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Abstract. In a conversation, humans use changes in a dialogue to pre-
dict safety-critical situations and use them to react accordingly. We pro-
pose to use the same cues for safer human-robot interaction for early
verbal detection of dangerous situations. Due to the limited availabil-
ity of sentiment-annotated dialogue corpora, we use a simple sentiment
classification for utterances to neurally learn sentiment changes within
dialogues and ultimately predict the sentiment of upcoming utterances.
We train a recurrent neural network on context sequences of words, de-
fined as two utterances of each speaker, to predict the sentiment class
of the next utterance. Our results show that this leads to useful pre-
dictions of the sentiment class of the upcoming utterance. Results for
two challenging dialogue datasets are reported to show that predictions
are similar independent of the dataset used for training. The prediction
accuracy is about 63% for binary and 58% for multi-class classification.

1 Introduction

In human-robot interaction, one of the primary concerns is safety. In this paper,
we address safety as the condition of being protected from or unlikely to cause
danger or injury. A mobile robot serving a wrong drink, coffee instead of water,
in a cup might be an acceptable mistake, whereas serving the drink in a broken
cup might be an unacceptable risk. When the robot is verbally instructed to
perform this action, most probably the user also tells the robot that there is a
danger or a chance of risky situation.

Early recognition of hazards is crucial for safety-related control systems, such
as protective or emergency stop, which is an essential feature for personal care
robots [21]. The main goal of our research is to study the early detection of
safety-related cues through language processing. In the case of a wrong robot
action, the user might respond with an utterance which, although often not
easily understandable for the robot, carries feedback information for the last
action performed, which can help to understand the situation [12, 23].

A possible conversation is shown in Figure 1, the robot (R) perceives a sen-
tence from the person (P) with neutral sentiment and responds with a query
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R: Hello, how can I help you? Neutral
P: Can you bring me tea? Neutral
R: Yes, I can make some tea. Positive (context)
P: Oh, that cup seems broken. Neutral
R: Shall I continue the action. Neutral
P: No, don’t use the broken cup. Negative (context)
R: Okay, I will find another one. Neutral

Fig. 1. Example for preparing the contexts: labeled by sentiment analyser,
previous two utterances of the positive and negative class are taken as context.

whether this means it should continue. Expecting a positive reply in case every-
thing is ok, the next utterance has a negative sentiment. Without understanding
the meaning of a sentence, the robot can stop or revert the last action just on the
basis of a failed response sentiment prediction. Furthermore, an estimate of the
user’s response sensitivity is necessary when the robot needs to ask safety-critical
questions [7].

Our goal is, as a first step, to learn from spoken language dialogues to predict
the sentiment of the next upcoming utterance. As shown in Figure 1, we use
two utterances as context, capturing a sequence with both speakers, to predict
the next utterance sentiment from the first speaker. Long short-term memory
networks (LSTM) have shown good performance on the text-classification tasks
(e.g. [2]) learning long-term dependencies. Since we want to extend our model to
longer contexts, we choose those networks and show that they could successfully
learn to estimate the sentiment of the next upcoming utterance.

2 Related work

Responses from humans in an interaction have been used in various ways in
human-robot scenarios. In student/teacher learning scenarios, to facilitate learn-
ing, a teacher gives positive and negative feedback depending on the success of
the student [12]. Weston [23] has shown that the positive-negative sentiment
in the teacher’s response helps to guide the learning process. Other work [20]
describes context-sensitive response generation in the field of language under-
standing and generation. They report that there is a lack of reflecting the agents
intent and maintaining the consistency with the sentiment polarity. This con-
sistency of polarity means that unpredicted changes in polarity may be cues for
changing situations, so monitoring the sentiment over a dialogue can not only be
used for simple feedback signals but give evidence on, maybe not yet otherwise
perceivable, changes in the environment.

Sentiment analysis is an important aspect of the decision-making process
[17] and thus has received much attention in the scientific community. With
vast amounts of data available for analysis, many methods have been explored
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recently, e.g. [10, 22]. Deep learning has given rise to some new methods for
the sentiment analysis task, outperforming traditional methods [19, 5]. Different
NLP tasks have been performed independently and in a unified way using deep
neural networks [4]. Especially in the field of text classification, the strength of
neural network approaches is evident, e.g. convolutional neural networks [11] or
recursive and recurrent neural networks [2, 19]. A fixed-size context window can
solve the problem of the variable length of language text sequences, but this
fails to capture the dependencies longer than the window size. Recurrent neural
networks have the ability to use variable sequence length, and especially LSTM
networks have shown good performance [5].

The accessibility of large unlabelled text data can be utilised to learn the
meaning of words and the structure of sentences and this has been attempted by
word2vec [16]. The learned word embeddings are used for creating lexicons and
have a reduced dimensionality compared to traditional methods. This approach
has also been used for learning sentiment-specific word embedding for sentiment
classification [14]. Our approach utilises word embeddings to feed an LSTM
network similar to [2] in order to learn sentiment prediction.

3 Approach

3.1 Datasets

We have used two spoken interaction corpora for training our model from two
very different sources, child-adult interaction and movie subtitles. The first is
the child language component of the TalkBank system, called CHILDES1 [15],
where different child and adult speakers converse on daily issues. In this dataset,
we selected the conversations with children of age 12 and above, which have
significant verbal interaction and less grammatical mistakes [3]. The other corpus
is the Cornell Movie-Dialogues corpus [6], which is more structured, i.e. it is more
grammatically correct, and is also larger than the child-interaction corpus.

As our goal is to predict sentiment from a context as shown in Figure 1,
we need sentiment annotation of the utterances. The child-interaction corpus
(CHI) already has word-level sentiment annotation, while the movie dialogues
corpus (MDC) has none. We thus used the natural language toolkit’s [13] Vader
sentiment analysis tool [9] to create sentiment labels for each utterance. To
avoid imbalanced classes in our data, we empirically adjusted the thresholds of
the sentiment level to 0.2 and 0.6 on the scale of 0 to 1 for both positive and
negative classes. Data samples were now extracted by selecting an utterance with
a given sentiment as ground truth and saving the previous two utterances as
context. We have created datasets for two experiments, creating contexts from
utterances with either negative/positive, or negative/neutral/positive classes.
The dataset details are shown in Table 1. While taking the previous utterances
for each sample, we have the overlapping of utterances in the contexts, i.e. one
utterance may appear in two contexts. The two data-sets are processed for binary
(pos-neg) and multi-class (pos-neu-neg) classification.

1 http://childes.talkbank.org or http://childes.psy.cmu.edu
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Table 1. Dataset details

Datasets CHI MDC

Raw utterances 11.1k 304k

Contexts (pos-neg) 4.1k 189k

Contexts (pos-neu-neg) 6.2k 283k

3.2 Model

For the experiments, we used the well-established recurrent long short-term
memory (LSTM) neural network [8], a special form of recurrent neural network,
shown in Figure 2(a). The sequence of the words represented by their numeric
indices in a dictionary, is first fed into the embedding layer which is implemented
as standard MLP layer, as shown in Figure 2(b). The embedding layer randomly
initializes the normalised vectors, or can utilize already pretrained embeddings,
to represent each word index by a real-valued vector of a given size of the em-
bedding dimension which is then fed into the LSTM layer.

The LSTM unit receives an embedded word x as an input and outputs a
sentiment prediction y. It maintains a hidden vector h and a memory vector in
cell c responsible for controlling state updates and outputs. The LSTM consists
of a memory cell c, an input gate i, a forget gate f , and an output gate o, which
are updated at time step t as follows:

ft = σ (Wf ∗ ht−1 + If ∗ xt + bf ) (1)

it = σ (Wi ∗ ht−1 + Ii ∗ xt + bi) (2)

ot = σ (Wo ∗ ht−1 + Io ∗ xt + bo) (3)

c̃t = tanh (Wc ∗ ht−1 + Ic ∗ xt + bc) (4)

ct = ft � ct−1 + c̃t (5)

ht = ot � tanh (ct) (6)

where σ is the sigmoid function, Wf , Wi, Wo, Wc are recurrent weight matrices,
If , Ii, Io, Ic are the corresponding projection matrices and bf , bi, bo, bc are
learned biases. The weight-projection matrices and bias vectors are initialized
randomly and learned during training. The gating functions of the LSTM helps
this RNN to mitigate the vanishing and exploding gradient problems and to train
the model smoothly. As an output, we get a hidden vector representation (h) of
the entire sequence of words which is then used as an input to a classifier. In the
sequence classification setup as shown in Figure 2(b), given the current activation
function in the hidden state ht, the RNN generates the output according to the
following equation:

yt = g (Wout ∗ ht) (7)

where g(.) denotes an output activation function, in our case a softmax function
that gives the normalized probability distribution over the possible classes, and
Wout is an output weight matrix which can be stored to make the predictions.
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Fig. 2. (a) The long short-term memory (LSTM) unit with (b) our classification setup.
Biases are ignored for simplicity.

3.3 Experiments and Results

Our aim is to recognise the sentiment polarity of the upcoming utterance, given
the recent utterances as the context. We have trained our classifier by concate-
nating the context utterances and using the label of the utterance following this
context as the training signal. The utterances have been labeled by the sentiment
analysis for either binary or multi-class classification as shown in Table 1. The
input to the network was always concatenated utterances and the prediction for
the upcoming utterance was taken from the classified output of an LSTM at the
end of the input sequence. The model was implemented using the Keras Python
library and Theano [1]. The input sequence length was fixed to the maximum
length in the utterances and padding was used to make them of the same length.

The training was done using categorical crossentropy as the loss function,
using stochastic gradient descent as the optimization method. Learning rate
and the number of hidden units were empirically determined for both datasets.
The hidden layer dimension was 64 for CHILDES and 512 for Movie-Dialogues
corpus. We randomly initialized the word embedding vectors with the dimension
of 10 and 100 for CHILDES and 100 for the other, and we also used the pre-
trained GloVe vectors of dimension 100 [18]. We trained the model on both the
datasets as described before and for two different set-ups. Each dataset was split
into training, validation and test data with a 60%-20%-20% split. The summary
of the test data prediction accuracies is shown below in Table 2.

Table 2. Prediction accuracy on test data

Different
setups

Random
guess

Trained embeddings GloVe embeddings (100d)
CHI(10d and 100d) MDC(100d) CHI MDC

Binary 50.00% 59.30% 59.06% 52.44% 63.36% 54.97%

Multi-class 33.33% 54.60% 54.56% 48.36% 58.13% 51.71%
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Utterances Sentiment of Next utterance    Next utterance
current utterance sentiment hypothesis    might be
[neg    neu   pos] [neg    neu   pos]

P1: please sit down [0.00  0.46  0.54] [0.45  0.04  0.51]    Positive

P2: yeah thanks  [0.00  0.00  1.00] [0.09  0.78  0.13]    Neutral

P1: oh that chair is broken [0.44  0.56  0.00] [0.58  0.20  0.22]    Negative

P2: oh no , yeah this chair is broken [0.46  0.34  0.20] [0.03  0.94  0.03]    Neutral *

P1: yeah please use another one [0.00  0.40  0.60] [0.28  0.09  0.63]    Positive

P2: okay thank you [0.00  0.18  0.82] [0.22  0.59  0.19]    NeutralP
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Fig. 3. Test example: prediction on some utterances
* indicates that the sentiment recognition does not match the actual.

The use of pre-trained embedding shows more accuracy than the random
initialization, also using different embedding dimensions produced very similar
results. We also implemented a simple chat-bot in Python, that receives the
utterances sequentially, to evaluate the trained model on a dialogue and monitor
the changing hypothesis of the sentiment of the upcoming utterances.

In Figure 3, we present an example from test data. The utterances from the
conversation are processed one by one, and the progression of the statements is
shown with the predicted hypothesis and the ground-truths. Bold values in the
array [neg neu pos] represent the detected class, for the sentiment hypothesis of
the current and the next utterance. We also show two related contexts, positive
(green) and negative (red). For example, the utterance “oh no, yeah this chair is
broken” has a negative sentiment label and the model has the correct prediction
hypothesis. We can also see that the model failed to predict the positive class
for the utterance “yeah please use another one”.

Looking at the details of the distributions, the unpredicted increase in neg-
ative sentiment for the sentence “oh that chair is broken”, although overall still
classified as neutral (negative), could have been used already to detect a change
in sentiment and thus be aware of a possible change in the environment, the
safety situation, or just the user’s perception of the robot’s current action. The
same can be said for the misclassified utterance where P2 perceived a negative
situation and might have no solution, interpreting the suddenly positive senti-
ment of P1 in the next utterance to understand that the situation has a solution
or has been solved and nothing bad has happened. Overall, the results show that
it is possible to derive valuable cues by estimating the sentiment of the next up-
coming utterance, and the model can learn to keep track of the sentiment through
dialogues. The corpora used were auto-annotated with the standard sentiment
analysis tool which led to comprehensible results, although a human-annotated
corpus might still lead to better results.
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4 Conclusion and future work

We have presented a learning approach to estimate the sentiment of the next
upcoming utterance within a dialogue. We have shown that the model can predict
the sentiment of an upcoming utterance to a certain degree, taking into account
that the used corpora are noisy and no system would be able to reliably predict
the upcoming sentiments simply due to the changing nature of human dialogues.
Detecting safety-related cues as early as possible is crucial, and a number of
false-positives can be accepted (or quickly resolved through a query within the
dialogue) if dangers can be avoided when they occur. We think that tracking
even a noisy sentiment through a dialogue can have a positive impact on the
safety of a robot, especially when combined with a multi-modal system.

While this work focuses on keeping track of the sentiment in dialog-based
context learning, our aim is to extend this to different language features con-
taining safety-related cues. Using not only simple auto-annotated sentiment as
labels but including annotations based on prosodic features might lead to a better
prediction since humans often involuntarily change their voice when perceiving
a dangerous situation while speaking. This work presents already a promising
step towards the main goal and can provide useful dialogue-based information
regarding the current safety context in human-robot interaction.
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