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Abstract—Real-time recognition of dynamic gestures is a
problem for most of the applications nowadays. The prediction
approach can be used as a solution for this. This approach uses
an incomplete gesture input and it tries to predict which gesture
the given input represents. This paper presents the application
of the dynamic gesture feature extraction technique called Con-
vexity Local Contour Sequence (CLCS) as the extractor for the
prediction task. Two predictor systems are used to achieve this
task and results are compared and discussed in this paper.

I. INTRODUCTION

Nowadays, human-computer interaction based on gesture

recognition systems is becoming more usual. There are a

lot of applications for this technology, such as video games,

televisions, systems for impaired people, augmented reality,

medical applications, among others.

One way to build gesture recognition systems is using

computer vision techniques. This field of study provides the

necessary algorithms and tools to capture, identify, learn and

classify a gesture using a video camera. The work of Mitra

and Acharya [1] shows several approaches to achieve gesture

recognition using computer vision. It shows two kind of

gesture recognition systems: static gesture recognition systems

and dynamic gesture recognition system. Hasan et al. [2]

specifies the works that contain dynamic gesture recognition

systems based on hand gestures. These works showed that

there are many techniques and approaches that could be used

to recognize gestures, but only few can be used to recognize

dynamic gestures. Hasan et al. showed that for hand posture

based gestures, approaches using geometrical techniques to

represent the gesture achieved better results than others, like

fuzzy decision trees, transition movements or common sense

context.

All the works discussed in Mitra and Acharya [1] and in

Hasan et al. [2] surveys can recognize complete gestures but

are not prepared to recognize incomplete gestures or gestures

being executed in real time. This problem was described by

Mori et al. [3]. They proposed a method for early recognition

and prediction using a single and static representation for

each gesture. It achieved a good success rate for gesture

prediction, but it is not applicable for multi-user execution

or even changes in the camera angle and/or hand position.

They use a rigid representation of a gesture, describing the

ideal gesture and thus is not applicable for slight changes in

the execution.

The concept of prediction is useful in real time and nat-

ural environment applications. The prediction improves the

recognition by trying to identify the pattern before it has been

completely executed. It has been used in speech recognition

systems with success as showed in the works of Stavrakoudis

et al. [4], Hussain et al. [5], Varoglu and Hacioglu [6], Satya

et al. [7] and Helander and Nurminen [8]. The approach

used in those works can be adapted for gesture prediction:

a learning model for the complete gesture and a feature

extraction technique to extract only one portion of the gesture.

In our previous work [9] we presented a novel method,

called CLCS, for dynamic gesture recognition based on hand

postures. It can represent the hand posture and it uses the

transition of postures to represent a dynamic gesture. The

CLCS extracts only the features of one hand posture at each

time, thus is ideal for gesture prediction. CLCS was tested

with different classification techniques proving that it can be

used in different scenarios of classification.

This paper shows the use of CLCS applied in a gesture

prediction system. To learn and classify the partial executed

gestures, two techniques were tested: Hidden Markov Model

and Dynamic Time Warping.

This paper is structured as follows: Section II describes

the CLCS algorithm and the prediction system. Section III

presents the experimental results. Finally, in Section IV, the

conclusions and some future work are given.

II. PREDICTION MODEL

A prediction system is able to classify an incomplete pat-

tern. It is the ideal system to be used in real world applications,

because it can predict a gesture without the full input been

captured. It uses a partial captured pattern and classify it as

one of the previously learned patterns.

This work uses a gesture prediction architecture based

on an incomplete pattern capture. For each captured frame,

a feature vector is extracted using the Feature Extraction

module. Each new feature vector is added in the system input

and passed trough the Gesture Prediction module. The gesture

is predicted for the partial input, and each new feature vector

added produces a new prediction. Figure 1 shows the general

architecture of the system.
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Fig. 1. Gesture Prediction System General Architecture

Fig. 2. HMM prediction system architecture.

To evaluate the architecture, two techniques are used for

the gesture prediction task. The first uses a Hidden Markov

Model (HMM) [10] to learn the full gestures and recognize

the partial ones. The second prediction system uses a Dynamic

Time Warping (DTW) [11] to calculate the distances between

the gestures and find the predicted one.

A. HMM Prediction System

The HMM Prediction System uses one HMM to describe

each gesture. Each HMM is composed by three states, which

proved to be enough to the prediction task. It uses a K-means

Clustering [12] to find the best initial approximation, this

showed an improve in the final prediction rate. The Baum-

Fig. 3. DTW Prediction System architecture.

Welch algorithm [13] is used to train the HMM resulting in a

fast training process.

As shown in Figure 2, each new system input is passed

trough all the HMMs and the output probability is calculated.

This probability shows how close the input is to each HMM

model. This probabilities are send to Gesture Selection and the

model that has higher probability is selected as the predicted

gesture.

B. DTW Prediction System

DTW is a technique that compares two distances that can be

different in time and space, and thus can be used to compare

two dynamic gestures.

The DTW Prediction System uses a set of examples for

each gesture to composes the full gesture representation. The

distance between each input and the set of samples of each

gesture are calculated. The average distance of all the sample

distances is chosen as the distance of the input and the gesture.

The gesture with the smaller average distance is selected as

the predicted gesture. Figure 3 shows this system architecture.

The Simple DTW implementation [11] is used, and it

presented good results in the prediction rate. This implemen-

tation uses a euclidean distance calculation to find the smaller

distance between two sequences, thus the computational costs

increases drastically as the input vector size increases.

C. CLCS

Convexity Local Contour Sequence (CLCS) is a method for

hand feature extraction that can be applied in dynamic and
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Fig. 4. CLCS execution illustration.

static gesture recognition. It uses the hand shape variations in

the gesture movement to generate a descriptor of the gesture

that can be used in classifications techniques. This is possible

through the dynamic selection of the minimal amount of points

able to represent the hand shape in each movement. This

generates a representative model that is used to calculate the

LCS and results in a gesture representation output vector.

The first step of CLCS is the hand segmentation. It removes

the background of the image and find only the contour of the

hand. The next step is to minimize the hand posture. The third

step is to find the convex hull of the previously selected points.

The last step uses the points that composes the convex hull for

a feature calculation based on point distance. Figure 4 shows

the execution illustration of the CLCS.

The input of the CLCS is composed by an image set of

frames representing the hand gesture. Each frame is used as

input and has its own feature vector. The vector descriptor

of all image set is used to represent the entire gesture. It is

showed in Figure 5(a).

The input is composed by raw images containing the entire

hand and the background; the CLCS algorithm needs to

identify and remove the latter. To accomplish this, the Otsu

Threshold Technique [14] is used, resulting in a separated im-

age containing only the hand shape in a binary representation.

Even after applying Otsu, the image presents noise, especially

in the edges. A Median Filter [15] is used, resulting in a

smoothed image. The result is showed in Figure 5(b).

The binary image containing only the hand shape infor-

mation is used to find the hand contour. An erode image is

created and then subtracted of the original binary image. This

creates a reduced image data that is more representative than

the entire hand for the CLCS. This completes the first step

and the result is showed in Figure 5(c).

The hand contour is used as input for the third step,

hand minimization. First, the minimal number of points that

can represent the gesture are selected. This is performed

dynamically for each different hand position as the hand

shape changes through gesture. This is accomplished using the

Douglas-Peucker Algorithm [16] to create an approximation

curve of the external points, forming a polygon that represents

the gesture. This algorithm produces a minimized polygon for

hand posture. In this algorithm, the two extreme endpoints of

a set of points are connected with a straight line as the initial

rough approximation of the polygon. Then, it approximates the

whole polygon by computing the distance from all intermedi-

ate polygons vertexes to that line segment. If all these distances

are less than the specified tolerance T, then the approximation

is good, the endpoints are retained, and the other vertexes are

eliminated. However, if any of these distances exceeds the

T tolerance, then the approximation is not good enough. In

this case, it chooses the point that is furthest away as a new

vertex subdividing the original set points into two set points.

This procedure is repeated recursively on these two shorter

set points. If at any time, all of the intermediate distances are

less than the T threshold, then all the intermediate points are

eliminated. The routine continues until all possible points have

been eliminated. Figure 5(d) shows the output of this step.

The next step starts selecting the most significant points

for the specifically hand posture. We run the Sklansky’s [17]

algorithm in the last step output. The algorithm consists in the

following sequence:

• The convex vertex of the polygon is found.

• The remaining n-1 vertexes are labeled in clockwise order

starting at P0.

• Select P0, P1 and P2 vertexes and call then “Back”,

“Center” and “Front” respectively

• Execute the follow algorithm:

– while “Front” is on vertix P0 and “Back”, “Cen-

ter” and “Front” form a right turn do
if “Back”, “Center” and “Front” form a left

turn or are collinear vertex then
change “Back” to the vertex ahead of

“Front”. Relabel “Back” to “Front”, ‘Front” to

“Center” and “Center” to “Back”.

else if “Back”, “Center” and “Front” turn left

then
change “Center” to the vertex behind

“Back”, Remove the vertex and associated edges

that “Center” was on and relabel “Center” to

“Back” and “Back” to “Center”

end if
end while

• For each pair of selected points the algorithm traces a

line. The farthest point of this line is selected as an

inner point. Figure 5(e) shows the resultant points of the

algorithm in an input image.

This step returns the feature extracted by a distance cal-

culation. A line is formed by each pair of the external points

chosen by the Sklansky’s algorithm. The distance between this

line and the closer inner point is calculated and added to the

503503503



Fig. 5. Feature extraction algorithm sequence, starting at (a) as one of the images in the gesture image sequence. (b) Shows result image after the application
of background removal. (c) Shows the result image at the end of second step, Find Contour. (d) Shows the result after the application of the third step, Feature
Extraction, and it shows the minimized hand contour convex hull. (e) Shows the selected points to distance calculation.

output vector.

To get a reduction in the execution time of Dynamic

Time Warping and Hidden Markov Model, a normalization

technique is used. First, the number of normalized distances

is defined. Then, for all the images that have fewer points than

the previously determined length, a ”0” is added at the end of

the vector, until it matches the desired length. The outputs

with more points than the desired length are normalized using

a selection algorithm. This algorithm consists in calculate a

window, W, as the division of the output length for the desired

length. The vector of outputs is traversed and each position

which is a multiple of W has it value added to the new vector

of outputs. If the new output vector is smaller than the desired

length, the remaining positions are randomly visited and used

to compose the new output vector until the desired length is

achieved.

To exemplify the normalization technique, imagine that a

input containing one hundred elements is selected. The desired

normalized distance is selected as eleven. As the input has

more points than the normalized distance, the W window is

calculated as 100/11 = 9. If the desired normalized distance

were bigger than the input size, ”0” would be added to it until

it reach the desired size. The input vector is visited and the

positions 9, 18, 27, 36, 45, 54, 63, 72, 81, 100 are selected to

compose the normalized vector. The normalized vector only

has 10 elements, so a position is selected randomly, excluding

the ones previously visited, and is added to the normalized

vector.

III. EXPERIMENTAL RESULTS

The efficiency and effectiveness of the CLCS applied to

gesture prediction is presented in this section. We compare

the results of the prediction of dynamic gestures using the

two prediction models showed bellow.

A. Experimental Methodology

The database used for this test is the RPPDI Gesture

Database1. It contains a set of seven different gestures. Figure

6 shows a gesture sequence. Each gesture is composed by

1Available at http://rppdi.ecomp.poli.br/gesture/database/

Fig. 6. Example of one gesture in the RPPDI database.

14 frames and the database has different sequences of each

gesture.

Each prediction system uses 66% of each gesture examples

to learn the full gestures. The remaining 34% are used for

tests. To evaluate the system each test gesture is used as input

fourteen times, starting with only one frame and adding a new

frame at each iteration, until every frame is considered. This

produces fourteen results for each gesture test sequence and

can show which the best frame/prediction rate ratio.

Each test is executed thirty times with randomly chosen

sequences and the average recognition and execution time are

showed.

B. Results

The collected results for each new frame added to the

system are here presented, being possible to observe the

evolution of the prediction rate and the evolution on the time

needed for it. The first set of results is shown in Table I. It

shows the results from frames 1 to 4 and, as can be seen, the

HMM based prediction shows a continuous improvement in

the prediction rate. Based on the HMM structural nature, each

new frame contains additional data for recognition and it will

increase the calculated probability. For the first four frames,

the correct prediction rate advances in 20 %.

For the DTW based prediction system it shows that even

with 4 frames it is not possible yet to identify which gesture

504504504



TABLE I
PREDICTION RESULTS FOR THE FIRSTS FOUR FRAMES IN EACH

PREDICTION SYSTEM

System Result F1 F2 F3 F4
HMM Predict. Rate(%) 37.9 43.6 49.9 54.4
HMM Std. Dev. 6.5 5.6 4.1 5.3
HMM Predict. Time(ms) 0.10 0.17 0.26 0.34
DTW Predict. Rate(ms)(%) 17.18 17.42 17.06 17.34
DTW Std. Dev. 0 0.27 0.70 0.47
DTW Predict. Time(ms) 9.7 9.5 29.0 40.1

TABLE II
PREDICTION RESULTS FOR THE FRAMES FIVE TO EIGHT IN EACH

PREDICTION SYSTEM

System Result F5 F6 F7 F8
HMM Predict. Rate(%) 66.0 68.38 73.12 75.98
HMM Std. Dev. 5.5 4.8 6.0 4.7
HMM Predict. Time(ms) 0.42 0.50 0.59 0.67
DTW Predict. Rate(ms)(%) 17.29 19.16 23.43 35.20
DTW Std. Dev. 0.3 2.0 3.4 4.5
DTW Predict. Time(ms) 48.3 59.0 68.8 80.6

is being executed.

The next set of results, shown in Table II, contains the

results of the addition of the frames four to eight and confirms

the constant evolution of the HMM prediction system. The

prediction rate increases from 66%, for four frames, to 75%,

with eight frames. The execution time is increased too, almost

in a linear constant. The DTW based prediction system starts

to increase the prediction rate only with five frames. Despite

being irrelevant for the first 7, the recognition rate grows faster

than the HMM one after that.

The correct recognition increases in this set still small, but

it happens faster than the HMM.

The results for the addition of frames nine to twelve, shown

in Table III, shows a stabilization in the HMM prediction

system. It continuously increased the prediction result and

reached a point of stabilization: 80% of recognition. The DTW

based system shows a quick evolution in the prediction rate,

overpassing the HMM results after twelve frames, reaching

94% of recognition.

The addition of the last two frames, showed in Table IV,

confirms the stabilization of the HMM predictions system in

80%. The DTW system achieves a higher recognition rate:

98.84% with the entire set of frames.

This results show that the CLCS can be used for gesture

prediction with the two selected prediction systems. The HMM

based prediction system presented a better result for a early

TABLE III
PREDICTION RESULTS FOR THE FRAMES NINE TO TWELVE IN EACH

PREDICTION SYSTEM

System Result F9 F10 F11 F12
HMM Predict. Rate(%) 76.7 80.0 82.2 81.7
HMM Std. Dev. 5.2 4.6 6.0 5.8
HMM Predict. Time(ms) 0.76 0.83 0.92 1.00
DTW Predict. Rate(ms)(%) 49.58 64.06 76.77 94.84
DTW Std. Dev. 4.9 5.3 6.8 4.0
DTW Predict. Time(ms) 90.23 98.06 104.87 80.6

TABLE IV
PREDICTION RESULTS FOR THE FRAMES THIRTEEN AND FOURTEEN

System Result F13 F14
HMM Predict. Rate(%) 80.15 80.72
HMM Std. Dev. 5.9 5.4
HMM Predict. Time(ms) 1.09 1.18
DTW Predict. Rate(ms)(%) 98.76 98.84
DTW Std. Dev. 1.14 1.11
DTW Predict. Time(ms) 115.34 123.04

Fig. 7. DTW and HMM based prediction system correct prediction rate
versus frames captured.

capture of the gesture, being able to achieve a classification

rate higher than 70% with only half of the frames that

composed the gesture. It also showed a gradual evolution in

the recognition, which is shown in Figure 6 chart. This chart

shows the evolution of the correct prediction rate versus the

amount of frames captured.

It has observed the DTW prediction system outperform the

HMM one, given a minimum number of frames as input. This

happens because the sequence distance has a fast decrease

with the additions of more frames to the captured input. It

can be used for dynamic gesture prediction and reached a

high correct prediction rate for 12 frames, higher than the

HMM based one. However, the prediction evolution of this

system is slow and it is adequate to use it only when you

have almost all the frames captured or if a higher recognition

rate is required. Figure 7 shows the evolution chart for the

DTW based prediction system.

IV. CONCLUSION

The Convexity Local Contour Sequences(CLCS) creates a

minimized feature vector for dynamic gesture input. It uses a

dynamic selection of points, based on the point significance in

the hand posture model. In this paper, it was applied for the

dynamic gesture prediction task with two different dynamic

gesture prediction systems: the first based on Hidden Markov

Model and the second on Dynamic Time Warping.

The HMM based prediction system uses the HMM to model

each gesture and the DTW one uses the distance of the input

with a set of samples to predict a gesture. The RPPDI dynamic

gesture dataset is used for evaluation. Each test consist in using
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an incomplete version of the gesture, first containing only the

first frame of each gesture, then two frames, and continuing

until all the fourteen frames that represents a gesture are

considered.

The results showed that the HMM based prediction system

has a continuous improvement in the prediction, reaching

75.98% of correct predicted gestures for 8 frames, almost

half of a complete gesture sequence. With the DTW based

prediction system the recognition rate only reaches the same

result of HMM when the 11th frame is added. However, the

correct prediction rate for 12 frames is 94%, a higher rate than

the HMM can reach.

This paper showed that the CLCS reaches a high prediction

rate through the extraction of each hand posture at each time.

With this characteristic it can be used to achieve a real time

prediction task that can be used to help the final recognition

task.

The future works can be listed as: test of the CLCS with

other prediction system models, the improvement of the CLCS

to achieve the feature extraction with complex background

datasets and the application of this models in a larger full

recognition system, containing facial expression recognition

and tracking of others parts of the human body.
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