed this general representation to
an MLP with two hidden layers. The MLP outputs arousal and valence values.
Similarly to the attention training strategy, we use a Gaussian distribution for
each output dimension as a teaching signal. This gives this MLP the capability
to identify a distribution-based information about the arousal and valence of each
expression. In a similar way, we use the MLP used during the CCCNN training to
classify categorical expressions into the six universal emotions concepts [81]. Both
MLPs help us to identify what our network is depicting in a high-level abstraction,
approximating a model of human knowledge via the internal representation of our
networks.
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7.4 Methodology

To evaluate our model we proceed with three different set of experiments: one
to evaluate the emotion architecture and the use of attention modulation in our
CCCNN model. The second set of experiments evaluates the use of our Affective
and Working memory to map emotion expression scenarios. Finally, our third
experiment evaluates the impact of the memory modulation on the perception of
different emotion expression scenarios.

For all the models, the CCCNN architecture was pre-trained with a combination
of all the corpora presented in this thesis, on Chapter 4, in order to learn robust
representations for spontaneous expressions. We train our arousal and valence
MLP with the KT Emotion Interaction Corpus and our categorical emotion MLP
with data from all the other corpus presented in this thesis. This allows us to
understand the knowledge of our model and to create a comparable and repeatable
experiment.

7.4.1 Experiment 1: Emotional Attention

To evaluate our emotional attention model and modulator we use two training
strategies: first, we evaluate the attention only model, and later we evaluate the
effect of the attention modulation in the expression recognition task.

To evaluate the emotional attention by itself, we train our model in an emotion-
attention scenario. That means that if no emotion is present, the output of the
model should be no ROI at all, thus the probability distribution for the “no emo-
tion” condition is always 0 for the whole output vector. If one expression is present,
we want the model to trigger higher attention to displayed expressions, meaning
that happy expressions should have a higher probability distribution with respect
to neutral ones. For this purpose, when a neutral expression was present, we pe-
nalized the distribution by dividing the probabilities by 2. This still produced an
attention factor to the neutral expression, but in a smaller intensity than the one
present in the happy expression. Finally, when both expressions were present, the
probability distribution was split into 1/3 to the neutral expression and 2/3 to the
happy expression.

We perform our experiments on two different corpora: the Emotion Attention
corpus and the WTM Emotional Interaction corpus. For both, we perform three
different experiments: one with only the facial expressions, one with only the
body motion and one with both. For the face expression experiments, we pre-
processed the training data by using only the face of the expressions. For the body
movement experiments, we remove the face of the expression and we maintain
the whole expression for the experiments with both stimuli. We performed each
experiment 10 times with a random selection of 70% for each category data for
training and 30% for testing.

For the WTM Emotional Interaction corpus, we assume three different ex-
pressive states: no expression present, mainly no person in the scene, a neutral
expression or an expressive one. An expressive expression could be any expression
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which was not a neutral one.
We used a top-20 accuracy rate measurement. This error rate describes whether

the top-20 activations in one feed-forward step match with the top-20 values of the
teaching signal. We counted how many of the top-20 activations match and then
averaged it. The value of 20 activations translates to 20 pixels of precision, which
was the mean of the size of expression images. Finally, to help us understand
how the model learns to detect expressions, we applied a de-convolution process to
visualize the features of each expression and analyzed the output of the network
for different inputs.

To evaluate the emotion-attention modulation impact, we perform a multi-
modal expression recognition experiment on the FABO corpus and on the KT
Emotional Interaction Corpus, both described in Chapter 4. To evaluate the ex-
pression recognition, we follow the same protocol as presented in Chapter 5. For
the FABO corpus, the expressions are recognized using the 11 emotional labels,
while the WTM Emotional Interaction corpus is evaluated using the six universal
expressions. We selected only the video clips which had more than 2 annotators
agreeing with the same expression. We perform each experiment 30 times, each
time chose the dataset for training (70%)and testing (30%) and take the mean of
the accuracy.

7.4.2 Experiment 2: Affective Memory

To evaluate our memory models we perform experiments using our Emotional
Deep Neural Circuitry without the use of memory modulation. This way, we can
evaluate the use of the growing networks to code expressions with a direct relation
to what was expressed. For this scenario we use the KT Emotion Interaction
Corpus in two different tasks: evaluate the memory for individual subjects and
for individual topics. Each task is evaluated with data from both Human-Human
Interaction (HHI) and Human-Robot Interaction (HRI) scenarios.

The evaluation is done by presenting all the videos to the model, and letting
each memory model learn without restriction. Each neuron on the memories will
code one expression representation, and we proceed to use our MLPs for creating
a valence/arousal and an emotion concept classification. At the end, we have one
Affective Memory for each subject, and one Working Memory for each topic.

We proceed to calculate the intraclass correlation coefficient between the neu-
rons in each memory and the annotators opinion on each of the subjects and each
of the topics. We then calculate the mean of this correlation as a measure of how
far the network memory was from what the annotators perceived.

Integrating the memory modulation in our architecture leads to a different per-
ception and memory encoding. To show how the modulation affects each memory,
we proceed with two analysis experiments: the first one with only mood modula-
tion and the second one with mood modulating the Affective Memory.

We perform both analyses using the same schema as in the previous experi-
ment: for two subjects and three of the topics in both HHI and HRI scenarios, we
proceed to evaluate how each subject performed for each of the topics. This way
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Table 7.1: Reported top-20 accuracy, in percentage, and standard deviation for dif-
ferent modalities and numbers of expressions presented to the model when trained
with the Emotional Attention corpus.

- Top-20 accuracy

No Expression 75.5% (3.2)

Face Body Movement Both

One Expression 87.7% (1.5) 85.0% (2.3) 93.4% (3.3)

Two Expressions 76.4% (2.7) 68.2% (1.4) 84.4% (3.4)

we can evaluate how the development of the dialogue session affected the robot’s
perception.

7.5 Results

7.5.1 Experiment 1: Emotional Attention

Our results for the Emotional Attention corpus are shown in Table 7.1. It is
possible to see that when no expressions were present, the model top-20 error was
75.5%. When no expression was present, the model should output a distribution
filled with 0s, showing that no expression was presented.

After evaluating the model with one expression, we can see how each modal-
ity performs. If only the face was present, the top-20 accuracy was 87.7%. In
this case, the presence of facial expression was effective in identifying a point of
interest. In this scenario, the use of happy or neutral face expressions led to the
strong assumptions of interest regions by the network. When evaluating only body
movement, it is possible to see that there was a slight drop in the top-20 accuracy
rate, which became 85.0%. This was likely caused by the presence of the move-
ments in the image, without identification or clarification of which movement was
performed (either happy or neutral). Finally, we can see that the best results were
reached by the combination of both cues, reaching a top-20 accuracy of 93.4% and
showing that the integration of facial expression and body movement was more
accurate than processing the modalities alone.

Presenting two expressions of two persons being displayed at the same time to
the network caused a drop of attention precision while making clearer the relevance
of using both modalities. Using only facial expressions reached a top-20 accuracy
of 76.4% while using only body movement had 68.2%. In this scenario, the identifi-
cation of the type of expression became important. The distinction between happy
and neutral expression represents a key point, and the facial expression became
more dominant in this case. However, when presenting both modalities at the
same time, the model obtained 84.4% of top-20 accuracy. This shows that both
modalities were better in distinguishing between happy and neutral expressions
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Table 7.2: Reported top-20 accuracy, in percentage, and standard deviation for
different modalities for the WTM Emotion Interaction corpus.

- Top-20 accuracy

No Expression 63.2% (1.2)

Face Body Movement Both

One Expression 96.2% (2.3) 91.0% (1.4) 98.45% (1.2)

with respect to using one modality alone.
The results in the KT Emotional Interaction Corpus are showed in Table 7.2.

It is possible to see a similar behavior, where the combination of body movement
and face obtained a better result, reaching 98.45%. An interesting aspect is that
the “no expression” experiment achieved a low accuracy of 63.2%, mostly due to
the fact that this corpus has very little data with no expression being performed.

The second round of experiments deals with the use of the attention modula-
tion for emotion recognition. Table 7.3 shows the results obtained while training
the attention modulation recognition model with the FABO corpus in comparison
of the common CCCNN architecture. It is possible to see that the mean general
recognition rate increased from 93.65% to 95.13% through the use of the attention
modulation. Although some of the expressions presented higher recognition, ex-
pressions such as “Boredom”, “Fear” and “Happiness” presented slightly smaller
accuracy. A cause for that to happen is that these expressions probably presented
hand-over-face or very slight movements, which were depicted by the CCCNN but
ruled out by the attention mechanism.

Evaluating the CCCNN with and without the attention modulation produced
the results showed on Table 7.4. It is possible to see that the attention mechanism
increased the accuracy of expressions as “Fear”, “Happiness”, and “Sadness” more
than the others. Mostly this happens because this expression presents a high
degree of variety in the dataset, which is easily perceived by the attention model,
and sent to the CCCNN as an important representation.

7.5.2 Experiment 2: Affective Memory

Training our Emotional (deep) Neural Circuitry without memory modulation gave
us a direct correlation between what was expressed and the stored memory. This
means that the memory learned how to create neurons that will code for the
presented emotional concepts. We fed all the videos of the HHI and HRI scenario to
the model and proceed to calculate the interclass correlation coefficient per subject
and per topic between the network representation and each of the annotator’s
labels.

The interclass correlation coefficients per topic for the HHI scenario are pre-
sented in Table 7.5. It is possible to see high correlations for both dimensions,
valence, and arousal, for at least two scenarios: Lottery and Food. These two
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Table 7.3: Reported accuracy, in percentage, for the visual stream channels of the
CCCNN trained with the FABO corpus with and without attention modulation.

Class Without Attention With Attention

Anger 95.9 95.7

Anxiety 91.2 95.4

Uncertainty 86.4 92.1

Boredom 92.3 90.3

Disgust 93.2 93.3

Fear 94.7 94.5

Happiness 98.8 98.0

Negative Surprise 99.6 99.7

Positive Surprise 89.6 94.8

Puzzlement 88.7 93.2

Sadness 99.8 99.5

Mean 93.65 95.13

Table 7.4: Reported accuracy, in percentage, for the visual stream channels of
the CCCNN trained with the KT Emotion Interaction Corpus corpus with and
without attention modulation.

Class Without Attention With Attention

Anger 85.4 89.7

Disgust 91.3 91.2

Fear 79.0 81.2

Happiness 92.3 94.5

Neutral 80.5 84.3

Surprise 86.7 87.9

Sadness 87.1 90.2

Mean 86.0 88.4

scenarios were the ones with a stronger correlation also within the annotators, and
possibly the ones where the expressions were most easily distinguishable for all the
subjects. The emotion concept correlation also shows a strong agreement value for
these two scenarios, while showing a slight disagreement on the School scenario.

The correlation coefficients for the HRI scenario are presented in Table 7.6. It
is possible to see that, similarly to the HHI scenario, the topics with the highest
correlation were Lottery and Food, while the lowest ones were Pet and Family.
Here the correlation values are slightly smaller than in the HHI scenario, indicating
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Table 7.5: Interclass correlation coefficient of our Emotional (deep) Neural Cir-
cuitry per topic in the HHI scenario.

Characteristic Lottery Food School Family Pet

Valence 0.65 0.64 0.41 0.67 0.57

Arousal 0.67 0.72 0.42 0.56 0.49

Emotional Concept 0.84 0.71 0.47 0.52 0.53

Table 7.6: Interclass correlation coefficient per topic in the HRI scenario.

Characteristic Lottery Food School Family Pet

Valence 0.78 0.67 0.31 0.58 0.47

Arousal 0.72 0.61 0.57 0.49 0.42

Emotion Concept 0.79 0.75 0.62 0.51 0.57

Table 7.7: Interclass correlation coefficient of our Emotional (deep) Neural Cir-
cuitry per subject in the HHI scenario.

Session 2 3 4 5

Subject S0 S1 S0 S1 S0 S1 S0 S1

Valence 0.63 0.54 0.67 0.59 0.69 0.67 0.54 0.59

Arousal 0.55 0.57 0.67 0.59 0.67 0.60 0.57 0.53

Emotional Concepts 0.79 0.67 0.74 0.79 0.61 0.74 0.67 0.59

Session 6 7 8

Subject S0 S1 S0 S1 S0 S1

Valence 0.57 0.61 0.64 0.61 0.49 0.68

Arousal 0.54 0.61 0.50 0.87 0.71 0.84

Emotional Concepts 0.68 0.87 0.68 0.63 0.64 0.76

that for these expressions were more difficult to annotate, which is reflected in our
model’s behavior.

The correlation coefficients calculated on the Affective Memory for the HHI
scenario are showed in Table 7.7. Here, it is possible to see that for most of
the subjects, the network presented a slightly good correlation, while only a few
presented a very good one. Also, it is possible to see that the correlations obtained
by the emotion concept were again the highest.

For the subjects in the HRI scenario, the correlation coefficients are presented in
Table 7.8. It is possible to see that, different from the HHI scenario, the correlation
between the model’s results on recognizing emotion concepts and the annotators
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Table 7.8: Interclass correlation coefficient of our Emotional (deep) Neural Cir-
cuitry per subject in the HRI scenario.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9

Valence 0.58 0.42 0.67 0.59 0.42 0.80 0.45 0.61 0.78

Arousal 0.52 0.62 0.57 0.60 0.67 0.62 0.59 0.48 0.58

Emotional Concept 0.74 0.57 0.62 0.61 0.57 0.59 0.57 0.69 0.72

are rather small, showing that for this scenario the network could not represent the
expressions as well as in the HHI scenario. The other dimensions show a similar
behavior, showing that our Affective Memory can learn and represent subject
behaviors in a similar manner as the annotators perceived them.

7.6 Discussion

In this chapter we presented two different emotional modulators: attention and
memory. These modulators were combined with our perception and representa-
tion models, and we introduce our Emotional Deep Neural Circuitry. This model
was used in different tasks, from emotion expression recognition to human behav-
ioral description, and interaction analysis. Although we showed how the model
behaved in this tasks, a deeper analysis on the model’s representation helps us to
understand better the behavior of our architecture.Thus, the sections below dis-
cuss two properties of our model: different emotional attention mechanisms, and
the effect of memory modulation.

7.6.1 Emotional Attention Mechanisms

In our emotional attention model, we are using probability distributions based on
image regions for the target output values. During the training, do not rely on
a discrete teaching signal such as target labels that shape the filters into finding
determined structures, as in traditional CNN-based approaches.

Instead, the model implicitly learns that a determined structure is in the region
of interest, in agreement with the teaching signal. Because of that and the challenge
of the localization task, our model takes a longer time to train, requiring more
than a common classifier. On the other hand, the structures that the model learns
to filter are not strongly labeled, and by visualizing this knowledge using the
deconvolution process presented in Chapter 4, we are able to identify how the
network learned to localize expressions and to identify different expressions.

Another interesting aspect of our architecture is how it behaves when different
combinations of stimuli are presented. Our teaching signal determines the loca-
tions where expressions are displayed, but it also provides information on which
expression to focus on. We showed this in a scenario with only one expression being

136



7.6. Discussion

Figure 7.8: Example of the output of the model, when one “Happy” expression
was presented. The input image values were multiplied by the network output
values along the corresponding axes resulting in the illustrated region of interest.

displayed (Figure 7.8). We can see how the model detected the expression on the
x- and y- axes, and how the shape of the output distribution changes depending
on the size of the area displaying an expression.

In a second example, we used two expressions as input: one “Happy” and
one “Neutral” expression. The output of the network changed in this scenario,
and instead of a clear bump, it produced a wider distribution with a smaller bump
showing where the neutral expression was located. Figure 7.9 illustrates this effect:
the network correctly focuses on the happy expression.

Lastly, we evaluated the performance of the model in a scenario where two
“Happy” expressions were presented, with one being more expressive than the
other. In this case, the network chose to focus on the most expressive one. Figure
7.10 illustrates this process. It is possible to see on the x axis that the network has
two clear bumps, but a bigger one for the most expressive expression. On the y
axis, the network produced a larger bump, large enough to cover both expressions.

7.6.2 Memory Modulation

In our experiments with the Emotional Deep Neural Circuitry, we evaluated how
the network behaves without the memory modulation. To evaluate how the mod-
ulation changes the learned representations, we proceed to show one full dialogue
interaction to the model, containing one subject and one topic. We proceed with
the evaluation on two subjects, 5 6 and 5 4, of the HHI scenario, with videos for
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Figure 7.9: Example of the output of the model, when two expressions, “Happy”
and neutral, were presented. It is possible to see that the model tends to detect
both expressions, but has a stronger activation on the “Happy” one.

Figure 7.10: Example of the output of the model, when two “Happy” expressions
were presented. The emotion which produced the higher activation peak gets
primarily highlighted in the region of interest.
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Figure 7.11: Illustration of the effects of memory modulation from the Mood Mem-
ory in the Affective Memory for two subjects in the Food and Pet scenarios.

the topics School and Pet. Figure 7.11 illustrates the arousal, valence and emo-
tional concepts of the neurons for the Affective Memory, Mood Memory and an
Affective Memory with mood modulation for this experiment.

It is possible to see that the Mood Memory contains much less information,
however, code for the general behavior of the scene. On subject 5 6 it is possible
to see that the Mood Memory codes information with very similar arousal, valence
and emotional concepts. When used as a modulator, what happens is that the
amount of information decreases drastically, however, the structure and amplitude
of the three dimensions do not change much.

We proceed then to investigate only one subject, 2 7, but in two different topics
in the HRI scenario: Food and Pet. It is possible to see again how the Mood
Memory reduced the perceived information, while keeping the same topological
structure. In the Pet topic, the Mood Memory had very little coded information,
and thus had a stronger effect on the modulated Affective Memory. This happens
due to the fact that this interaction was much shorter than the others, presenting
to the network fewer expressions. When a larger amount of expressions are present,
as in the Food topic, the network tends to behave better, as the Mood Memory
has more information to update.
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Figure 7.12: Illustration of the effects of memory modulation from the Mood Mem-
ory in the Affective Memory for two subjects in the School and Pet scenarios.

7.7 Summary

Our last model deals with the integration of different modulation mechanisms
to improve the emotion concept learning and representation. The first of these
mechanisms was an emotional attention model. This model introduces the use of
Convolutional Neural Networks (CNNs) for localization tasks, using the convolu-
tional filters to identify where, in an input image, an expression is being performed.
By visualizing the model’s internal representation, we showed that this network
learned, implicitly, how to represent face expressions and body movements in dif-
ferent filters. We use these filters as modulators for our Cross-Channel Convolu-
tional Neural Network (CCCNN) architecture, which improved the capability of
the model to recognize visual expressions.

The second modulation mechanism proposed in this chapter was a memory
model. Using Growing When Required Networks (GWR), it was possible to in-
troduce a novel emotional memory to the network, which could be adjusted to
learning and forgetting in different time steps. This allowed us to create individual
memories which are related to particular persons, situations and periods of time,
simulating different affective memory mechanisms.

Using the attention and memory modulations, we introduced the Emotional
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Deep Neural Circuitry which integrates our multimodal expression representation
model and the attention and memory modulation. Such model was used in different
emotional behavior analysis task using the KT Emotional Interaction corpus, and
the results showed that our model could represent complex emotional behavior
from different users and situations. With this model, we were able to describe the
interactions present in the corpus, and identify differences between subjects and
different human-human and human-robot interactions.
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Chapter 8

Discussions and Conclusions

Emotions are present in several different parts of our lives. They are present when
we communicate with each other, when we learn and experience new things, and
when we remember past events, for example. Our understanding of emotions is
still in the beginning, and it is an interdisciplinary topic ranging from philosophy
to neuroscience and robotics. In particular, the development of such concepts and
ideas in autonomous intelligent systems is still an open field, with several different
problems to be solved. This thesis aims to address some of these problems, by using
different computational models inspired by behavioral and neural mechanisms.

This chapter shows a discussion on how each of the models presented in this
thesis addresses each of the proposed research questions, limitations and future
works, and the final conclusions.

8.1 Emotion Representation

The first question addressed by this thesis is: “Can a deep neural network represent
multimodal spontaneous human expressions?”. People express themselves differ-
ently, depending on many different factors. The same person can display happiness
differently in the morning, when he sees a bird singing, or in the afternoon, when
meeting with a close friend. Although the six universal emotions [81] are said to
be understandable independent of cultural background, the expression itself can
be very person dependent. Adding this to the fact that the perception of such
expressions is a multimodal problem, involving, among others, auditory and visual
systems, to represent these expressions in an artificial system is a challenging task.

Several different expression descriptor computational models were proposed
and evaluated, as discussed in Chapter 3, however, most of them have severe
limitations: not being able to deal with multimodal information [307], spontaneous
expressions [186] or different subjects [1]. Such limitations occur mostly because
the models heavily rely on very extensive feature pre-processing techniques [283]
which post substantial restrictions: using the same lighting conditions, having a
low number of subjects, noise-free data, among others.

To address our question, and minimize the limitations showed in the presented
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research, our model, introduced in Chapter 5, implements a Cross-Channel Con-
volutional Neural Network (CCCNN), which can learn implicit features from mul-
timodal data using different modality-specific channels. Our model is based on
Convolutional Neural Network (CNN) [179], which were evaluated in different emo-
tion expression recognition tasks [149, 204]. Such models showed an improvement
in the capacity of dealing with spontaneous expressions because such networks
learn how to represent the input stimuli, without relying on human knowledge [1].
However, these models usually need a large amount of data to learn general repre-
sentations [302]. Another known problem is that such models rely on many neural
connections to learn how to represent the input stimuli, and by using multimodal
information the number of neurons necessary to obtain a general representation
tends to increase, making it harder to train the network [274].

In the CCCNN, we designed specifics channel to process independent modality
streams, in a structure that resembles the ventral and dorsal stream in the visual
and auditory cortices of the brain [111]. This architecture helps to induce specific
filters for each modality, reducing the number of neurons in the architecture. Each
modality-specific channels use a Cross-channel layer to integrate the multimodal
representation. This architecture uses the high-level feature abstraction obtained
by each of the specific channels to create a multimodal representation without
the necessity of using many convolutional layers. We also introduced the use of
shunting inhibitory neurons in our model, in a way to force a high specialization
on our face expression channel, which improved the expression representation.

In our evaluations, we showed that the CCCNN performed well in different
emotion expression recognition tasks: individual visual and auditory modalities
processing, multimodal streams representation, acted and spontaneous expression
recognition. In each of these tasks, the CCCNN presented competitive, and in
some cases even better results when compared to state-of-the-art techniques. Our
network was shown to have a high degree of generalization, being able to use
transfer learning principles to create robust expression representations.

By providing analyses on the CCCNN internal learned representation, we gain
important insight into the networks’ behavior. We could show that the network
specialized specific regions of neurons which react to particular features in the
input. We could demonstrate that the network had a hierarchical behavior on
feature representation, showing very low-level features, such as lines and motion
direction in the first layers and complex facial structures and movement patterns
in deeper ones. The visualizations help us to understand why our network can
generalize so well, and how it learns multimodal expressions.

Our CCCNN demonstrated that a deep neural network was able to learn how
to represent multimodal expressions. The model introduced the use of modality-
specific channels, shunting inhibitory neurons and Cross-channels, which made the
learned features more robust than ordinary CNNs. These mechanisms made our
model able to recognize multimodal spontaneous expressions with a high degree of
generalization and introduced the use of implicit feature representation, extending
the concept of automatic emotion recognition systems.
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8.2 Emotional Concept Learning

Once we introduced our robust multimodal spontaneous expression descriptor
model, we proceed to address our second question: “How to learn different emo-
tional concepts from multimodal spontaneous expression representations?”. Emo-
tions can be represented by different concepts, as presented in Chapter 2: using
categorical labels [240] or dimensional values [13], as arousal and valence. Al-
though these concepts are used in various tasks, both can be used to represent
emotion expressions, with their contextual information. This means that while
the categorical labels give a universal meaning for the expression (Happy, Sad, or
Surprised one), the dimensional representation tries to remove the cultural and
personal context when representing it. This would make a smile be represented by
different persons the same way using a dimensional approach, but interpreted as
different emotional concepts based on the person’s experience and background.

To approach this problem, we introduce the use of a self-organizing layer at-
tached to our Cross-Channel Convolutional Neural Network (CCCNN), as detailed
in Chapter 6. In Chapter 5, we showed that the CCCNN learned how to repre-
sent multimodal expressions in a hierarchical way, and we use this property as a
basis for our emotional concepts learning model. Then, we extend the model by
adopting a self-organizing layer, which creates neural clusters to represent different
emotion concepts.

The CCCNN uses a feedforward connections to create a separation space and
classifies different expressions into categorical emotions. Replacing these connec-
tions with a self-organizing layer [163], we give the model the capability to learn
how to represent similar expressions into clusters. The self-organizing layer is
trained unsupervised, which means that the network itself identifies how similar
the expressions are, and represent them with neighboring neurons. These neural
clusters are used as a topological representation of the network’s knowledge, and
they can be understood in different contextual tasks. This means that neighboring
neurons can be used to represent an emotional category, such as Happy or Sad, or
to identify similar expressions, such as a calm smile or an open mouth scared face.

We evaluate our model in three different tasks: emotion categorical classifica-
tion, emotional concept learning, and behavioral analysis. The classification task
showed that the neural clusters are more reliable in determining emotion concepts
than categorical emotions-based systems, and showed better recognition and gen-
eralization capabilities. This happens because the clusters introduce neighboring
neurons that represent similar input, which means that each neuron is trained to
adapt its knowledge to similar expressions. As the network is trained unsuper-
vised, the network learning process is not biased by any emotional concept and
each cluster represents different expressions and not necessarily emotion categories.
This gives the model the capability to learn expressions and not emotion concepts.
However, the model can be used in tasks where emotion concepts are important,
such as emotion recognition tasks, by selecting clusters which better represent the
necessary concepts.

Our emotional concept learning experiments showed that the neural clusters
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could be used to learn and represent humans interactions in different scenarios.
Each neuron in the self-organizing layer acts as a prototype expression, meaning
that each neuron indicates how the network represents what it was presented. We
evaluate the capability of the network to learn new expressions by visualizing how
different clusters were formed and which neurons were triggered. The network
was able to represent different emotional concepts, and the topological structure
showed to be consistent with both emotional categories representation [240] and
dimensional ones [13].

We demonstrated how the network could be used on an interaction analysis
task. By identifying different clusters and prototype neurons, we showed how
different subjects behaved when expressing the same emotions. This visualization
helped us to describe patterns of the human’s behavior, identifying how different
the subjects expressed differently while trying to express happiness or sadness, for
example.

Our second model shows that we can learn and represent different emotional
concepts, expand the idea of emotion recognition. The use of self-organizing un-
supervised networks allows our model to learn from the CCCNN representations
without the necessity of any label, and how to create similar emotional concepts.
The evaluation of the network showed that it could learn new expressions, adapting
its internal knowledge to never seen data, and it can be used in different emotional
analysis tasks

8.3 Attention and Memory Modulation Integra-

tion

The last question addressed by this thesis is: “How to adapt attention and mem-
ory mechanisms as modulators for emotion perception and learning?”. Attention
is one of the most important modulators in human perception, and it is present in
several other processing mechanisms, and emotional attention was shown to influ-
ence what and how we perceive the environment around us, as detailed in Chapter
3. Emotional memory also has an important role in modulating different processes,
from perception to recognition and learning. The presence of these mechanisms
enhance the way humans deal with emotional experiences, and introducing them
to affective computing models could increase their robustness in representation,
recognition, and generalization.

We introduce the use of an emotional attention model and different emotional
memory architectures, all presented in Chapter 7. Besides their main tasks, as
attention and memory models, we introduce them in a modulation architecture,
which enhanced the capability of our Cross-Channel Convolution Neural Network
(CCCNN) and self-organizing layer to learn, represent and recognize emotional
expressions.

First, we introduced our emotional attention model, which is implemented
based on Convolution Neural Networks (CNN). Usually, CNNs have expertise on
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classification tasks, but not yet explored for localization and attention scenarios.
We introduce the use of a CNN for a visual region of interest determination. How-
ever, we adapt it for emotional attention tasks. Our model learned, without any
enforcement, how to differ face expressions from body movements, and how to use
this information to determine happy and sad expressions from neutral ones.

Our attention model was able to learn how to identify different expressions,
without the use of emotion categories. Also, the model could identify when more
than one expression was presented, representing them with different activation
intensities. That means that the model learned, implicitly, how to determine
neutral expressions from happy or sad ones, and even detect when both happens
together.

By visualizing our attention model, it was possible to see that it learned how to
represent face expressions and body movements in different parts of the network.
The hierarchical structure of the CNN allowed the model to specify different filters
in describing high-level facial and movement features. We proceed to integrate
this model to our CCCNN, using such filters as a modulator for our facial and
movement specific channels. First, we use the region detected by the attention
model as input for the CCCNN, and then we use feedback connections between
the attention model’s specific filters and the CCCNN channels. By doing this, we
were able to improve the recognition capabilities of the CCCNN, and to present an
integrated model which can detect and recognize emotion expressions in an entire
visual scene.

Our memory model is based on unsupervised Growing-When-Required (GWR)
networks [206]. Such networks are used to represent perceived expressions, and
their ability to learn and forget learned concepts is the basis of our architecture.
We proceed to create several GWRs, one representing a different type of mem-
ory with different forgetting factors. This gives our model a robustness to learn
different expressions from several persons and scenarios or to create its internal
representation based on specific events. This allows us to have specific emotional
memories for a particular person, a place, or a period of time.

Integrating all these models, we propose an Emotion Deep Neural Circuitry.
Such circuitry connects our CCCNN, with the attention modulator, with different
types of memories. We introduce a memory modulator to be used to improve
the model’s representation by adapting it to different persons, scenarios or even
the system’s mood. This system was able to identify complex behavior in various
human-human and human-robot interactions, and enhanced the perception capa-
bilities of the model. Also, the use of the modulators improved the generalization
and recognition capabilities of the CCCNN.

Our Emotional Deep Neural Circuitry was evaluated in several different tasks:
from recognition to localization and memory storage. Analyses on how the net-
work learned several emotional concepts from various persons and the role of the
modulators showed that our model could be used in very complex emotional anal-
yses tasks. The model integrates different aspects of emotions in an unsupervised
architecture which can adapt itself in an online fashion, moving a step closer to
real-world scenarios.
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8.4 Limitations and Future Work

The models and ideas presented in this thesis were evaluated in several differ-
ent tasks, however, to provide their use in a real-world scenario, the proposed
techniques need to be refined in several directions. Currently, the model cannot
be deployed in most of the robotic platforms as it needs high-end computational
hardware to be trained. The amount of data necessary for a real-world generaliza-
tion is enormous, and the data used during the evaluation of the model restricts
its use in such cases.

The use of recurrent models for feature extraction and learning is encouraged
and the study of how such models affect the learned representation would provide
valuable information about the model. A deeper analysis of the auditory represen-
tations will be necessary, to understand how the model learns emotional auditory
features. Adapting the model to learn from raw audio signals would be the ideal.

The self-organizing layers provide an associative relation between the visual
and auditory modalities of the CCCNN. However, our current model does not deal
with information conflict. Adding such mechanism would increase the robustness
and the capability of the model to learn multimodal expressions.

Our attention system does not take into consideration auditory information,
which could increase the model’s accuracy. Similarly to the self-organizing layers,
such a model could make use of conflict solving mechanisms to deal with the
presence of conflicting attention information found in real world scenarios.

The analysis of our model could be expanded to several different levels. From
the representation of memory, we encourage to study how the mechanisms proposed
here behave when facing complex outdoor scenarios. The development of such
model is not bounded by any constraint, and the update of different concepts
proposed here, if beneficial to the model, is also encouraged.

8.5 Conclusions

In conclusion, this thesis contributes to the affective computing field demonstrating
how different emotional concepts can be integrated. Dealing with spontaneous
multimodal expression is hard, but the use of deep neural models which learn how
to create better expression representations showed to be a good solution. The use of
self-organizing networks to learn different emotional concepts provided the model
with interesting properties, which are not common in the works on the field, such as
learning of new expressions. The use of emotional attention and memory gave the
proposed models a robustness on dealing with very complex behavioral scenarios,
and enhanced their recognition and generalization capabilities, contributing to the
affective computing field.
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KT Emotional Interaction Corpus

This appendix shows the plots for the complete analysis on each of the topics of the
KT Emotional Interaction Corpus. The first two plots, displayed in Figures A.1
and A.2 display how the annotators evaluated the behavior of the subjects while
performing the dialogues of each of the topics. The analysis of how the annotators
evaluated each subject behavior are displayed on the plots of Figures displayed in
Figures A.3 and A.4 for HHI scenarios and Figures A.5 and A.6 for HRI scenarios.
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Figure A.1: Plots that shows the distribution of annotations for the HHI scenario,
separated by topics. The x axis represents valence, and the y axis represents
arousal. The dot size represents dominance, where a small dot is a weak dominance
and a large dot a strong dominance.
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Figure A.2: Plots that shows the distribution of annotations for the HRI scenario,
separated by topics. The x axis represents valence, and the y axis represents
arousal. The dot size represents dominance, where a small dot is a weak dominance
and a large dot a strong dominance.
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Figure A.3: Plots that shows the distribution of annotations for the HHI scenario,
separated by Subjects. In this figure, the first 8 subjects are shown. The x axis
represents valence, and the y axis represents arousal. The dot size represents
dominance, where a small dot is a weak dominance and a large dot a strong
dominance.

Figure A.4: Plots that shows the distribution of annotations for the HHI scenario,
separated by Subjects. In this figure, the last 7 subjects are shown. The x axis
represents valence, and the y axis represents arousal. The dot size represents
dominance, where a small dot is a weak dominance and a large dot a strong
dominance.
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Figure A.5: Plots that shows the distribution of annotations for the HRI scenario,
separated by Subjects. In this figure, the first 6 subjects are shown. The x axis
represents valence, and the y axis represents arousal. The dot size represents
dominance, where a small dot is a weak dominance and a large dot a strong
dominance.

Figure A.6: Plots that shows the distribution of annotations for the HRI scenario,
separated by Subjects. In this figure, the last 3 subjects are shown. The x axis
represents valence, and the y axis represents arousal. The dot size represents
dominance, where a small dot is a weak dominance and a large dot a strong
dominance.
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