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a b s t r a c t 

Several researchers around the world have studied gesture recognition, but most of the recent techniques 

fall in the curse of dimensionality and are not useful in real time environment. This study proposes a 

system for dynamic gesture recognition and prediction using an innovative feature extraction technique, 

called the Convexity Approach. The proposed method generates a smaller feature vector to describe the 

hand shape with a minimal amount of data. For dynamic gesture recognition and prediction, the system 

implements two independent modules based on Hidden Markov Models and Dynamic Time Warping. 

Two experiments, one for gesture recognition and another for prediction, are executed in two different 

datasets, the RPPDI Dynamic Gestures Dataset and the Cambridge Hand Data, and the results are showed 

and discussed. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Gesture recognition systems can be used as a natural and wel-

oming interface of interaction between computational systems

nd humans. These systems use human movement patterns to

dentify, learn, and generalize gestures executed by a user. There

re several applications in the area of gesture recognition, such as

ames ( Lee and Hong, 2010; Rautaray and Agrawal, 2011 ), human-

obot interaction ( Bodiroza et al., 2013; Lee, 2006 ), interaction

ith televisions ( Jeong et al., 2012 ), and sign language recognition

 Ciaramello and Hemami, 2011; Liu and Xiao, 2015; Silanon and

uvonvorn, 2014; Zhou et al., 2008 ). 

Nowadays, it is possible to capture gestures executed by hu-

ans using only a video camera on a smartphone, tablet, or note-

ook. Since most people have at least one of these devices in

heir possession, using gestures for communication with computa-

ional systems could be employed more often than in the previous

ears. The evolution of computers, in hardware and software, also

ncreases the usage of gestures as an important tool for human-

omputer communication. 
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Gesture recognition systems can be clustered into three differ-

nt categories ( Ibraheem and Khan, 2012 ): systems based on gloves

r external sensors attached to a user for gesture capture ( Cheng

t al., 2015; Dekate et al., 2014; Han, 2010; Huang et al., 2011;

eong et al., 2011; Xinyu et al., 2010 ), systems that recognize a

esture through a tracking device, such as a mouse ( Bhattacharjee

t al., 2015; Chivers and Rodgers, 2011; Cho et al., 2004; Jeong

t al., 2012; Schlecht et al., 2011 ), and systems that capture ges-

ures using a video camera and process them with computer vi-

ion techniques ( Bernardes et al., 2009; Koceski and Koceska, 2010;

eubner et al., 2001; Sen et al., 2005; Wu et al., 2015; Zhang and

hang, 2008 ). The first category captures the gesture more pre-

isely, but the process is invasive, as the user wears the sensors

round him. The application of gloves for capturing happens in

ontrolled environments, where the gloves are connected to com-

uters, but the capturing process becomes complicated to be used

n an external environment and real world applications. 

The second category of gesture recognition systems uses a

racking technique to follow a hardware device in the screen. The

racked path is the gesture to be recognized. This kind of recogni-

ion uses a simple gesture definition, reducing the computational

ost. However, the possible gestures represented are less signifi-

ant and less precise than the other categories. 

The last category uses a video camera to capture and iden-

ify the gesture. The recognition process uses the images to ex-

ract some features, such as movement, position, velocity, color,

http://dx.doi.org/10.1016/j.cviu.2016.10.006
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Fig. 1. Illustration of Convexity Approach execution. 
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among others. This approach can describe a more complex gesture

than the second category, and it does not need to be used in a

controlled environment. This category uses computer vision tech-

niques that can be embedded in a smart-phone, for example, and

used for gesture recognition in any place. 

One of the main problems with dynamic gesture classification is

to deal with sequence recognition. Gestures are naturally dynamic,

as a sequence of movements and postures, and each step has influ-

ence in further ones. These works deal usually with temporal de-

pendency ( Alon et al., 2009; Chang, 2016; Santos et al., 2015 ), and

usually demand very long time and computational effort for train-

ing. Besides that, a robust feature extractor is necessary, which in-

creases the computational cost of the process ( Frolova et al., 2013;

Wu et al., 2016 ), and thus decreases the possibility of the model to

work in real time. 

A desirable characteristic in a gesture recognition system is the

ability to recognize gestures in real time. As pointed out by Mori

et al. (2006) , a real time gesture recognition system has to be able

to predict the gesture that is being executed before it ends. Predic-

tion allows the recognizer to work in real time and makes the clas-

sifier more accurate, as it can use the prediction results to improve

recognition. The prediction attempts to identify a pattern that has

yet to be completed. Some prediction techniques have been used

with success to improve speech recognition ( Helander and Nurmi-

nen, 2007; Husssain et al., 2009; Javed and Ahmad, 2014; Satya

et al., 2011; Stavrakoudis and Theocharis, 2007 ). A few studies use

the prediction concept gesture prediction, as described by Ahmad

et al. (2015) ; Kohlsdorf et al. (2011) ; Liu and Xiao (2015) ; Silanon

and Suvonvorn (2014) . 

Although there are many studies using computer vision for ges-

ture recognition, some problems remain, like significant computa-

tional and time costs for the algorithms. To use gesture recogni-

tion techniques in a real time environment, it is necessary to re-

duce their computational and time costs. Such reduction can be

achieved using a smaller feature vector to describe a gesture or a

prediction technique ( Hasan and Kareem, 2012 ). Our study shows a

dynamic gesture recognition system that uses an innovative tech-

nique, called the Convexity Approach, for feature extraction. The

system is evaluated for dynamic gesture recognition and for ges-

ture prediction. It implements classification and prediction mod-

ules based on Hidden Markov Models and Dynamic Time Warping.

The proposed method is able to classify dynamic hand gestures

by recognizing individual hand postures and modeling a sequence

with them. This way, our approach can classify gestures with dif-

ferent speed and different users. Our approach is strongly based on

an innovative feature extraction technique, and it uses the capabil-

ity of dynamic time warpers to model gesture sequences. 

This paper is organized as follows. Section 2 describes the Con-

vexity Approach technique. Section 3 shows the recognition and

prediction system architecture. Section 4 presents the experimen-

tal setup and results, as well as a discussion about the obtained

results. Finally, in Section 5 , we present the concluding remarks. 

2. Convexity Approach 

Several techniques are used to describe gestures. Most of these

feature extraction techniques are affected by the curse of dimen-

sionality ( Bilal et al., 2011 ). The curse of dimensionality states that

an approximation of a numerical function will have a higher com-

putational cost if its variables increase ( Kouiroukidis and Evange-

lidis, 2011 ). There are proposed solutions for the curse of dimen-

sionality, such as the reduction of the feature vector dimension

( Pagel et al., 20 0 0; Zhao et al., 2010 ), classification algorithm opti-

mization ( Qaiyumi and Mirikitani, 2006; Qin and Tang, 2009 ), and

the use of feature selection strategies for the problem ( Teoh and

Sheble, 2007 ). 
The Convexity Approach, the feature extraction technique, can

escribe a hand gesture using only dynamically selected points in

he hand contour. The selection of points is minimized for each

and posture, so the feature vector contains the minimal features

ecessary to describe the hand. 

The Convexity Approach extracts features of one image at a

ime. This image must contain only the hand contour. The first

tep of the algorithm is to reduce the geometrical model of the

and, eliminating curves. The second step is to find a minimal set

f points that can represent the minimized hand model. The last

tep is to extract the distance of these points and create a feature

ector that will describe the hand. Fig. 1 shows the illustration of

he Convexity Approach execution. 

.1. Model minimization 

The first step of the Convexity Approach assures that any extra

nformation will not be extracted. In the hand gesture context, ex-

ra information is a part of the hand that can be excluded without

osing the shape of the geometrical model of the hand. For exam-

le, a curve in the hand can be represented by three points. The

ouglas-Peucker ( Douglas and Peucker, 1973 ) algorithm is used to

reate the minimized hand model and it is successfully applied for

raffic sign recognition ( Soendoro and Supriana, 2011 ), model min-

mization using compression ( Nandakumar et al., 2005 ), and geo-

raphical applications ( Youfu and Guoan, 2010 ). 

An ordered set of n + 1 points in a plane forms a polygonal

hain. Given the chain C with n segments, the Douglas-Peucker al-

orithm will generate a chain C ′ with fewer segments than C. The

wo endpoints of a set of points are connected by a straight line

B as the first rough approximation of the polygon. Iterating over

ll the vertexes, v , of all segments n in C , the distance between

he vertex v i and the center of AB is calculated. If the distance of

ll vertexes is shorter than a threshold t , then the approximation

s good, the endpoints are retained, and the segment AB will be

dded to C ′ and represent the polygon. However, if any of these

istances exceeds t , the approximation is not good. In this case, it

hooses the furthest point P , and subdivides the initial set points

nto two new segments AP and P B . The same procedure is repeated

ecursively on these two new segments, and the new segments are
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(a) Polygon Minimization (b) Convex Hull and inner points se-
lection

Fig. 2. Outputs of step (a) one and (b) two of Convexity Approach. 
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dded to C ′ . The routine continues until all possible points have

een eliminated. Fig. 2 (a) shows the output of this step. 

.2. Selecting the points 

The second step of the Convexity Approach is the selection of

 minimal set of points that can represent the hand. This selec-

ion is performed in two parts: the first part consists of select-

ng the external polygon edges that remain in the model; and the

econd part consists of selecting the internal edges that detail the

odel, based on the previous selection. The first part uses a convex

ull around the model to identify the selected edges in the model.

he edges that touch the convex hull, are chosen for the second

tep. The Sklansky ( Sklansky, 1982 ) algorithm, later corrected by

elkman (1987) , is used to create a convex hull from the model.

he Sklansky Algorithm is implemented as follows: 

• The convex vertex of the polygon is found. 
• The remaining n-1 vertexes are named in clockwise order start-

ing at P0. 
• Select P0, P1, and P2 vertices and call then “Back,” “Center,” and

“Front,” respectively 
• Execute the follow algorithm: 

–

while “Front” is not on vertex P0 and “Back,” “Center,” and

“Front” form a right turn do 

if “Back,” “Center,” and “Front” form a left turn or are

collinear vertex then 

change “Back” to the vertex ahead of “Front”. Rela-

bel “Back” to “Front,” “Front” to “Center,” and “Center” to 

“Back”. 

else if “Back,” “Center,” and “Front” turn left then 

change “Center” to the vertex behind “Back”, re-

move the vertex and associated edges that “Center” was

on and relabel “Center” to “Back” and “Back” to “Center”

end if 

end while 

For the second part a new algorithm was developed using the

reviously selected external points to find the internal points of

he contour. The external points represent the general shape of the

and and the internal points are responsible for distinguishing the

mall changes in the shape of the hand. For each pair of exter-

al points, a line segment that crosses these two points is created,

reating the segment AB . The points in the original polygon located

etween the vertical or horizontal coordinates of the points A and

 are chosen as internal point candidates. A distance t is calculated

etween each candidate and the center of AB . The point that has

he greatest distance is selected and marked as an internal point,

nd the others are removed. This operation can be described as

ollows: 

nternalP oint = max (t ) , (1)
i 
here i iterates over all the points in the subset. In case that

here is no point or the distance is 0, no point is considered. After

he internal and external points are selected, the minimized hand

odel is generated and is ready for the last step, feature extrac-

ion. Fig. 2 (b) shows the output of this step. 

.3. Distance calculation 

The last step of the Convexity Approach is feature extraction

ased on distance calculation. A line segment AB is crossed be-

ween each pair of the external points, in a clockwise order. This

rocess makes the Convexity Approach robust to rotation invari-

nce. The distance between this line and the closer inner point is

alculated and added to the output vector. The distances are nor-

alized, dividing by the maximum value obtained, to make the

istances robust for scale changes. This operation is described as

distances = distance ( AB , internalP oint AB ) , 
NormalizedDistances = distances/max (distances ) . 

(2) 

.4. Convexity Approach remarks 

Since the Convexity Approach uses a hand contour as input, it

an be used with other feature extraction techniques. The Local

ontour Sequence (LCS) technique ( Gupta and Ma, 2001 ) uses a set

f imaging processing techniques to find the hand contour that can

e used as input for the Convexity Approach. The use of LCS with

onvexity Approach is called CLCS ( Barros et al., 2013b ). The Speed

p Robust Features (SURF) ( Bay et al., 2008 ) is a technique that

ds and describes interest points in an image. When using these

nterest points extracted by SURF as input for the Convexity Ap-

roach, we have a technique called CSURF. Fig. 3 shows the result

btained by LCS and SURF and the application of the Convexity

pproach, respectively CLCS and CSURF. 

For some classification techniques, such as neural networks

 Chen et al., 2007 ), the feature vector must be normalized. To solve

his problem, we propose a method. First, the number of normal-

zed distances is defined. Then, if the image has fewer points than

he determined one, “0” is added in the feature vector, until it

atches the desired length. The outputs with more points than the

esired length are normalized using a selection algorithm. This al-

orithm consists of calculating a window W through the division of

he output length for the desired length. The output vector is tra-

ersed, and each W position is added to the new vector of outputs.

f the new output vector is smaller than the desired length, the re-

aining positions are randomly visited and used to compose the

ew output vector until the desired length is achieved. This pro-

ess does not change the normalized vector; it only collects some

amples that already belong to the pool of calculated values. This

peration keeps the same data structure of the values that are not

ormalized. Therefore, it does not result in a drastic change in the

eature distribution. Fig. 4 illustrates this process. 

.5. Convexity Approach algorithm 

The Convexity Approach algorithm, described below, has a com-

lexity of O ( N 

2 ). The algorithm starts with the minimization of

he model, as shown in line 1. After this, the search for the most

ignificant points is performed in line 2. The search separates the

oints into external, the ones that define the model, and inter-

al, the ones that specialize the model. The characteristic vector is

omposed of the distance between the external points and inter-

al points, as shown in lines 3–7. The normalization of the feature

ector is performed in line 8. 
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Fig. 3. (a) Applying the Convexity Approach on LCS (b) produces a new output vector. (c) Applying the Convexity Approach on SURF (d) produces a new output vector. 

Fig. 4. Example of the normalization process. In this example the original vector has 10 elements and the normalized one has 4. The window W is calculated and each W 

position is visited. 

Fig. 5. Proposed gesture recognition system. 

Algorithm 1 Convexity Approach algorithm. 

List points ← minimizeModel(image) 

points ← searchSignificantPoints(points) 

List distances 

for externalPoints em points do 

if has internalPoint then distances.add(externalPoint, 

internalPoint) 

end if 

end for 

distances = normalization(distances,normalizationLenght) 

return distances 

 

 

 

 

 

 

 

 

 

f  

a

 

m  

r  

W  

r  

t  

c  

t  

d  

f  

d

3

 

s  

c  

t  

t  

a  

t  

t  
3. Gesture recognition system architecture 

Gesture recognition systems usually are separated into three

components: image preprocessing, features extraction, and pat-

tern recognition. Computer vision based systems use data obtained

from video cameras as input, which is preprocessed, eliminating

noise and highlighting interest regions. This data is used as input

to a feature extraction algorithm that generates domain-based fea-

ture vectors to be employed in the classification module. A classifi-

cation module receives these features and estimates to which class

they belong. The recognition system used in this study is not dif-
erent from the previous description. Fig. 5 presents the proposed

rchitecture. 

The system is designed so that each part could be imple-

ented with different techniques and the feature extraction algo-

ithm used outputs the hand contour for the Convexity Approach.

hen using the CLCS, it implements the LCS hand contour algo-

ithms. When using the CSURF, it implements the SURF algorithm

o find the interest points. Each frame extracted from the video

amera is individually preprocessed and used as input to the fea-

ure extraction technique. Each frame has its features extracted in-

ependently as well. Finally, the gesture is classified based on its

rames by the classification module and the system can recognize

ynamic gestures. 

.1. Prediction model 

A prediction system can classify an incomplete pattern. Such a

ystem is suitable for real world applications, because a gesture

an be recognized before the full input sequence has been cap-

ured. It uses a partially captured pattern and classifies it as one of

he previously learned patterns. This study uses gesture prediction

rchitecture based on an incomplete pattern capture. For each cap-

ured frame, a feature vector is extracted using the Feature Extrac-

ion module. Each new feature vector is added into a buffer to be
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Fig. 6. Gesture prediction system general architecture. 

Fig. 7. HMM prediction system architecture. 
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sed as system input, and is submitted to the Gesture Prediction

odule. The gesture is predicted for the partial input, and each

ew feature vector added produces a new prediction. Fig. 6 shows

he general architecture of the system. To evaluate the architecture,

wo techniques are used for the gesture prediction task. The first

ses a Hidden Markov Model (HMM) ( Rabiner, 1990 ) to learn the

ull gestures and recognize the partial ones. The second prediction

ystem uses a Dynamic Time Warping (DTW) ( Sakoe and Chiba,

990 ) method to calculate the distances between the gestures and

nd the predicted one. 

.2. HMM Prediction system 

The HMM Prediction System uses one HMM to describe each

esture. Each HMM is composed by three states, which proved to

e sufficient for the prediction task. The system uses a K-means

lustering ( Hartigan and Wong, 1979 ) to find the best initial ap-

roximation that showed an improvement in the nal prediction

ate in previous experiments. The Baum-Welch algorithm ( L. Baum

t al., 1995 ) is used to train the HMM resulting in a fast training

rocess. As shown in Fig. 7 , each new system input undergoes all

f the HMMs and the output probability is calculated. This proba-

ility indicates how close the input is to each HMM model. These

robabilities are sent to Gesture Selection, and the model with the

ighest probability is selected as the predicted gesture. 

.3. DTW Prediction system 

DTW is a technique that compares two distances that can be

ifferent in time and space, and thus can be used to compare two

ynamic gestures. The DTW Prediction System uses a set of ex-

mples for each gesture to compose the full gesture representa-

ion. The distances between each input and the set of samples of

ach gesture are calculated. The average distance of all the sam-

le distances is chosen as the distance of the input and the ges-

ure. The gesture with the smallest average distance is selected as

he predicted gesture. Fig. 8 shows this system architecture. The

imple DTW implementation ( Sakoe and Chiba, 1990 ) was applied,
nd it presented good results in the prediction rate. This imple-

entation uses a Euclidean distance calculation to find the small-

st distance between two sequences, thus the computational costs

ncreases drastically as the input vector size increases. 

. Experimental results 

.1. Experimental setup 

.1.1. Cambridge hand gesture data set 

We execute several experiments, in two different datasets. The

rst set of experiments is performed on the Cambridge Hand Ges-

ure Data set ( Kim et al., 2007 ). This dataset is composed of 900

mage sequences separated into nine hand gestures classes. Fig. 9

hows an example of gestures in this dataset. The dataset is di-

ided in five different types of illumination, and contain ten se-

uences executed by two separated subjects, in a total of 100 se-

uences per class. Each sequence has a different number of images.

To be able to segment the Cambridge dataset, a different seg-

entation technique was used. Each image is preprocessed by con-

olving it with a Difference of Gaussian (DoG) filter. DoG filters

re effectively similar to ZCA whitening ( Bell and Sejnowski, 1997 ),

ithout the need to learn the filter kernels first. The shape of

oG filters is a good approximation of ideal decorrelation filters

or grayscale images ( Brown et al., 2011 ), and thus smooth the il-

umination difference between the sets and allow the images to

e pre-processed similarly to each other. After the convolution,

 Laplace-Beltrami operator ( Reuter et al., 2009 ) is applied. This

perator highlights rapid intensity changes, working as a capable

dge detector. Fig. 10 illustrates an example of a segmented se-

uence. 

In these sets of experiments we used all sequences of one il-

umination for training, and the others for testing. We repeated

he experiment for each illumination set. For this analysis, we only

sed the CLCS technique in the feature extraction system and the

TW in the classification and prediction systems. For the predic-

ion experiments, we separated the number of frames in percent-

ge. So, we evaluate the model using 10%, 25%, 75% and finally

00% of the frames. 
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Fig. 8. DTW prediction system architecture. 

Fig. 9. Cambridge hand gesture dataset [9] . 

Fig. 10. Example of preprocessing applied to each image in the Cambridge dataset: 

First a convolution with a DoG filter ( Brown et al., 2011 ) is applied, and a Laplace- 

Beltrami ( Reuter et al., 2009 ) operator is applied to highlight the edges of the hand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Parameters for the experiments. 

Technique Parameters CLCS CSURF LCS SURF 

HMM States 3 3 3 3 

Baum-Welch iterations 100 100 10 10 

Features 10 10 5600 1400 

DTW Features 140 210 5600 1400 

a  

s  

a  

r  

c  

l

 

d  

r  

t  

i  

c

 

u  

t  

o  
4.1.2. RPPDI dynamic gestures dataset 

In our second sets of experiments the RPPDI Dynamic Ges-

tures Dataset ( Barros et al., 2013a ) 1 is used for the evaluation. This

dataset contains seven dynamic gestures with several examples per

gesture. Each gesture is composed of 14 frames. Fig. 11 shows the

dynamic hand gesture of this dataset. 

Several tests are executed to evaluate the implemented gesture

recognition architecture and the Convexity Approach technique.

These tests are performed with 12 different configurations: using

four different techniques in the feature extraction module and two

in the classification module. CLCS, CSURF, LCS, and SURF are im-

plemented for feature extraction, but we only present the results

for the first three methods because the recognition rates obtained

with SURF are too low and not conclusive enough to be shown in

this paper. DTW and HMM were implemented for classification. 

Each set of 14 frames is used for training and recognition. In the

HMM, each gesture is represented by a different HMM. To classify
1 Available in http://rppdi.ecomp.poli.br/gesture/database/ , together with our im- 

plementation of the Convexity Approach. 

a  

f  

v  

s  
 new gesture, all of the 14 feature vectors of one gesture are pre-

ented to each HMM. The output that generates the biggest prob-

bility is the chosen one. For the DTW, each set of frames that

epresents one gesture is separated into groups. Each gesture to be

lassied is compared to each group, and the one that shows the

owest distance is chosen. 

In the experiments, the dynamic gesture dataset is randomly

ivided into 2/3 for training and 1/3 for testing. This procedure is

epeated 30 times and the average recognition rate of these execu-

ions is shown. The parameters for the experiments are presented

n Table 1 . A series of tests was executed and the parameters were

hosen based on the results of these tests. 

For gesture prediction, three feature extraction techniques are

sed, LCS, CLCS and CSURF, along with the two proposed predic-

ion architectures using DTW and HMM. The prediction process

ccurs when an incomplete gesture is classified correctly. To be

ble to do that, the classification techniques are trained using the

ull definition of the gesture. To achieve the prediction, a feature

ector containing fewer frames than the complete gesture is clas-

ified. These experiments were executed with the same configu-

http://rppdi.ecomp.poli.br/gesture/database/
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Fig. 11. RPPDI dynamic gestures dataset. 

Table 2 

Comparison between different techniques applied to the 

Cambridge Hand Gesture Dataset. 

Techniques Class. rate(%) 

GPF ( Liu and Shao, 2013 ) 85 .00 

HDN ( Kovashka and Grauman, 2010 ) 85 .60 

AFMKL ( Wu et al., 2011 ) 87 .27 

COV3D ( Harandi et al., 2013 ) 93 .91 

DTW+CSURF 93 .98 (+/- 2.1) 
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Table 3 

Prediction results using CLCS and DTW with 15%, 25%, 50%, 75% 

and 100% of each gesture sequence. 

Percentage of frames 15 25 50 75 100 

Prediction rate(%) 10 .5 37 .8 50 .2 67 .1 93 .98 

Standard deviation 3 .2 7 .5 3 .1 2 .7 2 .1 

Table 4 

Results for the dynamic gesture recognition classification using HMM in the 

classification module. 

Techniques Class. Rate(%) Standard deviation. Class. time(ms) 

LCS + HMM 52 .55 5 .70 3 .07 

CLCS + HMM 81 .66 5 .41 0 .79 

CSURF + HMM 77 .44 4 .81 1 .19 
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t  
ations of the previous one. The difference is that 14 experiments

re performed, starting with one frame and then adding one more

rame to the feature vector, until the full gesture with 14 frames is

chieved. 

.2. Results on the cambridge hand gesture data 

.2.1. Gesture classification 

We compare our results with different approaches: Hierarchy of

iscriminative space-time neighborhood features (HDN) ( Kovashka

nd Grauman, 2010 ), Augmented features in conjunction with mul-

iple kernel learning (AFMKL) ( Wu et al., 2011 ), Spatial-temporal

ovariance descriptors (Cov3D) ( Harandi et al., 2013 ), and genetic

rogramming generated features(GPF) ( Liu and Shao, 2013 ). The

DN approach learns the shape of spatial-temporal features, based

n the neighbors of each hand posture. The AFMKL method learns

ixel intensity change distribution and classifies the gesture based

n it. The Cov3D technique creates spatial-temporal covariance

ideo descriptors, based on the integral video. The GPF approach

ses genetic programming to generate a gestures feature set which

s classified using common machine learning techniques. Table 2

hows the results for each technique. The standard deviations of

he other methods are not reported. Our method achieves a result

omparable with the Cov3D descriptor, and superior to the others.

ur technique can describe the features based on each posture. In

ontrast to other methods, our approach first detects and extracts

he hand shape, and composes the nal gesture with the transition

etween the shapes. Our model is more robust to the different

and gestures, and not only to pixel intensity change in a video.

his capability allows our model to be used in tasks where the

and posture is necessary, such as sign language modeling, which

ould not be possible using any of the other methods. 
.2.2. Gesture prediction 

We applied the CLCS and DTW techniques in a prediction task

sing the Cambridge dataset. Table 3 exhibits the results. It is pos-

ible to see that there is an increase in the prediction rate, with

he increase of the number of frames in the sequence, which is

xpected. However, when less than half of the frames are used for

he prediction, the model could not achieve prediction rates above

0%. That shows that the Cambridge set has a lot of variation in

he shape of the hand, for the first frames, and only in the later

tage of the gesture execution, the gesture is differentiated. 

.3. Results on the RPPDI dynamic gesture dataset 

.3.1. Gesture classification 

In the gesture classification task, the methods should identify a

iven gesture after the movement is entirely completed, i.e. using

ll the 14 frames. Using the LCS as extraction technique and the

MM as classification technique, a total of 52.55% of the gestures

re recognized correctly, with a standard deviation of 5.7 and a

lassification time of 3.07 ms. The use of CLCS with HMM showed

 classification rate of 81.66% with a standard deviation of 5.41

nd took 0.79 ms for each classification. The CSURF combined with

MM produced a classification rate of 77.44% and a standard devi-

tion of 4.81, each gesture being classied in 1.19 ms. Table 4 shows

he results for the combinations using HMM in the classification

odule. 

The HMM presented good results when in combination with

he CLCS and the CSURF. The HMM is ideal for modeling the dy-
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Table 5 

Results for the dynamic gesture recognition classification using DTW in the 

classification module. 

Techniques Class. rate(%) Standard deviation. Class. time(ms) 

LCS+DTW 89 .06 4 .88 1237 .47 

CLCS+DTW 97 .00 2 .70 63 .37 

CSURF+DTW 94 .08 3 .20 79 .75 

Table 6 

Prediction results using CLCS with 1, 5, 10 and 14 frames. 

Technique Results F1 F5 F10 F14 

HMM Prediction rate(%) 37 .90 66 .00 80 .00 81 .66 

HMM Standard deviation 6 .50 5 .50 4 .60 5 .41 

HMM Prediction time(ms) 0 .10 0 .42 0 .83 1 .18 

DTW Prediction rate(ms)(%) 17 .18 17 .29 64 .06 97 .00 

DTW Standard deviation 0 .00 0 .30 5 .30 2 .70 

DTW Prediction time(ms) 9 .7 48 .3 98 .6 123 .04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Dynamic gesture recognition experiment results. 

Table 7 

Prediction results using CSURF with 1, 5, 10 and 14 frames. 

Technique Results F1 F5 F10 F14 

HMM Prediction rate(%) 35 .57 62 .91 75 .41 77 .44 

HMM Standard deviation 4 .60 5 .56 4 .60 4 .81 

HMM Prediction time(ms) 0 .09 0 .44 0 .86 1 .23 

DTW Prediction rate(ms)(%) 16 .53 18 .43 85 .31 94 .08 

DTW Standard deviation 0 .00 0 .30 5 .60 3 .20 

DTW Prediction time(ms) 11 .37 113 .52 202 .76 312 .66 

Table 8 

Prediction results using LCS with 1, 5, 10 and 14 frames. 

Technique Results F1 F5 F10 F14 

HMM Prediction rate(%) 36 .14 44 .27 52 .65 52 .55 

HMM Standard deviation 6 .67 6 .54 7 .68 5 .70 

HMM Prediction time(ms) 0 .27 1 .16 2 .25 2 .91 

DTW Prediction rate(ms)(%) 12 .50 21 .87 78 .43 89 .06 

DTW Standard deviation 2 .47 2 .20 3 .00 4 .88 

DTW Prediction time(ms) 89 .39 4 4 4 .30 876 .76 1237 .43 
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namics of the gestures, and could generate a better representation

for each gesture when used with the smaller feature vector pro-

duced by the CLCS. When used along with techniques that pro-

duce a large amount of data, like the LCS, the results were worse.

The classification time should be noted. When using the CLCS, the

HMM had a classification time almost 35% lower than when using

the CSURF. If compared with the LCS, it is almost 63% lower. 

The combination of the LCS and the DTW presented a recog-

nition rate of 89.06% with a standard deviation of 4.88, and this

method takes 1,237.47 ms to classify each gesture. The use of the

CSURF with the DTW obtained a recognition rate of 94.08%, the

second highest. The standard deviation for this technique is 3.20

and it takes 79.75 ms to recognize each gesture. The CLCS with

the DTW achieved the highest recognition rate of all the meth-

ods, 97.00%, with a standard deviation of 2.70, taking 63.37 ms to

classify each gesture. Table 5 shows the results obtained with the

DTW. 

The Convexity Approach presents better results in combination

with the DTW than when used with the HMM. One of the prop-

erties of the DTW is the comparison between sequences with dif-

ferent dimensions and length and when it is used with an ecient

hand posture representation, high classification rates are shown

because, in a smaller feature vector that contains strong hand

representation data, the differences between sequences are easily

highlighted. On the contrary, the time spent for the DTW to clas-

sify a gesture is almost 100 times greater than when using the

HMM, because the DTW has to compare a sequence with each

other sequence in the training set. 

The experimental results demonstrate that the application of

the Convexity Approach improved the recognition rates and com-

putational time of the gesture recognition methods. This happens

because the feature vector is minimized with the Convexity Ap-

proach, containing fewer features that are enough to represent a

given gesture significantly. Thus, the classification techniques re-

quire less computational effort for classification. The proper repre-

sentation of the hand, using less data, results in a better recogni-

tion rate. To illustrate the advantages of the Convexity Approach,

Fig. 12 shows a summary of the recognition experiment. 

4.3.2. Gesture prediction 

In the gesture prediction experiments, the methods try to iden-

tify a given gesture before it is completed. Tables 6–8 present the

prediction results with both HMM and DTW classiers for the fea-

ture extraction methods CLCS, CSURF, and LCS, respectively. 

The main difference of the prediction is the use of an incom-

plete set of data. When using the CLCS, the data is still represen-

tative enough to give high prediction rates even with half of the
rames presented. The same behavior occurs for the prediction of

he CSURF and LCS. The difference is that the techniques where the

onvexity Approach was applied obtained better results, showing

hat this technique enhances hand posture representation. 

HMM presented the best classification rates with less than half

f the data, but its accuracy increased slowly when more frames

ere presented, as shown in Fig. 13 . This indicates that even with

n incomplete feature vector, the HMM model is still able to in-

er the gesture using the CLCS representation. This behavior is also

resented with the DTW, but only starting with half of the data.

sing less than seven frames, the DTW is not capable of obtain-

ng enough difference for each gesture. After half the frames are

dded to the feature vector, the DTW showed the best improve-

ent by frame added. This shows that the DTW works better with

equences of smaller length variation. It is also important to note

hat when using CLCS for feature extraction, the HMM performs

etter than the DTW until the tenth frame. 

For the prediction experiment, the same observation of the ges-

ure classification task can be noted. The use of the Convexity Ap-

roach minimizes the time for prediction of each gesture. An in-

eresting behavior of the prediction is that with half of the frames,

he gesture is predicted with high accuracy. Fig. 13 shows the

ummary of the prediction experiment with the recognition rate

chieved by each method for all the possible 14 frames. 
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Fig. 13. Gesture prediction experiment results. 
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. Discussion 

We presented the Convexity Approach for dynamic gesture rep-

esentation and evaluated its features using several techniques for

ecognition and prediction tasks. The Convexity Approach relies

n the contour of the hand, and thus is strongly dependent on

 proper segmentation method. In another hand, once the hand

s segmented, the Convexity Approach showed to be very reli-

ble to reduce the describe the hand shape, especially when com-

ared with established techniques such as general image descrip-

ors SURF and LCS. 

The features extracted by the combination of Convexity Ap-

roach and LCS and SURF presented very promising results on

ecognition and prediction tasks, even overcoming state-of-the-art

pproaches on the complex Cambridge Hand Data. As we reduce

he number of features, but still keep the descriptive aspect of the

and shape, our technique is shown to be a non-expensive option

or hand gesture description. The use of techniques such as Hidden

arkov Models and Dynamic Time Wrappers extends our descrip-

or to temporal domain, been able to deal with dynamic gestures.

hey also allow us to work with prediction tasks, where the ges-

ure sequence is still not complete and the model should predict

he correct output. 

We also introduce the RPPDI Dynamic Gestures Dataset that

onsists of severals sequences of seven hand gestures. In this

ataset, each gesture has a limited number of frames, which in-

roduces a standard execution in the gestures. However, each ges-

ure is executed at different speeds, which allow us to evaluate our

odels for very different gesture executions. We also evaluate our

odel using the Cambridge Hand Gesture Data set, which contains

ine different hand gestures, but several executions in different il-

uminations. 

When evaluating the model using the RPPDI Dynamic Gestures

ataset, we could see that our recognition system worked very

ell. We used this dataset to evaluate different algorithms for fea-

ure representation and classification and found out that the ap-

lication of the Convexity Approach in the well known SURF algo-

ithm produced the best results. That is explained by the nature

f the Convexity Approach, in simplifying the shape representation

ut keeping the topological form of the hand. The SURF algorithm

an represent the hand based on very complex gradient operations,

nd the Convexity Approach specify this representation for hand

hapes. 

c

The application of Hidden Markov Models and Dynamic Time

rappers shows to be successful for classification tasks and very

romising for prediction tasks. The fact that the Cambridge dataset

as very different sequence lengths, varying from 10 frames to

80 frames, made the prediction task tough when very feel frames

ere present. That can be seen as a limitation of our model, be-

ause for the HMM and DTW work, we need normalized samples,

hich was not the case. In the case of the RPPDI dataset, the se-

uences have the same length, varying only on the speed of the

esture execution. Our architecture was able to deal with speed

ariances, and even with half of the frames present, it was able to

ave a prediction rate higher than 60%. That means that, our model

an deal with speed variance, but not with time delay. The use of

ecurrent neural networks which can deal with the time lag, as

he Long-Short Memory Recurrent Neural Networks (LSTMs) could

elp to solve this problem. 

. Conclusion 

This study proposes a system for dynamic gesture recognition

nd prediction using the Convexity Approach technique for feature

xtraction. This method selects a minimal amount of points in the

and contour that can represent the hand shape. This selection is

erformed dynamically and nearly in real time, selecting different

oints per hand shape. Using the Convexity Approach in the hand

ontour obtained by other techniques, such as Local Contour Se-

uence (LCS) or Speed Up Robust Features (SURF), the feature vec-

or is smaller which directly reflects in a faster and more accurate

ecognition of dynamic gestures. 

The proposed system uses three modules, one for image pre-

rocessing, one for feature extraction and one for classification. In

rediction tasks, the system implements two different architecture

tructures and is used to recognize incomplete gestures. To eval-

ate the system, four feature extraction techniques were applied:

CS and SURF and the application of the Convexity Approach with

oth of them, creating the CLCS and CSURF. In the classification

odule, two techniques were implemented. Hidden Markov Mod-

ls and Dynamic Time Warping were used. The combination of all

hese methods was evaluated and the results showed that the use

f CLCS and CUSRF surpassed LCS and SURF in recognition and pre-

iction tasks. The use of the Convexity Approach minimized the

lassification time and improved the recognition rate. 
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We compare our gesture classification with state-of-the-art ap-

proaches. We conclude that our gesture has similar results, but

one very crucial characteristic that is not present in the other ap-

proaches: our method is capable of classifying gestures based on

hand posture alone. This capability allows us to model any gesture,

only by constructing the gesture sequence with different hand pos-

tures. One of the advantages of our approach is that the gestures

can be executed at different speeds, or with different hand posi-

tions. 

In future research, changes to make the model work in real

time will be studied. The application of the Convexity Approach

for the recognition of objects and human activity will be analyzed

as well. The expansion of the system to integrate the prediction

and recognition in one system will be implemented. 
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