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Abstract—Emotions are related to many different parts of our
lives: from the perception of the environment around us to differ-
ent learning processes and natural communication. Therefore, it
is very hard to achieve an automatic emotion recognition system
which is adaptable enough to be used in real-world scenarios.
This paper proposes the use of a growing and self-organizing
affective memory architecture to improve the adaptability of the
Cross-channel Convolution Neural Network emotion recognition
model. The architecture we propose, besides being adaptable to
new subjects and scenarios also presents means to perceive and
model human behavior in an unsupervised fashion enabling it to
deal with never seen emotion expressions. We demonstrate in our
experiments that the proposed model is competitive compared
with the state-of-the-art approach, and how it can be used in
different affective behavior analysis scenarios.

I. INTRODUCTION

One of the most desired characteristics of autonomous
computational models is the ability to respond to social
interactions, mostly through the perception and expression
of affective behavior [1]. Giving a computational system
the capability to perceive affective components on different
experiences would change how it interacts with persons in a
particular scenario [2]. A simple example is a robot which
is capable of determining the affective state of persons in a
room and use an estimation as part of its own decision-making
process, in a similar way as humans do [3]. This capability
could be part of a higher-level cognition process, which can
enhance the interaction skill, or even create moral discernment
about the information that the robot is receiving.

The first step towards using emotion understanding in
autonomous systems is to give them the capability to per-
ceive emotional behavior. In this sense, the area of affective
computing was introduced in the 1990s [4] and is presents
different solutions to introduce emotion concepts in compu-
tational systems. Early works in this field show solutions on
emotion perception, mostly in the sense of creating universal
descriptors for visual [5] and auditory streams [6]. Most of
this work was based on the psychological research of Ekman
et al. [7], which introduced the concept of universal emotions.
In their study, they showed that there are six emotions which
can be understood by any person, independent of the person’s
age, gender or cultural background: “Disgust”, “Fear”, “Hap-
piness”, “Surprise”, “Sadness” and “Anger”.

Given the complexity of human emotional behavior, the
early solutions on affective computing were usually restricted

to a certain domain, such as static images, simple backgrounds
or lighting conditions and could not be generalized to a
natural communication scenario. This can be explained by the
fact that, in a natural communication, a person will show a
spontaneous behavior which can aggregate more than one of
the characteristics of the universal emotions but also some
unknown behavior, increasing the complexity of the task [8].

Recent research in affective computing approaches the topic
from different perspectives, approximating their solutions to
how the human brain processes and interprets emotions [9],
[10]. These models can usually deal with complex tasks, such
as recognizing emotion expressions from multimodal streams
[11], and even spontaneous expressions [12], [13]. However,
such models still have strong constraints: they suffer from poor
generalization, need high computational resources or cannot
adapt to different scenarios or situations.

The human brain has the capability to associate emotion
characteristics with different persons, objects, places and ex-
periences [14]. This capability helps us to perceive different
affective behavior better from others, but also increases our
capability to adapt and learn different emotion states. These
affective characteristics of memories are used by our brain
to identify for example when a person is lying, or when a
situation is dangerous, and to generalize this knowledge to new
persons or situations [15]. Together with the ability to identify
spontaneous expressions, the use of such affective memories
can help us to increase our perception of different emotional
behavior [16].

One of the most common constraints on recent work on
affective computing is a restriction to learn and adapt to new
information. In previous work [17], we introduced the use of
self-organizing networks to increase the learning capability of
our deep learning emotion recognition system. Our system
uses the capability of convolutional neural networks to learn
how to create a representation of visual-auditory expressions
and introduces the ability to learn different emotion concepts
with a self-organizing layer. This model showed the capability
to recognize spontaneous expressions. However, by using a
self-organizing layer with fixed topology, the model has a
restrictive memory capacity.

In this paper, we propose an extension to this model, by us-
ing Growing-When-Required (GWR) self-organizing networks
to expand the capability of the model to learn new emotion
concepts. We also present a new model for affective memory,
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Fig. 1. Final crossmodal architecture, which extracts features from the visual and the auditory input and classifies them in emotion expressions. We connect
the outputs of each stream to a fully connected hidden layer and then to a softmax layer, which will give us a classification probability.

which gives our previous model the capability to learn from
different subjects, scenarios, and situations in a dynamic way,
with very few restrictions.

To evaluate our model we use two corpora: the first one
is the dataset for the Emotions-in-The-Wild challenge [18],
which contains scenes from different movies. This dataset is
used to evaluate the performance of our model in determining
spontaneous and natural expressions. We then proceed with
the recording of the second corpus with different human-
human interactions. Two humans improvise a discussion about
a certain topic, and we use our affective memory model to
capture different emotion behavior within the topics.

II. LEARNING CROSSMODAL EMOTION CONCEPTS

To classify spontaneous emotion expressions properly, first,
the observation of various different modalities is necessary.
Second, the concept of the universal emotions itself is not
precise, and the idea of classifying what another person is
expressing based on very strict concepts makes the analysis
of such models difficult.

Dealing with such a set of restricted emotions is a serious
constraint to affective computing systems. Humans have the
capability to learn emotion expressions and adapt their internal
representation to a newly perceived emotion. This is explained
by Hamlin [19] as a developmental learning process. Her
work shows that human babies perceive interactions as two
very clear directions: positive and negative. When the baby is
growing, this perception is shaped based on the observation
of human interaction. Eventually, concepts such as the five
universal emotions are formed. After observing individual
actions toward others, humans can learn how to categorize
complex emotions and also concepts such as trust and empathy
[20], [21].

To deal with multimodal spontaneous expressions, we make
use of the Cross-channel Convolution Neural Network (CC-
CNN) and use a self-organizing layer to learn new emotion
concepts [17]. In this paper, we extend the self-organizing
layer by the means of a Growing-When-Required network
(GWR) [22]. This network has the capability to expand and
contract its topology, and thus has an unrestricted potential to
learn new emotion information.

A. Cross-channel Convolution Neural Network

Spontaneous expressions are composed of multimodal and
non-standardized concepts, and thus are very difficult to model
in a computational solution. Face expressions, movements,
and auditory signals contribute, and have been shown to
be necessary [23] for a higher-level understanding of more
complex emotion behavior. To be able to represent multi-
modal spontaneous expressions, we make use of the Cross-
channel Convolution Neural Network (CCCNN) architecture.
The CCCNN has several channels, each one representing
one determined modality and composed of an independent
sequence of convolution and pooling layers.

Our implementation is composed of two main streams: a
visual and an auditory one. Each stream is divided into two
specific channels: a face and a movement one for the visual
stream and a music and speech one for the auditory stream. In
the last layer of each stream, a Cross-channel creates a high-
level representation of the two specific channels, and this is
then used as a representation of the multimodal expression.

We connect each Cross-channel with a fully connected
hidden layer, with 500 units, which is then connected to a
softmax layer. This way, each modality, visual and auditory,
has its own high abstraction level representation preserved.
Figure 1 illustrates our final architecture.

1) Visual Stream: Our visual stream is inspired by the
primate visual cortex [24] with the two channels. The first
channel is responsible for learning and extracting information
about the facial expression, such as contour, shapes, textures
and poses, and it is directly related to the encoding of informa-
tion found in the ventral area of the primate visual cortex. The
second channel learns how to code orientation, direction, and
speed of body movements, similar to the information coded
by the dorsal area of the primate visual cortex.

Our Face channel receives a cropped face of the person,
which is done using the Viola-Jones algorithm. This channel
is composed of two convolution and pooling layers, where
the first convolution layer implements 5 filters with cubic
receptive fields, each one with a dimension of 5x5x3. The
second layer implements 5 filters, with a dimension of 5x5,
and a shunting inhibitory field. The cubic receptive field allows
the model to process sequential information, and the shunting
inhibitory field was shown to improve the specification of the



features extracted in that layer [17]. Both layers implement
2x2 pooling. Each cropped face is resized to 50x50 pixels,
and we use a total of 9 frames to represent an expression.

Our Movement channel receives a movement representation,
which is obtained by subtracting 10 consecutive frames and
generating one movement representation [25]. This channel
implements three convolution and pooling layers, where the
first convolution layer implements 5 filters with cubic receptive
fields with dimensions of 5x5x3. The second and third channel
implement 5 filters, each one with a dimension of 5x5 and all
channels implement max-pooling with a receptive field of 2x2.
The movement images are resized to a size of 128x96 pixels,
and we use a total of 3 motion representations together.

In the last layer of our visual channel, we use a Cross-
channel with 10 convolution filters, each one with a dimension
of 3x3 and a max-pooling with a receptive field of 2x2. We
have to ensure that the input of the Cross-channel has the same
dimension, to do so we resize the output representation of the
Movement channel to 9x9, the same as the Face channel.

2) Auditory Representation: Our auditory stream is also
composed of two channels: a Music channel and a Speech
channel. This is also inspired by how the ventral and dorsal
areas of the brain process different auditory information [26].
While the ventral stream deals with speech information, the
dorsal one maps auditory sensory representation. In earlier
stages within the dorsal stream, the auditory information is
decomposed into a series of signals which are not connected
to phonetic information.

To specify the speech channel, we feed this channel with the
extracted Mel-Cepstral Coefficients (MFCC) of the auditory
information. Evidence [27] shows that the use of MFCC is
suitable for speech representation, but does not provide much
information when describing music. MFCCs are described as
the coefficients derived from the cepstral representation of
an audio sequence, which converts the power spectrum of
an audio clip into the Mel-scale frequency. The Mel scale
showed to be closer to the human auditory system’s response
than the linear frequency [28]. This channel is composed of
three layers, each one with one-dimensional filters. The first
has 5 filters, with a dimension of 1x3, the second one has 10
filters with a dimension of 1x3 and the third one 20 filters
with a dimension of 1x2. All three layers apply pooling with
a receptive field of 1x2.

When trying to describe general music information, spectral
representations, such as power spectrograms, showed good
results [29]. Power spectrograms are calculated from smaller
sequences of audio clips, by applying a discrete Fourier
transform in each clip. This operation describes the distribution
of frequency components on each clip and we use it as input
for our Music channel. The Music channel is composed of
two layers, the first one with 10 filters, and each one with
a dimension of 5x5. The second layer has 20 filters, with
a dimension of 3x3. Both layers implement pooling, with a
receptive field of 2x2. The Speech channel is composed of
three layers, each one with one-dimensional filters. The first
has 5 filters, with a dimension of 1x3, the second one has 10

filters with a dimension of 1x3 and the third one 20 filters
with a dimension of 1x2. All three layers apply pooling with
a receptive field of 1x2.

The Cross-channel applied to our Auditory stream has
one layer, with 30 filters, each one with a dimension of
2x2, without the application of pooling. To be able to use
the Cross-channel, both channels must output data with the
same dimensions and our results showed that resizing the
Music channel output produced better performance. This can
be explained by the fact that the Speech channel depends
strongly on the non-locality of the features due to the MFCC
representation.

B. Emotion Expression Learning

In the original proposition of the CCCNN with a self-
organizing layer, a Self-Organizing Map (SOM) was used to
learn emotion concepts. SOMs are neural networks trained
in an unsupervised fashion to create a topological grid that
represents the input stimuli. In a SOM, each neuron is trained
to be a prototype of the input stimuli. So, after training, each
neuron will have a strong emotion representation and neurons
which are neighbors are related to similar expressions. This
means that, after training the SOM with emotion expressions,
regions of neurons will code similar expressions representing
an emotion concept. For example, a cluster of neurons can be
related to a “Happy” expression, while another cluster can be
related to “Sad” expressions.

The knowledge of the SOM is represented by its topology,
which is fixed. That means that although it is possible to
create neural clusters, the SOM will be limited on what it
can learn. To learn new information, the topology of the SOM
has to be changed and it has to be re-trained. To overcome
this limitation, we use a Growing-When-Required Network
(GWR) [22].

In a GWR, neurons are added only when necessary, and
without any pre-defined topology. This allows the model to
have a growing mechanism, increasing and decreasing the
number of neurons, and their positions, when required. This
makes the model able to represent data with an arbitrary
number of samples and introduces the capability of dealing
with novelty detection. Similar to a SOM, the GWR also uses
best-matching units (BMU) to identify which of the model’s
neuron has the most similar representation to a certain input.

The behavior of the GWR when iterating over a training
set shows the emergence of concepts. In the first epochs the
network has an exponential grow in the number of neurons,
but after achieving a topology that models the data, it mostly
converges. This behavior changes when a new set of training
samples is presented to the network. If that new set does not
match with some particular region of the network, the model
adapts to the new data distribution, forgetting and removing
old neurons when necessary, and creating new ones. That gives
the model a similar behavior to the formation and storage of
memory in the brain [30].

The GWR gives our model three important new character-
istics: (I) it removes the limitation on the number and topo-



Fig. 2. We proceed to train a Perception GWR, which will maintain our
entire representation of multimodal emotion expression perception. The figure
illustrates the general network trained with emotion expressions from all our
corpora, in the first training cycle on the left, and after 100 ones on the right.

logical structure of the neurons, (II) increases the capability of
novelty detection adapting to new expressions the moment they
are presented to the network, and lastly, but most important,
(III) it has the capability to learn and forget concepts. That
means that we can use our GWR to learn how to associate
different expression modalities, identify and learn never seen
expressions and cluster them into new emotional concepts, and
forget concepts which are not important anymore.

We proceed to implement a GWR (Perception GWR) that
represents the general knowledge of our perception architec-
ture, composed of the CCCNN, and is able to identify several
different types of expressions. We train this Perception GWR
with different expression representations coming from the
cross-channel layer of the CCCNN in a way that it produces
the most general representation as possible. Figure 2 illustrates
our Perception GWR in the first interaction of a training
routine, on the left, and in the last interaction, on the right. It
is possible to see that the network created clusters by itself,
as we do not enforce any topological structure.

III. AFFECTIVE MEMORY

Although much research on emotion has been done in the
past centuries, there is no consensus in the literature on how to
define it. The term emotion evolved from the idea of passion
around the 16th century [31], and since it can be defined as
different concepts such as intense feelings towards another
person [32], the current mental state of an entity [33] or even
a set of physical and physiological responses to a particularly
meaningful event [34]. The latter definition goes further and
defines emotion into three different constructs:

• Feelings are a subjective representation of emotions
which are experienced or perceived by one individual in a
certain instant, are usually related to short-term memory.

• Moods are affective states, which last longer than feel-
ings, but are less intense.

• Affect is a long-term memory relating feelings to objects,
persons or events.

These constructs relate directly to the idea of affective
memory, which is a concept that defines emotional attributes
to differently experienced events by a person [35]. When

we perceive a new event, this information is stored in our
brain together with an emotional attribute, such as arousal or
valence, and recent research shows that events with higher
arousal appear to increase the likelihood of being retained in
long-term memory [36], [37].

Our model is inspired by the concept of the different
emotion constructs [34] and creates different emotion repre-
sentations based on what is perceived when it was perceived
and how it was perceived. Our affective memory model
builds on our perception Cross-Channel Convolution Neural
Network [17]: First, we use our Perception GWR as a first-step
perception mechanism, then we introduce the use of individual
GWR networks as different affective memories.

Training the GWR with different expressions gives us a very
powerful associative tool which will adapt to the expressions
which are presented to it. By adapting the learning and
forgetting factors of the GWR we can determine how long the
network will keep the learned information, simulating different
stages of the human memory process. For example, training
a GWR to forget quickly will make it associate and learn
local expressions, in a similar way that the encoding stage
works. By decreasing the forgetting factor of the network, it
is possible to make it learn more expressions, meaning that
it can adapt its own neurons topology to a set of expressions
that was presented in a mid- to long-time span.

Figure 3 illustrates a GWR architecture used to represent
an affective memory for a video sequence. We first proceed
to use the Perception GWR to detect which expressions have
been performed, and we feed this information to our Affective
Memory GWR. We use PCA to create a visualization of the
GWR neurons. In the beginning, represented by the topology
on the left, it is possible to see that the network memorized
most of the neutral concepts. However, at the end, different
concepts were represented in reason to the forget factor of
our Affective Memory. By changing the forgetting factor of
this network, we can let it learn the expressions on the whole
video, or just in one part of it.

Using the GWR we can create several kinds of emotional
memory of what was perceived. By having other GWRs,
with different learning and forgetting factors, we can simulate
several types of emotional memory: short- and long-term
memory, but also personal affective memory, related to a
scene, person or object, and even mood. By feeding each
of these memories with the Perception GWR, we can create
an end-to-end memory model which will learn and adapt
itself based on what was perceived. The Perception GWR
can learn new expressions if presented with such, and each
of the specific memories will adapt to it in an unsupervised
fashion. We then propose our final model containing two
affective memories: Affective Memory GWR and Working
Memory GWR, reflecting respectively the Feelings and Affect
constructs. Figure 4 illustrates our proposed affective memory
model.



Fig. 4. The final affective memory architecture, which extracts features from the visual and the auditory input with the CCCNN, use the Perception GWR
to detect perceived expressions and an Affective Memory GWR and a Working Memory GWR to model long- and short-term memory respectively.

Fig. 3. Using the expressions depicted on the Perception GWR, we proceed
to train an Affective Memory GWR for a video. The network on the left
illustrates the Affective Memory on the start of the video (02 seconds) and
on the right at the end of the video (06 seconds). The colored neurons in the
Perception GWR indicate which neurons were activated when the expression
is presented and the emotion concept associated with them. The colored
neurons on the Affective Memory indicate which emotion concepts these
neurons code.

IV. EXPERIMENTAL SETUP

To evaluate our model, we make use of two differ-
ent corpora: The Emotion-Recognition-In-the-Wild-Challenge
(EmotiW) and our KT Emotional Interaction Corpus. The
EmotiW corpus is part of the Emotion Recognition in the Wild
Challenge, and it is considered one of the most challenging
datasets on emotion determination. We choose it to evaluate
how the performance of our model in such a difficult task
is, and how it compares to state-of-the-art methods. The KT
Emotional Interaction Corpus was recorded to evaluate the
capability of our model to identify natural human behavior
over different scenes.

The Emotion-Recognition-In-the-Wild-Challenge (EmotiW)
[18] contains video clips extracted from different movies
and organized into seven classes: “Anger”, “Disgust”, “Fear”,
“Happiness”, “Neutral”, “Sadness” and “Surprise”. A total
of 1000 videos with different lengths is available, separated
into training and validation sets. The test set is available,
but without any label, and includes 700 additional videos.
Therefore, we only evaluate our model on the validation set.
This challenge is recognized as one of the most difficult tasks
for emotion recognition because the movie scenes contain

very cluttered environments, occluded faces, speech, music,
sound effects, more multiple speakers and even animals. The
dataset is separated into pre-defined sets for training, validation
and testing the algorithms. We proceed to train our network
using the training set and evaluating its performance on the
validation set.

The KT Emotional Interaction Corpus contains videos of
the interaction between two humans. An improvisation game
was recorded, where two subjects are seated in front of each
other, across a table. We created two roles: the active and
passive subject. To the active subject, we give one instruction
and based on this instruction he has to start an improvised
dialogue with the passive subject. The instructions were based
on five topics:

• Lottery: Tell the other person he or she won the lottery.
• Food: Introduce to the other person a very disgusting

food.
• School: Tell the other person that his/her school records

are gone.
• Pet: Tell the other person that his/her pet died.
• Family: Tell the other person that a family member of

him/her is in the hospital.
These topics were selected in a way to provoke interactions

related to at least one of the universal expressions each:
“Happiness”, “Disgust”,“Anger”, “Fear”, and “Sadness”. None
of the subjects was given any information about the nature of
the analyses, to not bias them in their expressions.

Two Logitech HD Pro C920 cameras were placed in a
position that they captured the torsos of the persons seated
on the chairs. Each camera recorded a video at a resolution of
1024x768 and a framerate of 30FPS. Each participant had a
Bluetooth Sennheiser EZX 80 microphone attached to his/her
shirt, allowing to record an individual audio channel for each
participant. Figure 5 illustrates an example of the recordings.

After each dialogue session, the role of the active subject
was given to the previously passive subject and a new topic
was assigned. For each pair of participants, a total of five
dialogue sessions was recorded, one for each topic, and each
one lasting between 30 seconds and 2 minutes. Although the
topics were chosen to provoke different expressions, it was the
case that in some dialogues none of the previously mentioned
emotional concepts was expressed.

The recordings included a total of 7 sessions, with 14
different subjects, two participating in each session. Each



Fig. 5. An example of the recording scenario. One of the participants is
chosen as the active subject and one of the five topics is given to him/her.

session had 6 dialogues, one per topic and an extra one where
the two subjects introduced each other using a fake name.
Each subject only participated in one session, meaning that
no subject repeated the experiment. A total of 84 videos was
recorded, one for each subject in each dialogue, with a total
of 1h05min of recordings. Each video had a different length,
with the longest one having 2 minutes and 8 seconds and the
shortest one with 30 seconds. To annotate the videos, we cut
them into 10s clips and a total of 39 annotators evaluated them
using the six universal emotions plus neutral.

A. Experiments

To evaluate our model, we propose two experiments: a
performance experiment and a behavior analysis experiment.

1) Performance Experiments: After training the CCCNN
with the multimodal expressions, we train our Perception
GWR and use the learned representation to classify the ex-
pressions. We connect the output of each of the Cross-channels
with the GWR and use the hidden and softmax layer to classify
the BMU of the perceived emotion.

We follow the same learning protocol which was established
in our previous research to train the CCCNN [17]. The GWR
parameters were chosen based on the result of an empirical
search on the learning and forgetting rates.

We perform this experiment 30 times with both the EmotiW
and KT Emotional Interaction Corpus. For each dataset, we
calculate the mean accuracy of each category of emotion
when using only the CCCNN, the CCCNN+SOM, and the
CCCNN+GWR.

2) Behavior Analysis Experiments: To evaluate the behav-
ior using each of our affective memories, we present all the
videos of the KT Emotional Interaction Corpus to the model,
and let each memory model learn without restriction. Each
neuron on the memories will code one expression representa-
tion, and we proceed to use the hidden and softmax layers of
our CCCNN to create an emotion concept classification. At
the end, we have one Affective Memory for each subject and
a Working Memory for each topic.

We proceed to calculate the intraclass correlation coefficient
between the neurons in each memory and the annotator’s

TABLE I
MEAN ACCURACY, IN PERCENTAGE, FOR THE MULTIMODAL

REPRESENTATION IN THE VALIDATION SET OF THE EMOTIW CORPUS. THE
RESULTS ARE FOR THE CCCNN AND THE SOM.

Class CCCNN CCCNN+SOM CCCNN+GWR
Anger 80.3 85.3 86.4

Disgust 23.4 30.3 32.6
Fear 30.8 32.1 35.4

Happiness 81.2 82.3 85.2
Neutral 68.7 67.3 67.1
Sadness 24.5 31.7 33.8
Surprise 14.0 17.6 17.5

Mean 46.1 49.5 51.1

TABLE II
REPORTED ACCURACY, IN PERCENTAGE, FOR THE CCCNN TRAINED

WITH THE KT EMOTION INTERACTION CORPUS CORPUS WITH A SOM
AND WITH A GWR.

Class CCCNN CCCNN+SOM CCCNN+GWR
Anger 80.2 85.4 88.6

Disgust 87.3 91.3 91.0
Fear 71.5 79.0 80.7

Happiness 83.8 92.3 93.2
Neutral 72.8 80.5 89.7
Surprise 81.9 86.7 88.6
Sadness 82.7 87.1 93.2
Mean 80.0 86.0 89.3

opinion for each of the subjects and each of the topics. We
then calculate the mean of this correlation as a measure of
how far the network memory was from what the annotators
perceived.

V. RESULTS

A. Performance Experiments

The experiments with the EmotiW corpus can be found in
Table I. It is possible to see that the GWR could perceive more
complex information better, such as “Sadness” and “Fear”
clips, which are usually more difficult to recognize by humans.
In overall, the GWR showed a better adaptability in most of
the categories, improving the general accuracy of the model.

Evaluating the CCCNN with a SOM and with a GWR
produced the results shown in Table II. It is possible to see
that the GWR increased the accuracy of expressions such as
“Fear”, “Happiness”, and “Sadness” more than the others.
Mostly this happens because these expressions display a high
degree of variety in the dataset, which is easily perceived by
the GWR, by adapting its topology to the new expressions.

B. Behavior Analysis Experiments

The interclass correlation coefficients per topic, represented
by the Working Memory GWR, are presented in Table III. It
is possible to see high correlations for at least two scenarios:
Lottery and Food. These two scenarios were the ones with a
stronger correlation also within the annotators, and possibly
the ones where the expressions were most easily distinguish-
able for all the subjects.

The correlation coefficients calculated on the Affective
Memory GWR are shown in Table IV. Here, it is possible



TABLE III
INTERCLASS CORRELATION COEFFICIENT OF OUR WORKING MEMORY

GWR TRAINED WITH THE KT EMOTIONAL INTERACTION CORPUS

Lottery Food School Family Pet
0.84 0.71 0.47 0.52 0.53

TABLE IV
INTERCLASS CORRELATION COEFFICIENT OF THE AFFECTIVE MEMORY

GWR TRAINED WITH THE KT EMOTIONAL INTERACTION CORPUS

Session 2 3 4 5
Subject S0 S1 S0 S1 S0 S1 S0 S1

- 0.79 0.67 0.74 0.79 0.61 0.74 0.67 0.59
Session 6 7 8
Subject S0 S1 S0 S1 S0 S1

- 0.68 0.87 0.68 0.63 0.64 0.76

to see that for most of the subjects the network presented a
positive correlation, while only a few presented a very good
one. Also, it is possible to see that the correlations obtained
by the emotion concept were again the highest.

VI. DISCUSSION

We can relate the behavior of our model to two memory
constructs: Feelings and Affect. Our Perception GWR relates
directly to the Feelings construct, as it models the subjective
representation of perceived emotions in a certain instant. Our
Affective and Working Memories relate directly to the Affect
construct, which defines the feelings of our model towards a
specific person or event in a long-term relation.

In the following sections we discuss in detail our Perception
GWR and our different memories.

A. Perception GWR

The EmotiW dataset is still one of the most challenging
datasets on emotion recognition tasks. Using our GWR model
as a perception mechanism improved the accuracy of the
CCCNN model, showing that the GWR actually adapted better
to the data than the SOM. When compared to state-of-the-art
results on the same data, our GWR method stands as one of
the best results, as shown in Table V.

B. Affective Memory

Using Growing When Required Networks (GWR), it was
possible to introduce a novel affective memory to our network,
which could be adjusted to learning and forgetting in different

TABLE V
PERFORMANCE OF STATE-OF-THE-ART APPROACHES ON THE EMOTIW

DATASET. ALL THE RESULTS CALCULATE THE MEAN ACCURACY ON THE
VALIDATION SPLIT OF THE DATASET.

Methodology Accuracy
[10] 48.53
[11] 41.1
[18] 28.19
[38] 53.80

CCCNN 46.1
CCCNN+SOM 49.5
CCCNN+GWR 51.1

Fig. 6. This plot shows two Working Memory GWRs after trained with all
the videos of the KT Emotional Interaction Corpus. We proceed to create one
memory for each scenario.

time steps. This allowed us to create individual memories
which are related to particular persons, situations and periods
of time, simulating different affective memory mechanisms.

The affective memory mechanisms presented in this paper
can be used as a dynamic self-learning strategy for emotion
perception and representation. As a clear example, a robot can
have a different affective memory of a person which interacts
with it on a daily basis, when compared to someone that it just
met. Another advantage of using this model is the capability to
capture human behavior over different perceived experiences.

In Figure 6, it is exemplified how the Working Memory
GWR for two of the topics of the KT Emotional Interaction
Corpus: food and lottery. It is possible to see also how some
emotional concepts are present in each scenario. While in
the food scenario, many “Disgust” annotations are present,
in the lottery scenario the interactions are labeled mostly as
“Happiness” or “Surprise”.

VII. CONCLUSION

Different approaches in the affective computing area deal
with emotion recognition and description. Most of them fail
when categorizing spontaneous and natural expressions due
to the lack of adaptability or to the capability to generalize
to different persons and scenarios. In this paper, we make
use of the power of the Cross-channel Convolution Neural
Network (CCCNN) to describe multimodal and spontaneous
emotion expressions together with the adaptability of the
Growing-When-Required network (GWR) to learn and forget
information in an unsupervised fashion.

Our model builds on a previously proposed model, removing
the restrictions of the limited topology of the Self-Organizing
Maps (SOM), but also introducing the use of different GWRs
as affective memory mechanisms. These memories can detect
and learn emotion behavior from different persons and situ-
ations at the same time, and keep a dynamic behavior while
adapting to new information.

We evaluated our model in two tasks: performance in
emotion recognition and behavior analysis, and demonstrated
that our model is competitive with state-of-the-art methods.



We also introduce the novel KT Emotion Interaction Corpus,
which contains interactions between two humans and emotion
annotations.

Currently, the GWR neurons provide an associative relation
between the visual and auditory modalities of the CCCNN but
cannot deal with information conflict between the modalities,
which would be an interesting aspect of the network to be
developed in future research. Adding such mechanism would
increase the robustness and the capability of the model to learn
multimodal expressions. Also creating a mechanism on which
the memories can modulate their functioning to lead to a mood
memory which could improve the adaptability of the model to
self-perception mechanisms.
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